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Abstract

Salehi and Ahmadi (2014) introduced a new sampling scheme for generating record-breaking data called record ranked set
sampling. In this paper, we consider the uncertainty and information content of record ranked set samples (RRSS) in terms of
Shannon entropy, Rényi and Kullback-Leibler (KL) information measures. We show that the difference between the Shannon
entropy of RRSS and the simple random samples (SRS) is depends on the parent distribution F. We also compare the information
content of RRSS with a SRS data in the uniform, exponential, Weibull, Pareto, and gamma distributions. We obtain similar
results for RRSS under the Rényi information. Finally, we show that the KL information between the distribution of SRS and
distribution of RRSS is distribution-free and increases as the sample size increases.
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1 Introduction

Suppose that {Xn, n ≥ 1} is a sequence of independent
and identically distributed random variables with the
cumulative distribution function (cdf ) F. Also, let

Yn = max(min){Xj|1 ≤ j ≤ n}.

We say Xj is an upper (lower) record value of {Xn, n ≥
1} , if Yj > (<)Yj−1, j > 1 . Let the 1th upper and lower
record be taken as L1 = U1 ≡ X1, and denote the nth
ordinary upper and lower record by Un and Ln, respec-
tively (for n ≥ 1). These type of data arise in a wide
variety of practical situations such as industrial stress
testing (Samaniego and Whitaker, 1986 ), meteorology
(Benestad, 2003), biology (Krug and Jain, 2005), sports
(Kuper and Sterken, 2003), and stock market analysis
(Bradlow and Park, 2007 ). Interested readers refer to the
books by Ahsanullah (1995) and Arnold et al.(1998). Ran-
ked set sampling was first proposed by McIntyre (1952)
for estimating the mean pasture yields. McIntyre (1952)
indicates that ranked set sampling is a more efficient
sampling method than simple random sampling method
for estimating the population mean. In the ranked set
sampling technique, the sample selection procedure is
composed of two stages. At the first stage of sample
selection, n simple random samples of size n are drawn
from an infinite population and each sample is called
a set . Then, each of observations are ranked from the
smallest to the largest according to variable of interest,
say X, in each set. Ranking of the units is done with a
low-level measurement such as using previous experien-
ces, visual measurement or using a concomitant variable.
At the second stage, the first observation unit from the
first set, the second observation unit from the second set
and going on like this nth-observation unit from the nth-
set are taken and measured according to the variable X
with a high level of measurement satisfying the desired
sensitivity. The obtained sample is called an ranked set
sample(RSS). In fact, the proposed scheme is motivated
based on the ordinary ranked set sampling which was
introduced by McIntyre (1952). This sampling, in turn,
yields more efficient estimators of many population pa-
rameters of interest (such as mean, median, variance,
quantiles) than a simple random sample (SRS) of the
same size does(see Chen et al., 2004). The one-cycle RSS
of size m can be demonstrated as below:

1 : X(1:m)1 X(2:m)1 · · · X(m:m)1 → X1,1 = X(1:m)1

2 : X(1:m)2 X(2:m)2 · · · X(m:m)2 → X2,2 = X(2:n)2
...

...
...

. . .
...

n : X(1:m)m X(2:m)m · · · X(m:m)m → Xm,m = X(m:m)m

where X(i:m)j denotes the ith order statistic from the jth
simple random sample of size m. The vector of obser-
vations XRSS = (X1,1, ...,Xm,m) is a one-cycle RSS of size

m; note that Xi,i ’s are not necessarily ordered. Recently,
Salehi and Ahmadi(2014) introduced a new sampling
scheme for generating record data. Suppose we have
m independent sequences of continuous random varia-
bles. The ith sequence sampling is terminated when the
ith record is observed. The only observations available
for analysis are the last record value in each sequences.
Salehi and Ahmadi(2014) called this design the record
ranked set sampling. In fact, the proposed scheme is
based on general RSS which is a sampling procedure
that can be viewed as a generalization of the SRS. Let
us denote the last record for the ith sequence by Ri,i,
if R = (R1,1,R2,2,...,Rm,m) is a RRSS of size m, then the
following procedure is used for representing this design

1 : R(1)1 → R1,1 = R(1)1

2 : R(1)2 R(2)2 → R2,2 = R(2)2
...

...
...

. . .
...

...
m : R(1)m R(2)m · · · R(m)m → Rm,m = R(m)m

where R(i)j is the ith ordinary record in the jth sequence.
It may be noted that, Ri,i ’s are independent random
variables, but not necessarily ordered. Let XSRS =
{Xi,i = 1,2,...,m} be a SRS of size m ≥ 1 from a con-
tinuous distribution with probability density function
(pdf) f (x). Also, let UR = (U1,1,U2,2,...,Um,m) and LR =
(L1,1,L2,2,...,Lm,m) be the upper and lower RRSS , res-
pectively. Then the density and cdf of Ui,i which are
denoted by fi,i(x) and Fi,i(x) , respectively, are given by
(see for instance Arnold et al., 1998)

fi,i(x) =
{− ln F̄(x)}i−1

(i − 1)!
f (x), (1)

Fi,i(x) = 1 − F̄(x)
i−1

∑
t=0

{− ln F̄(x)}t

t!
= 1 − Γ(i;− ln F̄(x))

Γ(i)
, (2)

where F̄(.) = 1 − F(.) and Γ(a; x) is known as the
incomplete gamma function and is defined as

Γ(a; x) =
∫ +∞

x
ua−1e−udu, a,x > 0.

The joint density and the survival function of UR readily
follows:

fUR(ur) =
m

∏
i=1

{− ln F̄(ui,i)}i−1

(i − 1)!
f (ui,i), (3)

and

F̄UR(ur) =
m

∏
i=1

F̄(ui,i)
i−1

∑
t=0

{− ln F̄(ui,i)}t

t!

=
m

∏
i=1

Γ(i;− ln F̄(ui,i))

Γ(i)
, (4)
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for analysis are the last record value in each sequences.
Salehi and Ahmadi(2014) called this design the record
ranked set sampling. In fact, the proposed scheme is
based on general RSS which is a sampling procedure
that can be viewed as a generalization of the SRS. Let
us denote the last record for the ith sequence by Ri,i,
if R = (R1,1,R2,2,...,Rm,m) is a RRSS of size m, then the
following procedure is used for representing this design

1 : R(1)1 → R1,1 = R(1)1

2 : R(1)2 R(2)2 → R2,2 = R(2)2
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m : R(1)m R(2)m · · · R(m)m → Rm,m = R(m)m

where R(i)j is the ith ordinary record in the jth sequence.
It may be noted that, Ri,i ’s are independent random
variables, but not necessarily ordered. Let XSRS =
{Xi,i = 1,2,...,m} be a SRS of size m ≥ 1 from a con-
tinuous distribution with probability density function
(pdf) f (x). Also, let UR = (U1,1,U2,2,...,Um,m) and LR =
(L1,1,L2,2,...,Lm,m) be the upper and lower RRSS , res-
pectively. Then the density and cdf of Ui,i which are
denoted by fi,i(x) and Fi,i(x) , respectively, are given by
(see for instance Arnold et al., 1998)

fi,i(x) =
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(i − 1)!
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{− ln F̄(x)}t
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Γ(i)
, (2)

where F̄(.) = 1 − F(.) and Γ(a; x) is known as the
incomplete gamma function and is defined as
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x
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where ur = (u1,1,u2,2,...,um,m) is the observed value of
UR. By substituting F̄ by F into the Eqs.(3) and (4), the
joint density and survival function of lower RRSS are
obtained. For an application of proposed plan, we con-
sider a parallel repairable system with minimal repairs,
include of m identical components with cdf F that works
independently. The minimal system means that the age
of system is not changed as a result of the repair. As-
sume that the ith component (i = 1,...,m) can be repaired
i − 1 times (i ≥ 1), i.e, it isn’t repairable after the ith
its failure. Hence, the m(m+1)

2 th failure is endangers for
the system and the lifetime of the system is given by
max{T1,...,Tm}, where Ti is the lifetime of the ith compo-
nent. Consequently, in proposed plan Ti is identical in
distribution with Ui,i. While system’s lifetime is compu-
ted according to max{U1,1,...,Um,m}, it will be appropri-
ate to know each Ui,i to acquire the entire lifetime system.
The information measures for record values have been
investigated by several authors, including, Zahedi and
Shakil (2006), Baratpour et al. (2007), and Madadi and
Tata (2011). Recently, Jafari Jozani and Ahmadi (2014)
studied uncertainty and information properties of RSS.
Tahmasebi and Jafari(2015) obtained information measu-
res of RSS in Farlie-Gumbel-Morgenstern family. In this
paper, we study the information measures such as Shan-
non’s entropy, Rényi entropy, and Kullback-Leibler(KL)
information of RRSS data. The organization of this ar-
ticle is as follows. In Section 2, we obtain the Shannon
entropies of RRSS and SRS data of the same size in
the uniform, exponential, Weibull, Pareto, and gamma
distributions. We show that the difference between the
Shannon entropy of RRSS and SRS is depends on the
parent distribution F. In Section 3, similar results with
numerical values are derived under the Rényi entropy in
uniform and exponential distributions. In Section 4, we
show that the KL information between the distribution
of XSRS and distribution of UR is distribution -free and
increases as the set size increases.

2 Shannon Entropy of RRSS

Shannon (1948) introduced the concepts of entropy and
mutual information from communication theory. En-
tropy is defined as a measure of uncertainty or ran-
domness of a random phenomenon. For a continuous
random variable X with pdf f (x), Shannon entropy is
defined as

H(X) = −
∫ +∞

−∞
f (x) ln f (x)dx = −

∫ 1

0
ln f (F−1(u))du.

(5)
We refer the reader to Cover and Thomas(1991) and the
references therein for more details. The Shannon entropy

of XSRS is given by

H(XSRS) = −
m

∑
j=1

∫
f (xj) ln f (xj)dxj = mH(X1). (6)

Let us assume that Ui,i ’s are not necessarily ordered, so
by (3) and (5) we have

H(UR) = −
m

∑
i=1

∫
fi,i(x) ln fi,i(x)dx =

m

∑
i=1

H(Ui,i). (7)

where H(Ui,i) is the entropy of the ith upper record
value in the ith sequence. Baratpour et al.(2007) obtained
an expression for H(Ui,i) which is given by

H(Ui,i) =
i−1

∑
k=1

(ln k − i − 1
k

) + (i − 1)γ − φ f (i − 1)

= H(U∗
i,i)− i − E[ln( f (F−1(1 − e−U∗

i,i )))],

(8)

where

φ f (i − 1) =
∫ +∞

0

zi−1

(i − 1)!
e−z ln( f (F−1(1 − e−z)))dz,

and U∗
i,i is the ith upper record value from gamma dis-

tribution with parameters i and 1. By (7) and (8) we
have

H(UR) =
m

∑
i=1

H(Ui,i)

=
m

∑
i=1

H(U∗
i,i)−

m(m + 1)
2

−
m

∑
i=1

φ f (i − 1).

(9)

Zahedi and Shakil (2006) presented a simple expression
of Eq.(8) as

H(Ui,i) = ln(Γ(i))− (i − 1)ψ(i)

− 1
Γ(i)

∫ +∞

−∞
[− ln(1 − F(x))]i−1 f (x) ln f (x)dx,

(10)

where ψ(i) = ´Γ(i)/Γ(i) is the digamma function. Now,
by using (10) a simple expression for H(UR) is obtained
as

H(UR) =
m

∑
i=1

[ln(Γ(i))− (i − 1)ψ(i)]−
m

∑
i=1

φ f (i − 1). (11)

In the sequel, we quantify the difference between H(UR)
and H(XSRS). To this end, by using (11), we have

∆m(i) = H(UR)− H(XSRS)

=
m

∑
i=1

[ln(Γ(i))− (i − 1)ψ(i)]
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where ur = (u1,1,u2,2,...,um,m) is the observed value of
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independently. The minimal system means that the age
of system is not changed as a result of the repair. As-
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i − 1 times (i ≥ 1), i.e, it isn’t repairable after the ith
its failure. Hence, the m(m+1)

2 th failure is endangers for
the system and the lifetime of the system is given by
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nent. Consequently, in proposed plan Ti is identical in
distribution with Ui,i. While system’s lifetime is compu-
ted according to max{U1,1,...,Um,m}, it will be appropri-
ate to know each Ui,i to acquire the entire lifetime system.
The information measures for record values have been
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information of RRSS data. The organization of this ar-
ticle is as follows. In Section 2, we obtain the Shannon
entropies of RRSS and SRS data of the same size in
the uniform, exponential, Weibull, Pareto, and gamma
distributions. We show that the difference between the
Shannon entropy of RRSS and SRS is depends on the
parent distribution F. In Section 3, similar results with
numerical values are derived under the Rényi entropy in
uniform and exponential distributions. In Section 4, we
show that the KL information between the distribution
of XSRS and distribution of UR is distribution -free and
increases as the set size increases.

2 Shannon Entropy of RRSS

Shannon (1948) introduced the concepts of entropy and
mutual information from communication theory. En-
tropy is defined as a measure of uncertainty or ran-
domness of a random phenomenon. For a continuous
random variable X with pdf f (x), Shannon entropy is
defined as

H(X) = −
∫ +∞
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f (x) ln f (x)dx = −

∫ 1
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ln f (F−1(u))du.
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references therein for more details. The Shannon entropy
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+
m

∑
i=1

∫ +∞

0
[

zi−1

(i − 1)!
− 1]

×e−z ln( f (F−1(1 − e−z)))dz,

(12)

where ∆m(i) is depends on the parent distribution F. In
the following examples, we compare the information
content of RRSS with a simple random sample data.

Example 2.1. Suppose X ∼ Uni f orm(0,1). Then we
have

H(Ũi,i) = ln(Γ(i))− (i − 1)ψ(i), (13)

where Ũi,i is called ith upper record value in the ith
sequence from uniform distribution on (0,1). Let us
denote ŨR = (Ũ1,1,Ũ2,2,...,Ũm,m). We consider two cases
of the RRSS where m = 2 and m = 3 , respectively. Our
calculations show that

H(ŨR) = γ − 1, H(ŨR) = 3γ + ln 2 − 4,

where γ = −ψ(1) = 0.57721566 is Euler’s constant.
Now, for two cases, we have

H(ŨR) < H(XSRS) = 0.

Also, for m > 2, we obtain

H(ŨR) =
m

∑
i=1

[ln(Γ(i))− (i − 1)ψ(i)]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]− (m − 1) < 0.

(14)

Tabela 1: The values of H(ŨR) for m = 3 up to 10.

m 3 4 5 6 7 8 9 10
H(ŨR) -1.5 -3.5 -6.3 -10.1 -14.7 -20.3 -26.9 -34.3

Table 1 shows the numerical values of H(ŨR) for
m ∈ {3,4,...,10}. From Table 1, it is observed that
H(ŨR) < 0 and decreases as m increases. So if X has an
uniform distribution on (0,1), then the record ranked set
sampling provides the amount of the uncertainty less
than simple random sampling.
Remark 2.1. Another expression for H(UR), is given by

H(UR) = H(ŨR)−
m

∑
i=1

φ f (i − 1), (15)

where H(ŨR) is defined in (14).
Remark 2.2. Suppose X ∼ Uni f orm(α,β). Then we have

H(UR) = H(ŨR) + H(XSRS)

=
m

∑
i=1

i−1

∑
k=1

(ln k − i − 1
k

) + γ(
m(m − 1)

2
)

+m ln(β − α) < H(XSRS).

Example 2.2. Suppose X has an exponential distribution
with pdf f (x) = 1

θ e
−x
θ . By using (8), the Shannon entropy

of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = ln(Γ(i))− (i − 1)ψ(i) + ln θ + i

= H(Ũi,i) + ln θ + i

= H(Ũi,i) + H(X) + i − 1, (16)

where H(X) = ln θ + 1. We consider two cases where
m = 2 and m = 3. For m = 2, we obtain
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m ∈ {3,4,...,10}. From Table 1, it is observed that
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H(Ũi,i) = ln(Γ(i))− (i − 1)ψ(i), (13)
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H(ŨR) =
m

∑
i=1

[ln(Γ(i))− (i − 1)ψ(i)]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]− (m − 1) < 0.

(14)

Tabela 1: The values of H(ŨR) for m = 3 up to 10.
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= H(Ũi,i) + ln θ + i
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for m ∈ {2,3,...,10}. From Table 2, it is observed that if
X has an exponential distribution with mean θ, then the
record ranked set sampling provides the amount of the
uncertainty more than simple random sampling.
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Tabela 2: The values of k(m) for m = 2 up to 10

m 2 3 4 5 6 7 8 9 10
k(m) 0.57 0.87 2.02 4.15 7.25 11.34 16.41 22.47 29.53

Example 2.3. Suppose X has a Pareto distribution with
pdf f (x) = θx−(θ+1) I(1,∞)(x). By using (8), the Shannon
entropy of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
, (19)

where H(X) = − ln(θ) + ( θ+1
θ ). We consider two cases

where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2[− ln θ +
θ + 1

θ
],

H(UR) =
3
θ
− 2 ln θ + γ + 2.

Also, for m = 3, we have

H(XSRS) = 3[− ln θ +
θ + 1

θ
],

H(UR) =
9
θ
− 3 ln θ + 3γ + ln 2 + 4.

Now, for two cases, we have

H(UR)− H(XSRS) > 0.

Also, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i)

=
m

∑
i=1

[H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
]

= H(ŨR) + mH(X) +
θ + 1

θ
[

m

∑
i=1

i! − m]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] + H(XSRS).

(20)

Finally, numerical computations indicate that

D(m,θ) = H(UR)− H(XSRS)

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] > 0.

Table 3 shows the values of D(m,θ) for θ = 2 and

Tabela 3: The values of D(m,θ) for m = 3 up to 10

m 3 4 5 6 7 8 9 10
D(m,θ) 7.4 39.9 215.6 1290.3 8844.2 69317.1 613629.1 6056820

m ∈ {3,4,...,10}. Also, D(m,θ) is an increasing function
of m, if θ is fixed. So if X has a Pareto distribution
with parameter θ, then the record ranked set sampling
provides the amount of the uncertainty more than simple
random sampling.
Example 2.4. Suppose X has a Weibull with pdf f (x) =
λβxβ−1exp(−λxβ). By using (8), the Shannon entropy
of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (
1 − β

β
)

i−1

∑
k=1

1
k
+ i − 1, (21)

where H(X) = − ln(λ
1
β β)+ ( 1−β

β )ψ(1)+ 1. We consider
two cases where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2H(X), H(UR) = 2H(X) + γ +
1 − β

β

Also, for m = 3, we have

H(XSRS) = 3H(X), H(UR) = 3H(X) + 3γ + ln 2 − 7
2
+

5
2β

.

Now , for two cases, we have

H(UR)− H(XSRS) < 0, f or β > 2.

Finally, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i) =
m

∑
i=1

H(Ũi,i) + mH(X)

+(
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k
+

(m + 2)(m − 1)
2

= H(ŨR) + H(XSRS) + (
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k

+
(m + 2)(m − 1)

2

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

+H(XSRS) + (
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k
+

(m)(m − 1)
2

.

(22)

In the sequel, the difference between H(UR) and
H(XSRS) is given by

δ(m,β) = −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]
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k(m) 0.57 0.87 2.02 4.15 7.25 11.34 16.41 22.47 29.53

Example 2.3. Suppose X has a Pareto distribution with
pdf f (x) = θx−(θ+1) I(1,∞)(x). By using (8), the Shannon
entropy of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
, (19)

where H(X) = − ln(θ) + ( θ+1
θ ). We consider two cases

where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2[− ln θ +
θ + 1

θ
],

H(UR) =
3
θ
− 2 ln θ + γ + 2.

Also, for m = 3, we have

H(XSRS) = 3[− ln θ +
θ + 1

θ
],

H(UR) =
9
θ
− 3 ln θ + 3γ + ln 2 + 4.

Now, for two cases, we have

H(UR)− H(XSRS) > 0.

Also, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i)

=
m

∑
i=1

[H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
]

= H(ŨR) + mH(X) +
θ + 1

θ
[

m

∑
i=1

i! − m]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] + H(XSRS).

(20)

Finally, numerical computations indicate that

D(m,θ) = H(UR)− H(XSRS)

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] > 0.

Table 3 shows the values of D(m,θ) for θ = 2 and

Tabela 3: The values of D(m,θ) for m = 3 up to 10

m 3 4 5 6 7 8 9 10
D(m,θ) 7.4 39.9 215.6 1290.3 8844.2 69317.1 613629.1 6056820

m ∈ {3,4,...,10}. Also, D(m,θ) is an increasing function
of m, if θ is fixed. So if X has a Pareto distribution
with parameter θ, then the record ranked set sampling
provides the amount of the uncertainty more than simple
random sampling.
Example 2.4. Suppose X has a Weibull with pdf f (x) =
λβxβ−1exp(−λxβ). By using (8), the Shannon entropy
of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (
1 − β

β
)

i−1

∑
k=1

1
k
+ i − 1, (21)

where H(X) = − ln(λ
1
β β)+ ( 1−β

β )ψ(1)+ 1. We consider
two cases where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2H(X), H(UR) = 2H(X) + γ +
1 − β

β

Also, for m = 3, we have

H(XSRS) = 3H(X), H(UR) = 3H(X) + 3γ + ln 2 − 7
2
+

5
2β

.

Now , for two cases, we have

H(UR)− H(XSRS) < 0, f or β > 2.

Finally, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i) =
m

∑
i=1

H(Ũi,i) + mH(X)

+(
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k
+

(m + 2)(m − 1)
2

= H(ŨR) + H(XSRS) + (
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k

+
(m + 2)(m − 1)

2

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

+H(XSRS) + (
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k
+

(m)(m − 1)
2

.

(22)

In the sequel, the difference between H(UR) and
H(XSRS) is given by

δ(m,β) = −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

-
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Tabela 2: The values of k(m) for m = 2 up to 10

m 2 3 4 5 6 7 8 9 10
k(m) 0.57 0.87 2.02 4.15 7.25 11.34 16.41 22.47 29.53

Example 2.3. Suppose X has a Pareto distribution with
pdf f (x) = θx−(θ+1) I(1,∞)(x). By using (8), the Shannon
entropy of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
, (19)

where H(X) = − ln(θ) + ( θ+1
θ ). We consider two cases

where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2[− ln θ +
θ + 1

θ
],

H(UR) =
3
θ
− 2 ln θ + γ + 2.

Also, for m = 3, we have

H(XSRS) = 3[− ln θ +
θ + 1

θ
],

H(UR) =
9
θ
− 3 ln θ + 3γ + ln 2 + 4.

Now, for two cases, we have

H(UR)− H(XSRS) > 0.

Also, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i)

=
m

∑
i=1

[H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
]

= H(ŨR) + mH(X) +
θ + 1

θ
[

m

∑
i=1

i! − m]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] + H(XSRS).

(20)

Finally, numerical computations indicate that

D(m,θ) = H(UR)− H(XSRS)

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] > 0.

Table 3 shows the values of D(m,θ) for θ = 2 and

Tabela 3: The values of D(m,θ) for m = 3 up to 10

m 3 4 5 6 7 8 9 10
D(m,θ) 7.4 39.9 215.6 1290.3 8844.2 69317.1 613629.1 6056820

m ∈ {3,4,...,10}. Also, D(m,θ) is an increasing function
of m, if θ is fixed. So if X has a Pareto distribution
with parameter θ, then the record ranked set sampling
provides the amount of the uncertainty more than simple
random sampling.
Example 2.4. Suppose X has a Weibull with pdf f (x) =
λβxβ−1exp(−λxβ). By using (8), the Shannon entropy
of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (
1 − β

β
)

i−1

∑
k=1

1
k
+ i − 1, (21)

where H(X) = − ln(λ
1
β β)+ ( 1−β

β )ψ(1)+ 1. We consider
two cases where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2H(X), H(UR) = 2H(X) + γ +
1 − β

β

Also, for m = 3, we have

H(XSRS) = 3H(X), H(UR) = 3H(X) + 3γ + ln 2 − 7
2
+

5
2β

.

Now , for two cases, we have

H(UR)− H(XSRS) < 0, f or β > 2.

Finally, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i) =
m

∑
i=1

H(Ũi,i) + mH(X)

+(
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k
+

(m + 2)(m − 1)
2

= H(ŨR) + H(XSRS) + (
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k

+
(m + 2)(m − 1)

2

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

+H(XSRS) + (
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k
+

(m)(m − 1)
2

.

(22)

In the sequel, the difference between H(UR) and
H(XSRS) is given by

δ(m,β) = −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]
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Tabela 2: The values of k(m) for m = 2 up to 10

m 2 3 4 5 6 7 8 9 10
k(m) 0.57 0.87 2.02 4.15 7.25 11.34 16.41 22.47 29.53

Example 2.3. Suppose X has a Pareto distribution with
pdf f (x) = θx−(θ+1) I(1,∞)(x). By using (8), the Shannon
entropy of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
, (19)

where H(X) = − ln(θ) + ( θ+1
θ ). We consider two cases

where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2[− ln θ +
θ + 1

θ
],

H(UR) =
3
θ
− 2 ln θ + γ + 2.

Also, for m = 3, we have

H(XSRS) = 3[− ln θ +
θ + 1

θ
],

H(UR) =
9
θ
− 3 ln θ + 3γ + ln 2 + 4.

Now, for two cases, we have

H(UR)− H(XSRS) > 0.

Also, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i)

=
m

∑
i=1

[H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
]

= H(ŨR) + mH(X) +
θ + 1

θ
[

m

∑
i=1

i! − m]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] + H(XSRS).

(20)

Finally, numerical computations indicate that

D(m,θ) = H(UR)− H(XSRS)

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] > 0.

Table 3 shows the values of D(m,θ) for θ = 2 and

Tabela 3: The values of D(m,θ) for m = 3 up to 10

m 3 4 5 6 7 8 9 10
D(m,θ) 7.4 39.9 215.6 1290.3 8844.2 69317.1 613629.1 6056820

m ∈ {3,4,...,10}. Also, D(m,θ) is an increasing function
of m, if θ is fixed. So if X has a Pareto distribution
with parameter θ, then the record ranked set sampling
provides the amount of the uncertainty more than simple
random sampling.
Example 2.4. Suppose X has a Weibull with pdf f (x) =
λβxβ−1exp(−λxβ). By using (8), the Shannon entropy
of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (
1 − β

β
)

i−1

∑
k=1

1
k
+ i − 1, (21)

where H(X) = − ln(λ
1
β β)+ ( 1−β

β )ψ(1)+ 1. We consider
two cases where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2H(X), H(UR) = 2H(X) + γ +
1 − β

β

Also, for m = 3, we have

H(XSRS) = 3H(X), H(UR) = 3H(X) + 3γ + ln 2 − 7
2
+

5
2β

.

Now , for two cases, we have

H(UR)− H(XSRS) < 0, f or β > 2.

Finally, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i) =
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∑
i=1

H(Ũi,i) + mH(X)

+(
1 − β

β
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∑
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i−1
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k
+
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2

= H(ŨR) + H(XSRS) + (
1 − β

β
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m
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+
(m + 2)(m − 1)

2

= −
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iψ(i) +
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+H(XSRS) + (
1 − β

β
)

m

∑
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∑
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1
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+

(m)(m − 1)
2

.

(22)

In the sequel, the difference between H(UR) and
H(XSRS) is given by

δ(m,β) = −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]
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Example 2.3. Suppose X has a Pareto distribution with
pdf f (x) = θx−(θ+1) I(1,∞)(x). By using (8), the Shannon
entropy of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
, (19)

where H(X) = − ln(θ) + ( θ+1
θ ). We consider two cases

where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2[− ln θ +
θ + 1

θ
],

H(UR) =
3
θ
− 2 ln θ + γ + 2.

Also, for m = 3, we have

H(XSRS) = 3[− ln θ +
θ + 1

θ
],

H(UR) =
9
θ
− 3 ln θ + 3γ + ln 2 + 4.

Now, for two cases, we have

H(UR)− H(XSRS) > 0.

Also, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i)

=
m

∑
i=1

[H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
]

= H(ŨR) + mH(X) +
θ + 1

θ
[

m

∑
i=1

i! − m]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] + H(XSRS).

(20)

Finally, numerical computations indicate that

D(m,θ) = H(UR)− H(XSRS)

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[
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∑
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Table 3 shows the values of D(m,θ) for θ = 2 and
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m 3 4 5 6 7 8 9 10
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m ∈ {3,4,...,10}. Also, D(m,θ) is an increasing function
of m, if θ is fixed. So if X has a Pareto distribution
with parameter θ, then the record ranked set sampling
provides the amount of the uncertainty more than simple
random sampling.
Example 2.4. Suppose X has a Weibull with pdf f (x) =
λβxβ−1exp(−λxβ). By using (8), the Shannon entropy
of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (
1 − β

β
)

i−1

∑
k=1

1
k
+ i − 1, (21)

where H(X) = − ln(λ
1
β β)+ ( 1−β

β )ψ(1)+ 1. We consider
two cases where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2H(X), H(UR) = 2H(X) + γ +
1 − β

β

Also, for m = 3, we have

H(XSRS) = 3H(X), H(UR) = 3H(X) + 3γ + ln 2 − 7
2
+

5
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.

Now , for two cases, we have

H(UR)− H(XSRS) < 0, f or β > 2.

Finally, for m ≥ 2, we obtain

H(UR) =
m

∑
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H(Ui,i) =
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∑
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Tabela 2: The values of k(m) for m = 2 up to 10
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Example 2.3. Suppose X has a Pareto distribution with
pdf f (x) = θx−(θ+1) I(1,∞)(x). By using (8), the Shannon
entropy of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
, (19)

where H(X) = − ln(θ) + ( θ+1
θ ). We consider two cases

where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2[− ln θ +
θ + 1

θ
],

H(UR) =
3
θ
− 2 ln θ + γ + 2.

Also, for m = 3, we have

H(XSRS) = 3[− ln θ +
θ + 1

θ
],

H(UR) =
9
θ
− 3 ln θ + 3γ + ln 2 + 4.

Now, for two cases, we have

H(UR)− H(XSRS) > 0.

Also, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i)

=
m

∑
i=1

[H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
]

= H(ŨR) + mH(X) +
θ + 1

θ
[
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∑
i=1
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= −
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∑
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∑
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Finally, numerical computations indicate that

D(m,θ) = H(UR)− H(XSRS)

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
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ln[(i + 1)!]
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θ
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∑
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Table 3 shows the values of D(m,θ) for θ = 2 and

Tabela 3: The values of D(m,θ) for m = 3 up to 10
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m ∈ {3,4,...,10}. Also, D(m,θ) is an increasing function
of m, if θ is fixed. So if X has a Pareto distribution
with parameter θ, then the record ranked set sampling
provides the amount of the uncertainty more than simple
random sampling.
Example 2.4. Suppose X has a Weibull with pdf f (x) =
λβxβ−1exp(−λxβ). By using (8), the Shannon entropy
of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (
1 − β

β
)

i−1

∑
k=1

1
k
+ i − 1, (21)

where H(X) = − ln(λ
1
β β)+ ( 1−β

β )ψ(1)+ 1. We consider
two cases where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2H(X), H(UR) = 2H(X) + γ +
1 − β

β

Also, for m = 3, we have

H(XSRS) = 3H(X), H(UR) = 3H(X) + 3γ + ln 2 − 7
2
+

5
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.

Now , for two cases, we have

H(UR)− H(XSRS) < 0, f or β > 2.

Finally, for m ≥ 2, we obtain
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In the sequel, the difference between H(UR) and
H(XSRS) is given by

δ(m,β) = −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]
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Tabela 2: The values of k(m) for m = 2 up to 10
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k(m) 0.57 0.87 2.02 4.15 7.25 11.34 16.41 22.47 29.53

Example 2.3. Suppose X has a Pareto distribution with
pdf f (x) = θx−(θ+1) I(1,∞)(x). By using (8), the Shannon
entropy of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
, (19)

where H(X) = − ln(θ) + ( θ+1
θ ). We consider two cases

where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2[− ln θ +
θ + 1

θ
],

H(UR) =
3
θ
− 2 ln θ + γ + 2.

Also, for m = 3, we have

H(XSRS) = 3[− ln θ +
θ + 1

θ
],

H(UR) =
9
θ
− 3 ln θ + 3γ + ln 2 + 4.

Now, for two cases, we have

H(UR)− H(XSRS) > 0.

Also, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i)

=
m

∑
i=1

[H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
]

= H(ŨR) + mH(X) +
θ + 1

θ
[

m

∑
i=1

i! − m]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] + H(XSRS).

(20)

Finally, numerical computations indicate that

D(m,θ) = H(UR)− H(XSRS)

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[
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∑
i=1

i! − m] > 0.

Table 3 shows the values of D(m,θ) for θ = 2 and
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m ∈ {3,4,...,10}. Also, D(m,θ) is an increasing function
of m, if θ is fixed. So if X has a Pareto distribution
with parameter θ, then the record ranked set sampling
provides the amount of the uncertainty more than simple
random sampling.
Example 2.4. Suppose X has a Weibull with pdf f (x) =
λβxβ−1exp(−λxβ). By using (8), the Shannon entropy
of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (
1 − β

β
)

i−1

∑
k=1

1
k
+ i − 1, (21)

where H(X) = − ln(λ
1
β β)+ ( 1−β

β )ψ(1)+ 1. We consider
two cases where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2H(X), H(UR) = 2H(X) + γ +
1 − β

β

Also, for m = 3, we have

H(XSRS) = 3H(X), H(UR) = 3H(X) + 3γ + ln 2 − 7
2
+

5
2β

.

Now , for two cases, we have

H(UR)− H(XSRS) < 0, f or β > 2.

Finally, for m ≥ 2, we obtain

H(UR) =
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∑
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∑
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+(
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)
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In the sequel, the difference between H(UR) and
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k(m) 0.57 0.87 2.02 4.15 7.25 11.34 16.41 22.47 29.53

Example 2.3. Suppose X has a Pareto distribution with
pdf f (x) = θx−(θ+1) I(1,∞)(x). By using (8), the Shannon
entropy of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
, (19)

where H(X) = − ln(θ) + ( θ+1
θ ). We consider two cases

where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2[− ln θ +
θ + 1

θ
],

H(UR) =
3
θ
− 2 ln θ + γ + 2.

Also, for m = 3, we have

H(XSRS) = 3[− ln θ +
θ + 1

θ
],

H(UR) =
9
θ
− 3 ln θ + 3γ + ln 2 + 4.

Now, for two cases, we have

H(UR)− H(XSRS) > 0.

Also, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i)

=
m

∑
i=1

[H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
]

= H(ŨR) + mH(X) +
θ + 1

θ
[

m

∑
i=1

i! − m]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] + H(XSRS).

(20)

Finally, numerical computations indicate that

D(m,θ) = H(UR)− H(XSRS)

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] > 0.

Table 3 shows the values of D(m,θ) for θ = 2 and
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D(m,θ) 7.4 39.9 215.6 1290.3 8844.2 69317.1 613629.1 6056820

m ∈ {3,4,...,10}. Also, D(m,θ) is an increasing function
of m, if θ is fixed. So if X has a Pareto distribution
with parameter θ, then the record ranked set sampling
provides the amount of the uncertainty more than simple
random sampling.
Example 2.4. Suppose X has a Weibull with pdf f (x) =
λβxβ−1exp(−λxβ). By using (8), the Shannon entropy
of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (
1 − β

β
)

i−1

∑
k=1

1
k
+ i − 1, (21)

where H(X) = − ln(λ
1
β β)+ ( 1−β

β )ψ(1)+ 1. We consider
two cases where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2H(X), H(UR) = 2H(X) + γ +
1 − β

β

Also, for m = 3, we have

H(XSRS) = 3H(X), H(UR) = 3H(X) + 3γ + ln 2 − 7
2
+

5
2β

.

Now , for two cases, we have

H(UR)− H(XSRS) < 0, f or β > 2.

Finally, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i) =
m

∑
i=1

H(Ũi,i) + mH(X)

+(
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
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In the sequel, the difference between H(UR) and
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k(m) 0.57 0.87 2.02 4.15 7.25 11.34 16.41 22.47 29.53

Example 2.3. Suppose X has a Pareto distribution with
pdf f (x) = θx−(θ+1) I(1,∞)(x). By using (8), the Shannon
entropy of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
, (19)

where H(X) = − ln(θ) + ( θ+1
θ ). We consider two cases

where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2[− ln θ +
θ + 1

θ
],

H(UR) =
3
θ
− 2 ln θ + γ + 2.

Also, for m = 3, we have

H(XSRS) = 3[− ln θ +
θ + 1

θ
],

H(UR) =
9
θ
− 3 ln θ + 3γ + ln 2 + 4.

Now, for two cases, we have

H(UR)− H(XSRS) > 0.

Also, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i)

=
m

∑
i=1

[H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
]

= H(ŨR) + mH(X) +
θ + 1

θ
[

m

∑
i=1

i! − m]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] + H(XSRS).

(20)

Finally, numerical computations indicate that

D(m,θ) = H(UR)− H(XSRS)

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] > 0.

Table 3 shows the values of D(m,θ) for θ = 2 and
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D(m,θ) 7.4 39.9 215.6 1290.3 8844.2 69317.1 613629.1 6056820

m ∈ {3,4,...,10}. Also, D(m,θ) is an increasing function
of m, if θ is fixed. So if X has a Pareto distribution
with parameter θ, then the record ranked set sampling
provides the amount of the uncertainty more than simple
random sampling.
Example 2.4. Suppose X has a Weibull with pdf f (x) =
λβxβ−1exp(−λxβ). By using (8), the Shannon entropy
of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (
1 − β

β
)

i−1

∑
k=1

1
k
+ i − 1, (21)

where H(X) = − ln(λ
1
β β)+ ( 1−β

β )ψ(1)+ 1. We consider
two cases where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2H(X), H(UR) = 2H(X) + γ +
1 − β

β

Also, for m = 3, we have

H(XSRS) = 3H(X), H(UR) = 3H(X) + 3γ + ln 2 − 7
2
+

5
2β

.

Now , for two cases, we have

H(UR)− H(XSRS) < 0, f or β > 2.

Finally, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i) =
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∑
i=1

H(Ũi,i) + mH(X)

+(
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)
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In the sequel, the difference between H(UR) and
H(XSRS) is given by

δ(m,β) = −
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∑
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∑
i=1
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k(m) 0.57 0.87 2.02 4.15 7.25 11.34 16.41 22.47 29.53

Example 2.3. Suppose X has a Pareto distribution with
pdf f (x) = θx−(θ+1) I(1,∞)(x). By using (8), the Shannon
entropy of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
, (19)

where H(X) = − ln(θ) + ( θ+1
θ ). We consider two cases

where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2[− ln θ +
θ + 1

θ
],

H(UR) =
3
θ
− 2 ln θ + γ + 2.

Also, for m = 3, we have

H(XSRS) = 3[− ln θ +
θ + 1

θ
],

H(UR) =
9
θ
− 3 ln θ + 3γ + ln 2 + 4.

Now, for two cases, we have

H(UR)− H(XSRS) > 0.

Also, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i)

=
m

∑
i=1

[H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
]

= H(ŨR) + mH(X) +
θ + 1

θ
[

m

∑
i=1

i! − m]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] + H(XSRS).

(20)

Finally, numerical computations indicate that

D(m,θ) = H(UR)− H(XSRS)

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] > 0.

Table 3 shows the values of D(m,θ) for θ = 2 and
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m ∈ {3,4,...,10}. Also, D(m,θ) is an increasing function
of m, if θ is fixed. So if X has a Pareto distribution
with parameter θ, then the record ranked set sampling
provides the amount of the uncertainty more than simple
random sampling.
Example 2.4. Suppose X has a Weibull with pdf f (x) =
λβxβ−1exp(−λxβ). By using (8), the Shannon entropy
of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (
1 − β

β
)

i−1

∑
k=1

1
k
+ i − 1, (21)

where H(X) = − ln(λ
1
β β)+ ( 1−β

β )ψ(1)+ 1. We consider
two cases where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2H(X), H(UR) = 2H(X) + γ +
1 − β

β

Also, for m = 3, we have

H(XSRS) = 3H(X), H(UR) = 3H(X) + 3γ + ln 2 − 7
2
+

5
2β

.

Now , for two cases, we have

H(UR)− H(XSRS) < 0, f or β > 2.

Finally, for m ≥ 2, we obtain

H(UR) =
m

∑
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H(Ui,i) =
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∑
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+(
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)
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k(m) 0.57 0.87 2.02 4.15 7.25 11.34 16.41 22.47 29.53

Example 2.3. Suppose X has a Pareto distribution with
pdf f (x) = θx−(θ+1) I(1,∞)(x). By using (8), the Shannon
entropy of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
, (19)

where H(X) = − ln(θ) + ( θ+1
θ ). We consider two cases

where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2[− ln θ +
θ + 1

θ
],

H(UR) =
3
θ
− 2 ln θ + γ + 2.

Also, for m = 3, we have

H(XSRS) = 3[− ln θ +
θ + 1

θ
],

H(UR) =
9
θ
− 3 ln θ + 3γ + ln 2 + 4.

Now, for two cases, we have

H(UR)− H(XSRS) > 0.

Also, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i)

=
m

∑
i=1

[H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
]

= H(ŨR) + mH(X) +
θ + 1

θ
[

m

∑
i=1

i! − m]

= −
m−1

∑
i=1

iψ(i) +
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∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] + H(XSRS).

(20)

Finally, numerical computations indicate that

D(m,θ) = H(UR)− H(XSRS)

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
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θ
[

m

∑
i=1

i! − m] > 0.

Table 3 shows the values of D(m,θ) for θ = 2 and
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m ∈ {3,4,...,10}. Also, D(m,θ) is an increasing function
of m, if θ is fixed. So if X has a Pareto distribution
with parameter θ, then the record ranked set sampling
provides the amount of the uncertainty more than simple
random sampling.
Example 2.4. Suppose X has a Weibull with pdf f (x) =
λβxβ−1exp(−λxβ). By using (8), the Shannon entropy
of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (
1 − β

β
)

i−1

∑
k=1

1
k
+ i − 1, (21)

where H(X) = − ln(λ
1
β β)+ ( 1−β

β )ψ(1)+ 1. We consider
two cases where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2H(X), H(UR) = 2H(X) + γ +
1 − β

β

Also, for m = 3, we have

H(XSRS) = 3H(X), H(UR) = 3H(X) + 3γ + ln 2 − 7
2
+

5
2β

.

Now , for two cases, we have

H(UR)− H(XSRS) < 0, f or β > 2.

Finally, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i) =
m

∑
i=1

H(Ũi,i) + mH(X)

+(
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k
+

(m + 2)(m − 1)
2

= H(ŨR) + H(XSRS) + (
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k

+
(m + 2)(m − 1)

2

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

+H(XSRS) + (
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k
+

(m)(m − 1)
2

.

(22)

In the sequel, the difference between H(UR) and
H(XSRS) is given by

δ(m,β) = −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]
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Tabela 2: The values of k(m) for m = 2 up to 10

m 2 3 4 5 6 7 8 9 10
k(m) 0.57 0.87 2.02 4.15 7.25 11.34 16.41 22.47 29.53

Example 2.3. Suppose X has a Pareto distribution with
pdf f (x) = θx−(θ+1) I(1,∞)(x). By using (8), the Shannon
entropy of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
, (19)

where H(X) = − ln(θ) + ( θ+1
θ ). We consider two cases

where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2[− ln θ +
θ + 1

θ
],

H(UR) =
3
θ
− 2 ln θ + γ + 2.

Also, for m = 3, we have

H(XSRS) = 3[− ln θ +
θ + 1

θ
],

H(UR) =
9
θ
− 3 ln θ + 3γ + ln 2 + 4.

Now, for two cases, we have

H(UR)− H(XSRS) > 0.

Also, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i)

=
m

∑
i=1

[H(Ũi,i) + H(X) + (i! − 1)
θ + 1

θ
]

= H(ŨR) + mH(X) +
θ + 1

θ
[

m

∑
i=1

i! − m]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] + H(XSRS).

(20)

Finally, numerical computations indicate that

D(m,θ) = H(UR)− H(XSRS)

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

−(m − 1) +
θ + 1

θ
[

m

∑
i=1

i! − m] > 0.

Table 3 shows the values of D(m,θ) for θ = 2 and

Tabela 3: The values of D(m,θ) for m = 3 up to 10

m 3 4 5 6 7 8 9 10
D(m,θ) 7.4 39.9 215.6 1290.3 8844.2 69317.1 613629.1 6056820

m ∈ {3,4,...,10}. Also, D(m,θ) is an increasing function
of m, if θ is fixed. So if X has a Pareto distribution
with parameter θ, then the record ranked set sampling
provides the amount of the uncertainty more than simple
random sampling.
Example 2.4. Suppose X has a Weibull with pdf f (x) =
λβxβ−1exp(−λxβ). By using (8), the Shannon entropy
of Ui,i for i ≥ 2 is obtained as

H(Ui,i) = H(Ũi,i) + H(X) + (
1 − β

β
)

i−1

∑
k=1

1
k
+ i − 1, (21)

where H(X) = − ln(λ
1
β β)+ ( 1−β

β )ψ(1)+ 1. We consider
two cases where m = 2 and m = 3. For m = 2, we obtain

H(XSRS) = 2H(X), H(UR) = 2H(X) + γ +
1 − β

β

Also, for m = 3, we have

H(XSRS) = 3H(X), H(UR) = 3H(X) + 3γ + ln 2 − 7
2
+

5
2β

.

Now , for two cases, we have

H(UR)− H(XSRS) < 0, f or β > 2.

Finally, for m ≥ 2, we obtain

H(UR) =
m

∑
i=1

H(Ui,i) =
m

∑
i=1

H(Ũi,i) + mH(X)

+(
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k
+

(m + 2)(m − 1)
2

= H(ŨR) + H(XSRS) + (
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k

+
(m + 2)(m − 1)

2

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]

+H(XSRS) + (
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k
+

(m)(m − 1)
2

.

(22)

In the sequel, the difference between H(UR) and
H(XSRS) is given by

δ(m,β) = −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!]
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+(
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k
+

(m)(m − 1)
2

< 0,

f or β > 2.

Table 4 shows the values of δ(m,β) for β = 3 and
m ∈ {3,4,...,10}. Numerical computations indicate that
δ(m,β) is decreasing function of m, if β is fixed. So
if X has a Weibull distribution with parameters (λ,β),
then for β > 2 the record ranked set sampling provides
the amount of the uncertainty less than simple random
sampling.

Tabela 4: The values of δ(m,β) for m = 3 up to 10

m 3 4 5 6 7 8 9 10
δ(m,β) -0.24 -0.44 -0.67 -0.94 -1.23 -1.54 -1.87 -2.22

Example 2.5. Let U∗
i,i be the i-th upper record value

from Gamma(i,1), then the Shannon entropy of U∗
R =

(U∗
1,1,U∗

2,2,...,U∗
m,m) is obtained as

H(U∗
R) =

m

∑
i=1

H(U∗
i,i) =

m

∑
i=1

[ln(Γ(i))− (i − 1)ψ(i) + i]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!] +
m2 − m + 2

2

= H(XSRS). (23)

Lemma 2.1. If f (x) is increasing in x, then H(UR) is
decreasing in m.

Proof. By using (15), we have

d1(m) = H(U(m+1)
R )− H(U(m)

R )

= H(Ũ(m+1)
R )− H(Ũ(m)

R )

−
m+1

∑
i=1

φ f (i − 1) +
m

∑
i=1

φ f (i − 1)

= ln(m!)− mψ(m)− φ f (m)

= ln(m!)− mψ(m)

−
∫ +∞

0

zm

(m)!
e−z ln( f (F−1(1 − e−z)))dz

< 0. (24)

Thus the proof is complete. �
Baratpur et al.(2007) obtained an upper bound for

H(Ui,i) which is depends on the hazard rate function
r(.) = f (.)

F̄(.) as follows:

H(Ui,i) ≤ H(U∗
i,i)− i − Bi I(A), (25)

where Bi = (i−1)(i−1)e−(i−1)

(i−1)! , I(A) =
∫

A r(y) ln f (y)dy
and A = {y | f (y) ≤ 1}. Now, by using (15) and (25)

an upper bound for H(UR) is given by

H(UR) ≤ H(ŨR)−
m+1

∑
j=o

jje−j

j!
I(A). (26)

Remark 2.3. Similar results for H(UR) which given in
this section, can be obtained for H(LR).

Rao et al. (2004) introduced a new measure of infor-
mation that extends the Shannon entropy to continuous
random variables, and called it cumulative residual en-
tropy (CRE). The CRE is based on survival function F̄(x),
and is defined as

E(X) = −
∫ +∞

0
F̄(x) ln F̄(x)dx. (27)

The CRE of XSRS and UR are obtained as

E(XSRS) = nE(X)µn−1, E(UR) = ∑
i
E(U(i,i))∏

j �=i
µ(j,j), (28)

where µ =
∫ +∞

0 F̄(x)dx and µ(j,j) =
∫ +∞

0 F̄j,j(x)dx.

3 Rényi entropy of RRSS

In information theory, the Rényi entropy is a generali-
zation for the Shannon entropy. The Rényi entropy of
order λ is defined as

Hλ(X) =
1

1 − λ
ln

∫ +∞

−∞
f λ(x)dx, (29)

where λ > 0, λ �= 1, and H(X) = limλ→1 Hλ(X) =
−
∫ ∞
−∞ f (x) ln f (x)dx is the Shannon entropy if both in-

tegrals exist(Rényi, 1961). Rényi information is much
more flexible than the Shannon entropy due to the para-
meter λ. It is an important measure in various applied
sciences such as statistics (Song, 2001), ecology (Harte,
2011), engineering (Lenzi et.al., 2000), and economics
(Ullah, 1988). In this section, we obtain the Rényi en-
tropy of UR and compare its with the Rényi entropy of
XSRS . To this end, it is easy to show that the Rényi
entropy of a SRS of size m from f is given by

Hλ(XSRS) =
m

∑
i=1

Hλ(Xi) = mH(X1). (30)

Also, for a RRSS of size m, we have

Hλ(UR) =
m

∑
i=1

Hλ(Ui,i), (31)

where Hλ(Ui,i) is the Rényi entropy of the ith upper re-
cord value in the ith sequence. Abbasnejad and Arghami(2011)
obtained an expression for Hλ(Ui,i) as

Hλ(Ui,i) = Hλ(U∗
i,i)− (

λ(i − 1) + 1
λ − 1

) ln(λ)
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+(
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k
+

(m)(m − 1)
2

< 0,

f or β > 2.

Table 4 shows the values of δ(m,β) for β = 3 and
m ∈ {3,4,...,10}. Numerical computations indicate that
δ(m,β) is decreasing function of m, if β is fixed. So
if X has a Weibull distribution with parameters (λ,β),
then for β > 2 the record ranked set sampling provides
the amount of the uncertainty less than simple random
sampling.

Tabela 4: The values of δ(m,β) for m = 3 up to 10

m 3 4 5 6 7 8 9 10
δ(m,β) -0.24 -0.44 -0.67 -0.94 -1.23 -1.54 -1.87 -2.22

Example 2.5. Let U∗
i,i be the i-th upper record value

from Gamma(i,1), then the Shannon entropy of U∗
R =

(U∗
1,1,U∗

2,2,...,U∗
m,m) is obtained as

H(U∗
R) =

m

∑
i=1

H(U∗
i,i) =

m

∑
i=1

[ln(Γ(i))− (i − 1)ψ(i) + i]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!] +
m2 − m + 2

2

= H(XSRS). (23)

Lemma 2.1. If f (x) is increasing in x, then H(UR) is
decreasing in m.

Proof. By using (15), we have

d1(m) = H(U(m+1)
R )− H(U(m)

R )

= H(Ũ(m+1)
R )− H(Ũ(m)

R )

−
m+1

∑
i=1

φ f (i − 1) +
m

∑
i=1

φ f (i − 1)

= ln(m!)− mψ(m)− φ f (m)

= ln(m!)− mψ(m)

−
∫ +∞

0

zm

(m)!
e−z ln( f (F−1(1 − e−z)))dz

< 0. (24)

Thus the proof is complete. �
Baratpur et al.(2007) obtained an upper bound for

H(Ui,i) which is depends on the hazard rate function
r(.) = f (.)

F̄(.) as follows:

H(Ui,i) ≤ H(U∗
i,i)− i − Bi I(A), (25)

where Bi = (i−1)(i−1)e−(i−1)

(i−1)! , I(A) =
∫

A r(y) ln f (y)dy
and A = {y | f (y) ≤ 1}. Now, by using (15) and (25)

an upper bound for H(UR) is given by

H(UR) ≤ H(ŨR)−
m+1

∑
j=o

jje−j

j!
I(A). (26)

Remark 2.3. Similar results for H(UR) which given in
this section, can be obtained for H(LR).

Rao et al. (2004) introduced a new measure of infor-
mation that extends the Shannon entropy to continuous
random variables, and called it cumulative residual en-
tropy (CRE). The CRE is based on survival function F̄(x),
and is defined as

E(X) = −
∫ +∞

0
F̄(x) ln F̄(x)dx. (27)

The CRE of XSRS and UR are obtained as

E(XSRS) = nE(X)µn−1, E(UR) = ∑
i
E(U(i,i))∏

j �=i
µ(j,j), (28)

where µ =
∫ +∞

0 F̄(x)dx and µ(j,j) =
∫ +∞

0 F̄j,j(x)dx.

3 Rényi entropy of RRSS

In information theory, the Rényi entropy is a generali-
zation for the Shannon entropy. The Rényi entropy of
order λ is defined as

Hλ(X) =
1

1 − λ
ln

∫ +∞

−∞
f λ(x)dx, (29)

where λ > 0, λ �= 1, and H(X) = limλ→1 Hλ(X) =
−
∫ ∞
−∞ f (x) ln f (x)dx is the Shannon entropy if both in-

tegrals exist(Rényi, 1961). Rényi information is much
more flexible than the Shannon entropy due to the para-
meter λ. It is an important measure in various applied
sciences such as statistics (Song, 2001), ecology (Harte,
2011), engineering (Lenzi et.al., 2000), and economics
(Ullah, 1988). In this section, we obtain the Rényi en-
tropy of UR and compare its with the Rényi entropy of
XSRS . To this end, it is easy to show that the Rényi
entropy of a SRS of size m from f is given by

Hλ(XSRS) =
m

∑
i=1

Hλ(Xi) = mH(X1). (30)

Also, for a RRSS of size m, we have

Hλ(UR) =
m

∑
i=1

Hλ(Ui,i), (31)

where Hλ(Ui,i) is the Rényi entropy of the ith upper re-
cord value in the ith sequence. Abbasnejad and Arghami(2011)
obtained an expression for Hλ(Ui,i) as

Hλ(Ui,i) = Hλ(U∗
i,i)− (

λ(i − 1) + 1
λ − 1

) ln(λ)
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+(
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k
+

(m)(m − 1)
2

< 0,

f or β > 2.

Table 4 shows the values of δ(m,β) for β = 3 and
m ∈ {3,4,...,10}. Numerical computations indicate that
δ(m,β) is decreasing function of m, if β is fixed. So
if X has a Weibull distribution with parameters (λ,β),
then for β > 2 the record ranked set sampling provides
the amount of the uncertainty less than simple random
sampling.

Tabela 4: The values of δ(m,β) for m = 3 up to 10

m 3 4 5 6 7 8 9 10
δ(m,β) -0.24 -0.44 -0.67 -0.94 -1.23 -1.54 -1.87 -2.22

Example 2.5. Let U∗
i,i be the i-th upper record value

from Gamma(i,1), then the Shannon entropy of U∗
R =

(U∗
1,1,U∗

2,2,...,U∗
m,m) is obtained as

H(U∗
R) =

m

∑
i=1

H(U∗
i,i) =

m

∑
i=1

[ln(Γ(i))− (i − 1)ψ(i) + i]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!] +
m2 − m + 2

2

= H(XSRS). (23)

Lemma 2.1. If f (x) is increasing in x, then H(UR) is
decreasing in m.

Proof. By using (15), we have

d1(m) = H(U(m+1)
R )− H(U(m)

R )

= H(Ũ(m+1)
R )− H(Ũ(m)

R )

−
m+1

∑
i=1

φ f (i − 1) +
m

∑
i=1

φ f (i − 1)

= ln(m!)− mψ(m)− φ f (m)

= ln(m!)− mψ(m)

−
∫ +∞

0

zm

(m)!
e−z ln( f (F−1(1 − e−z)))dz

< 0. (24)

Thus the proof is complete. �
Baratpur et al.(2007) obtained an upper bound for

H(Ui,i) which is depends on the hazard rate function
r(.) = f (.)

F̄(.) as follows:

H(Ui,i) ≤ H(U∗
i,i)− i − Bi I(A), (25)

where Bi = (i−1)(i−1)e−(i−1)

(i−1)! , I(A) =
∫

A r(y) ln f (y)dy
and A = {y | f (y) ≤ 1}. Now, by using (15) and (25)

an upper bound for H(UR) is given by

H(UR) ≤ H(ŨR)−
m+1

∑
j=o

jje−j

j!
I(A). (26)

Remark 2.3. Similar results for H(UR) which given in
this section, can be obtained for H(LR).

Rao et al. (2004) introduced a new measure of infor-
mation that extends the Shannon entropy to continuous
random variables, and called it cumulative residual en-
tropy (CRE). The CRE is based on survival function F̄(x),
and is defined as

E(X) = −
∫ +∞

0
F̄(x) ln F̄(x)dx. (27)

The CRE of XSRS and UR are obtained as

E(XSRS) = nE(X)µn−1, E(UR) = ∑
i
E(U(i,i))∏

j �=i
µ(j,j), (28)

where µ =
∫ +∞

0 F̄(x)dx and µ(j,j) =
∫ +∞

0 F̄j,j(x)dx.

3 Rényi entropy of RRSS

In information theory, the Rényi entropy is a generali-
zation for the Shannon entropy. The Rényi entropy of
order λ is defined as

Hλ(X) =
1

1 − λ
ln

∫ +∞

−∞
f λ(x)dx, (29)

where λ > 0, λ �= 1, and H(X) = limλ→1 Hλ(X) =
−
∫ ∞
−∞ f (x) ln f (x)dx is the Shannon entropy if both in-

tegrals exist(Rényi, 1961). Rényi information is much
more flexible than the Shannon entropy due to the para-
meter λ. It is an important measure in various applied
sciences such as statistics (Song, 2001), ecology (Harte,
2011), engineering (Lenzi et.al., 2000), and economics
(Ullah, 1988). In this section, we obtain the Rényi en-
tropy of UR and compare its with the Rényi entropy of
XSRS . To this end, it is easy to show that the Rényi
entropy of a SRS of size m from f is given by

Hλ(XSRS) =
m

∑
i=1

Hλ(Xi) = mH(X1). (30)

Also, for a RRSS of size m, we have

Hλ(UR) =
m

∑
i=1

Hλ(Ui,i), (31)

where Hλ(Ui,i) is the Rényi entropy of the ith upper re-
cord value in the ith sequence. Abbasnejad and Arghami(2011)
obtained an expression for Hλ(Ui,i) as

Hλ(Ui,i) = Hλ(U∗
i,i)− (

λ(i − 1) + 1
λ − 1

) ln(λ)
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+(
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k
+

(m)(m − 1)
2

< 0,

f or β > 2.

Table 4 shows the values of δ(m,β) for β = 3 and
m ∈ {3,4,...,10}. Numerical computations indicate that
δ(m,β) is decreasing function of m, if β is fixed. So
if X has a Weibull distribution with parameters (λ,β),
then for β > 2 the record ranked set sampling provides
the amount of the uncertainty less than simple random
sampling.

Tabela 4: The values of δ(m,β) for m = 3 up to 10

m 3 4 5 6 7 8 9 10
δ(m,β) -0.24 -0.44 -0.67 -0.94 -1.23 -1.54 -1.87 -2.22

Example 2.5. Let U∗
i,i be the i-th upper record value

from Gamma(i,1), then the Shannon entropy of U∗
R =

(U∗
1,1,U∗

2,2,...,U∗
m,m) is obtained as

H(U∗
R) =

m

∑
i=1

H(U∗
i,i) =

m

∑
i=1

[ln(Γ(i))− (i − 1)ψ(i) + i]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!] +
m2 − m + 2

2

= H(XSRS). (23)

Lemma 2.1. If f (x) is increasing in x, then H(UR) is
decreasing in m.

Proof. By using (15), we have

d1(m) = H(U(m+1)
R )− H(U(m)

R )

= H(Ũ(m+1)
R )− H(Ũ(m)

R )

−
m+1

∑
i=1

φ f (i − 1) +
m

∑
i=1

φ f (i − 1)

= ln(m!)− mψ(m)− φ f (m)

= ln(m!)− mψ(m)

−
∫ +∞

0

zm

(m)!
e−z ln( f (F−1(1 − e−z)))dz

< 0. (24)

Thus the proof is complete. �
Baratpur et al.(2007) obtained an upper bound for

H(Ui,i) which is depends on the hazard rate function
r(.) = f (.)

F̄(.) as follows:

H(Ui,i) ≤ H(U∗
i,i)− i − Bi I(A), (25)

where Bi = (i−1)(i−1)e−(i−1)

(i−1)! , I(A) =
∫

A r(y) ln f (y)dy
and A = {y | f (y) ≤ 1}. Now, by using (15) and (25)

an upper bound for H(UR) is given by

H(UR) ≤ H(ŨR)−
m+1

∑
j=o

jje−j

j!
I(A). (26)

Remark 2.3. Similar results for H(UR) which given in
this section, can be obtained for H(LR).

Rao et al. (2004) introduced a new measure of infor-
mation that extends the Shannon entropy to continuous
random variables, and called it cumulative residual en-
tropy (CRE). The CRE is based on survival function F̄(x),
and is defined as

E(X) = −
∫ +∞

0
F̄(x) ln F̄(x)dx. (27)

The CRE of XSRS and UR are obtained as

E(XSRS) = nE(X)µn−1, E(UR) = ∑
i
E(U(i,i))∏

j �=i
µ(j,j), (28)

where µ =
∫ +∞

0 F̄(x)dx and µ(j,j) =
∫ +∞

0 F̄j,j(x)dx.

3 Rényi entropy of RRSS

In information theory, the Rényi entropy is a generali-
zation for the Shannon entropy. The Rényi entropy of
order λ is defined as

Hλ(X) =
1

1 − λ
ln

∫ +∞

−∞
f λ(x)dx, (29)

where λ > 0, λ �= 1, and H(X) = limλ→1 Hλ(X) =
−
∫ ∞
−∞ f (x) ln f (x)dx is the Shannon entropy if both in-

tegrals exist(Rényi, 1961). Rényi information is much
more flexible than the Shannon entropy due to the para-
meter λ. It is an important measure in various applied
sciences such as statistics (Song, 2001), ecology (Harte,
2011), engineering (Lenzi et.al., 2000), and economics
(Ullah, 1988). In this section, we obtain the Rényi en-
tropy of UR and compare its with the Rényi entropy of
XSRS . To this end, it is easy to show that the Rényi
entropy of a SRS of size m from f is given by

Hλ(XSRS) =
m

∑
i=1

Hλ(Xi) = mH(X1). (30)

Also, for a RRSS of size m, we have

Hλ(UR) =
m

∑
i=1

Hλ(Ui,i), (31)

where Hλ(Ui,i) is the Rényi entropy of the ith upper re-
cord value in the ith sequence. Abbasnejad and Arghami(2011)
obtained an expression for Hλ(Ui,i) as

Hλ(Ui,i) = Hλ(U∗
i,i)− (

λ(i − 1) + 1
λ − 1

) ln(λ)
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+(
1 − β

β
)

m

∑
i=2

i−1

∑
k=1

1
k
+

(m)(m − 1)
2

< 0,

f or β > 2.

Table 4 shows the values of δ(m,β) for β = 3 and
m ∈ {3,4,...,10}. Numerical computations indicate that
δ(m,β) is decreasing function of m, if β is fixed. So
if X has a Weibull distribution with parameters (λ,β),
then for β > 2 the record ranked set sampling provides
the amount of the uncertainty less than simple random
sampling.

Tabela 4: The values of δ(m,β) for m = 3 up to 10

m 3 4 5 6 7 8 9 10
δ(m,β) -0.24 -0.44 -0.67 -0.94 -1.23 -1.54 -1.87 -2.22

Example 2.5. Let U∗
i,i be the i-th upper record value

from Gamma(i,1), then the Shannon entropy of U∗
R =

(U∗
1,1,U∗

2,2,...,U∗
m,m) is obtained as

H(U∗
R) =

m

∑
i=1

H(U∗
i,i) =

m

∑
i=1

[ln(Γ(i))− (i − 1)ψ(i) + i]

= −
m−1

∑
i=1

iψ(i) +
m−2

∑
i=1

ln[(i + 1)!] +
m2 − m + 2

2

= H(XSRS). (23)

Lemma 2.1. If f (x) is increasing in x, then H(UR) is
decreasing in m.

Proof. By using (15), we have

d1(m) = H(U(m+1)
R )− H(U(m)

R )

= H(Ũ(m+1)
R )− H(Ũ(m)

R )

−
m+1

∑
i=1

φ f (i − 1) +
m

∑
i=1

φ f (i − 1)

= ln(m!)− mψ(m)− φ f (m)

= ln(m!)− mψ(m)

−
∫ +∞

0

zm

(m)!
e−z ln( f (F−1(1 − e−z)))dz

< 0. (24)

Thus the proof is complete. �
Baratpur et al.(2007) obtained an upper bound for

H(Ui,i) which is depends on the hazard rate function
r(.) = f (.)

F̄(.) as follows:

H(Ui,i) ≤ H(U∗
i,i)− i − Bi I(A), (25)

where Bi = (i−1)(i−1)e−(i−1)

(i−1)! , I(A) =
∫

A r(y) ln f (y)dy
and A = {y | f (y) ≤ 1}. Now, by using (15) and (25)

an upper bound for H(UR) is given by

H(UR) ≤ H(ŨR)−
m+1

∑
j=o

jje−j

j!
I(A). (26)

Remark 2.3. Similar results for H(UR) which given in
this section, can be obtained for H(LR).

Rao et al. (2004) introduced a new measure of infor-
mation that extends the Shannon entropy to continuous
random variables, and called it cumulative residual en-
tropy (CRE). The CRE is based on survival function F̄(x),
and is defined as

E(X) = −
∫ +∞

0
F̄(x) ln F̄(x)dx. (27)

The CRE of XSRS and UR are obtained as

E(XSRS) = nE(X)µn−1, E(UR) = ∑
i
E(U(i,i))∏

j �=i
µ(j,j), (28)

where µ =
∫ +∞

0 F̄(x)dx and µ(j,j) =
∫ +∞

0 F̄j,j(x)dx.

3 Rényi entropy of RRSS

In information theory, the Rényi entropy is a generali-
zation for the Shannon entropy. The Rényi entropy of
order λ is defined as

Hλ(X) =
1

1 − λ
ln

∫ +∞

−∞
f λ(x)dx, (29)

where λ > 0, λ �= 1, and H(X) = limλ→1 Hλ(X) =
−
∫ ∞
−∞ f (x) ln f (x)dx is the Shannon entropy if both in-

tegrals exist(Rényi, 1961). Rényi information is much
more flexible than the Shannon entropy due to the para-
meter λ. It is an important measure in various applied
sciences such as statistics (Song, 2001), ecology (Harte,
2011), engineering (Lenzi et.al., 2000), and economics
(Ullah, 1988). In this section, we obtain the Rényi en-
tropy of UR and compare its with the Rényi entropy of
XSRS . To this end, it is easy to show that the Rényi
entropy of a SRS of size m from f is given by

Hλ(XSRS) =
m

∑
i=1

Hλ(Xi) = mH(X1). (30)

Also, for a RRSS of size m, we have

Hλ(UR) =
m

∑
i=1

Hλ(Ui,i), (31)

where Hλ(Ui,i) is the Rényi entropy of the ith upper re-
cord value in the ith sequence. Abbasnejad and Arghami(2011)
obtained an expression for Hλ(Ui,i) as

Hλ(Ui,i) = Hλ(U∗
i,i)− (

λ(i − 1) + 1
λ − 1

) ln(λ)
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− 1
λ − 1

ln E[ f λ−1(F−1(1 − e−Vi,i ))],

(32)

where U∗
i,i ∼ Gamma(i,1) denotes ith upper record of

standard exponential distribution and Vi,i ∼ Gamma(λ(i−
1) + 1,1). Also, the Rényi entropy of U∗

i,i is given by

Hλ(U∗
i,i) =

λ

λ − 1
ln(Γ(i))− 1

λ − 1
ln(Γ(λ(i − 1) + 1))

+
λ(i − 1) + 1

λ − 1
ln(λ). (33)

By using (31) and (33) an expression for Hλ(UR) is ob-
tained as

Hλ(UR) =
m

∑
i=1

Hλ(U∗
i,i)−

m

∑
i=1

[(
λ(i − 1) + 1

λ − 1
) ln(λ)]

− 1
λ − 1

m

∑
i=1

ln
∫ +∞

0

vλ(i−1)e−v

Γ(λ(i − 1) + 1)

× f λ−1(F−1(1 − e−v))dv

=
λ

λ − 1

m

∑
i=1

ln Γ(i)

− 1
λ − 1

m

∑
i=1

ln Γ(λ(i − 1) + 1)

− 1
λ − 1

m

∑
i=1

ln
∫ +∞

0

vλ(i−1)e−v

Γ(λ(i − 1) + 1)

× f λ−1(F−1(1 − e−v))dv

= Hλ(ŨR)

− 1
λ − 1

m

∑
i=1

ln E[ f λ−1(F−1(1 − e−Vi,i ))],

(34)

where Hλ(ŨR) is the Rényi entropy of ŨR from uni-
form distribution on (0,1). It can be easily shown that

Hλ(ŨR) =
λ

λ − 1

m

∑
i=1

ln[
Γ(i)

(Γ(λ(i − 1) + 1))
1
λ

]. (35)

Table 5 shows the numerical values of Hλ(ŨR) for m ∈
{2,3,...,10} and two cases 0 < λ < 1 and λ > 1. From
Table 3 , it is observed that Hλ(ŨR) < 0 and decreases
as m increases. So if X has an uniform distribution on
(0,1), then the record ranked set sampling provides the
amount of the Rényi entropy less than simple random
sampling. We can show that the difference between
Hλ(UR) and Hλ(XSRS) is depends on the parent distri-
bution F. To this end, by using (34) we have

δλ
m(i) = Hλ(UR)− Hλ(XSRS)

=
λ

λ − 1

m

∑
i=1

ln[
Γ(i)

(Γ(λ(i − 1) + 1))
1
λ

]

− 1
λ − 1

Tabela 5: The numerical values of Hλ(ŨR)

0 < λ < 1 λ > 1
m 0.2 0.4 0.6 0.8 2 4 6 8
2 -0.10 -0.19 -0.28 -0.35 -0.69 -1.05 -1.31 -1.51
3 -0.32 -0.58 -0.79 -0.98 -1.79 -2.61 -3.16 -3.58
4 -0.58 -1.03 -1.39 -1.70 -2.99 -4.27 -5.12 -5.77
5 -0.88 -1.52 -2.03 -2.46 -4.24 -5.98 -7.14 -8.01
6 -1.19 -2.03 -2.70 -3.25 -5.52 -7.72 -9.18 -10.28
7 -1.52 -2.56 -3.38 -4.06 -6.82 -9.48 -11.24 -12.57
8 -1.86 -3.10 -4.07 -4.88 -8.14 -11.26 -13.32 -14.87
9 -2.20 -3.65 -4.78 -5.71 -9.46 -13.04 -15.40 -17.19
10 -2.55 -4.21 -5.49 -6.55 -10.79 -14.83 -17.50 -19.50

×
m

∑
i=1

ln[

∫ +∞
0

vλ(i−1)

Γ(λ(i−1)+1) e−v f λ−1(F−1(1 − e−v))dv
∫ +∞

0 e−v f λ−1(F−1(1 − e−v))dv
].

(36)

Remark 3.1. Suppose X ∼ Uni f orm(α,β). Then we have

Hλ(UR) = Hλ(ŨR) + m ln(β − α) < Hλ(XSRS).

Example 3.1. Suppose X has an exponential distribution
with pdf f (x) = 1

θ e
−x
θ . By using (34), the Rényi entropy

of order λ for UR is obtained as

Hλ(UR) = Hλ(ŨR) + m ln θ +
ln λ

λ − 1
[
λm(m − 1)

2
+ m]

= Hλ(ŨR) + Hλ(XSRS) +
λ ln(λ)[m(m − 1)]

2(λ − 1)
,

(37)

where Hλ(XSRS) = m[ln θ + ln λ
λ−1 ]. Also the difference

between Hλ(UR) and Hλ(XSRS) is given by

δλ
m(i) =

λ

λ − 1

m

∑
i=1

ln[
Γ(i)

(Γ(λ(i − 1) + 1))
1
λ

]

+
λ ln(λ)[m(m − 1)]

2(λ − 1)
. (38)

Note that δλ
m(i) < 0 (i.e.Hλ(UR) < Hλ(XSRS)) for any

0 < λ < 1 and all m ∈ N.

Lemma 3.1. If f (x) is increasing in x, then Hλ(UR) is
decreasing in m.

Proof. By using (34), we have

δ∗λ(m) = Hλ(U
(m+1)
R )− Hλ(U

(m)
R )

= Hλ(Ũ
(m+1)
R )− Hλ(Ũ

(m)
R )

− 1
λ − 1

m+1

∑
i=1

ln E[ f λ−1(F−1(1 − e−Vi,i ))]
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− 1
λ − 1

ln E[ f λ−1(F−1(1 − e−Vi,i ))],

(32)

where U∗
i,i ∼ Gamma(i,1) denotes ith upper record of

standard exponential distribution and Vi,i ∼ Gamma(λ(i−
1) + 1,1). Also, the Rényi entropy of U∗

i,i is given by

Hλ(U∗
i,i) =

λ

λ − 1
ln(Γ(i))− 1

λ − 1
ln(Γ(λ(i − 1) + 1))

+
λ(i − 1) + 1

λ − 1
ln(λ). (33)

By using (31) and (33) an expression for Hλ(UR) is ob-
tained as

Hλ(UR) =
m

∑
i=1

Hλ(U∗
i,i)−

m

∑
i=1

[(
λ(i − 1) + 1

λ − 1
) ln(λ)]

− 1
λ − 1

m

∑
i=1

ln
∫ +∞

0

vλ(i−1)e−v

Γ(λ(i − 1) + 1)

× f λ−1(F−1(1 − e−v))dv

=
λ

λ − 1

m

∑
i=1

ln Γ(i)

− 1
λ − 1

m

∑
i=1

ln Γ(λ(i − 1) + 1)

− 1
λ − 1

m

∑
i=1

ln
∫ +∞

0

vλ(i−1)e−v

Γ(λ(i − 1) + 1)

× f λ−1(F−1(1 − e−v))dv

= Hλ(ŨR)

− 1
λ − 1

m

∑
i=1

ln E[ f λ−1(F−1(1 − e−Vi,i ))],

(34)

where Hλ(ŨR) is the Rényi entropy of ŨR from uni-
form distribution on (0,1). It can be easily shown that

Hλ(ŨR) =
λ

λ − 1

m

∑
i=1

ln[
Γ(i)

(Γ(λ(i − 1) + 1))
1
λ

]. (35)

Table 5 shows the numerical values of Hλ(ŨR) for m ∈
{2,3,...,10} and two cases 0 < λ < 1 and λ > 1. From
Table 3 , it is observed that Hλ(ŨR) < 0 and decreases
as m increases. So if X has an uniform distribution on
(0,1), then the record ranked set sampling provides the
amount of the Rényi entropy less than simple random
sampling. We can show that the difference between
Hλ(UR) and Hλ(XSRS) is depends on the parent distri-
bution F. To this end, by using (34) we have

δλ
m(i) = Hλ(UR)− Hλ(XSRS)

=
λ

λ − 1

m

∑
i=1

ln[
Γ(i)

(Γ(λ(i − 1) + 1))
1
λ

]

− 1
λ − 1

Tabela 5: The numerical values of Hλ(ŨR)

0 < λ < 1 λ > 1
m 0.2 0.4 0.6 0.8 2 4 6 8
2 -0.10 -0.19 -0.28 -0.35 -0.69 -1.05 -1.31 -1.51
3 -0.32 -0.58 -0.79 -0.98 -1.79 -2.61 -3.16 -3.58
4 -0.58 -1.03 -1.39 -1.70 -2.99 -4.27 -5.12 -5.77
5 -0.88 -1.52 -2.03 -2.46 -4.24 -5.98 -7.14 -8.01
6 -1.19 -2.03 -2.70 -3.25 -5.52 -7.72 -9.18 -10.28
7 -1.52 -2.56 -3.38 -4.06 -6.82 -9.48 -11.24 -12.57
8 -1.86 -3.10 -4.07 -4.88 -8.14 -11.26 -13.32 -14.87
9 -2.20 -3.65 -4.78 -5.71 -9.46 -13.04 -15.40 -17.19
10 -2.55 -4.21 -5.49 -6.55 -10.79 -14.83 -17.50 -19.50

×
m

∑
i=1

ln[

∫ +∞
0

vλ(i−1)

Γ(λ(i−1)+1) e−v f λ−1(F−1(1 − e−v))dv
∫ +∞

0 e−v f λ−1(F−1(1 − e−v))dv
].

(36)

Remark 3.1. Suppose X ∼ Uni f orm(α,β). Then we have

Hλ(UR) = Hλ(ŨR) + m ln(β − α) < Hλ(XSRS).

Example 3.1. Suppose X has an exponential distribution
with pdf f (x) = 1

θ e
−x
θ . By using (34), the Rényi entropy

of order λ for UR is obtained as

Hλ(UR) = Hλ(ŨR) + m ln θ +
ln λ

λ − 1
[
λm(m − 1)

2
+ m]

= Hλ(ŨR) + Hλ(XSRS) +
λ ln(λ)[m(m − 1)]

2(λ − 1)
,

(37)

where Hλ(XSRS) = m[ln θ + ln λ
λ−1 ]. Also the difference

between Hλ(UR) and Hλ(XSRS) is given by

δλ
m(i) =

λ

λ − 1

m

∑
i=1

ln[
Γ(i)

(Γ(λ(i − 1) + 1))
1
λ

]

+
λ ln(λ)[m(m − 1)]

2(λ − 1)
. (38)

Note that δλ
m(i) < 0 (i.e.Hλ(UR) < Hλ(XSRS)) for any

0 < λ < 1 and all m ∈ N.

Lemma 3.1. If f (x) is increasing in x, then Hλ(UR) is
decreasing in m.

Proof. By using (34), we have

δ∗λ(m) = Hλ(U
(m+1)
R )− Hλ(U

(m)
R )

= Hλ(Ũ
(m+1)
R )− Hλ(Ũ

(m)
R )

− 1
λ − 1

m+1

∑
i=1

ln E[ f λ−1(F−1(1 − e−Vi,i ))]
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+
1

λ − 1

m

∑
i=1

ln E[ f λ−1(F−1(1 − e−Vi,i ))]

=
λ

λ − 1
ln[

Γ(m + 1)

(Γ(λ(m) + 1))
1
λ

]

− 1
λ − 1

ln E[ f λ−1(F−1(1 − e−Vm+1,m+1))]

< 0. (39)

Thus the proof is complete. �
Abbasnejad and Arghami (2011) presented an upper
bound of Hλ(Ui,i) for any 0 < λ < 1 as follows:

Hλ(Ui,i) ≤ Hλ(U∗
i,i)−

1
λ − 1

[(λ(i − 1) + 1) ln λ + ln Ci]

+Sλ(X), (40)

where Ci =
e−λ(i−1)(λ(i−1))λ(i−1)

Γ(λ(i−1)+1) and

Sλ(X) = −( 1
λ−1 ) ln

∫ +∞
−∞ r(x) f λ−1(x)dx. Now, by using

(34) and (40) an upper bound of Hλ(UR) for any 0 <
λ < 1 is given by

Hλ(UR) ≤ Hλ(ŨR)−
1

λ − 1

m

∑
i=1

ln Ci + mSλ(X). (41)

Remark 3.2. Similar results with Hλ(UR) can be obtai-
ned for Hλ(LR).

4 Kullback-Leibler Information
of RRSS

The Kullback-Leibler (KL)divergence for two random
variables X and Y with pdfs f and g is given by

K(X,Y) =
∫

f (t) ln(
f (t)
g(t)

)dt. (42)

The KL divergence measures the distance between two
density functions. This divergence is also known as
information divergence and relative entropy. For more
details see Kullback and Leibler (1951) . Using the same
idea as in (42), we define the KL between XSRS and UR
as

K(XSRS,UR) =
∫

fXSRS(x) ln(
fXSRS(x)
fUR(x)

)dx

=
m

∑
i=1

∫
f (x) ln(

f (x)
fi,i(x)

)dx

=
m

∑
i=1

K(X,Ui,i)

=
m

∑
i=1

∫
f (x) ln[

f (x)
{− ln F̄(x)}i−1

(i−1)! f (x)
]dx

= −
m

∑
i=1

∫ 1

0
ln[

{− ln(1 − u)}i−1

(i − 1)!
]du

=
m

∑
i=1

[γ(i − 1) + ln((i − 1)!)]

= γ
m(m − 1)

2
+

m

∑
i=1

ln((i − 1)!) := cm.

(43)

Note that K(XSRS,UR) is distribution-free, and {cm,m =
1,2,...} is a nondecreasing sequence of non-negative real
values for m ∈ N. That is, the KL information between
the distribution of SRS and the distribution of RRSS of
the same size increases as the sample size m increases.

Remark 4.1. It is well known that the KL divergence
is non-symmetric and cannot be considered as a distance
metric. In our problem, note that

K(UR,XSRS) =
m

∑
i=1

∫
fi,i(x) ln(

fi,i(x)
f (x)

)dx =
m

∑
i=1

K(Ui,i,X)

= −
m

∑
i=1

H(Ũi,i)

= −
m

∑
i=1

[ln(Γ(i))− (i − 1)ψ(i)]

=
m−1

∑
i=1

iψ(i)−
m−2

∑
i=1

ln[(i + 1)!] + (m − 1).

(44)

Also the Kullback-Leibler distance (KLD) between XSRS
and UR is proposed as

KLD(XSRS,UR) = K(XSRS,UR) + K(UR,XSRS)

=
m−1

∑
i=1

iψ(i) + (m − 1) + γ
m(m − 1)

2
.

(45)

Let XSRS be a SRS of size m from f (x) and let VR
and YSRS be independent RRSS and SRS samples of the
same size from another distribution with pdf g(x) and
cdf G(x) , respectively. Then,

K(XSRS,VR) =
m

∑
i=1

∫
f (x) ln(

f (x)
gi,i(x)

)dx

= m
∫

f (x) ln[
f (x)
g(x)

]dx

−
m

∑
i=1

∫
f (x) ln(

[− ln Ḡ(x)]i−1

(i − 1)!
)dx

= K(XSRS,YSRS)− A f ,G(m), (46)

where

A f ,G(m) =
m

∑
i=1

∫ 1

0
f (G−1(u)) ln(

[− ln(1 − u)]i−1

(i − 1)!
)du
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=
m

∑
i=1

∫ ∞

0
f (G−1(1 − e−w)) ln[

wi−1

(i − 1)!
]e−wdw

=
m

∑
i=1

E[ln[
Wi−1

(i − 1)!
] f (G−1(1 − e−W))], (47)

where W ∼ exp(1). Note that in this case A f ,G(m) de-
pends on the density function X and the parent distribu-
tion Y samples. Here again K(XSRS,YSRS) ≤ K(XSRS,VR),
if A f ,G(m) ≤ 0.

Another result which is of interest is to compare
K(UR,VR) and K(XSRS,YSRS). To this end, we have

K(UR,VR) =
m

∑
i=1

∫
fi,i(x) ln(

fi,i(x)
gi,i(x)

)dx

=
m

∑
i=1

∫
fi,i(x){ln(

f (x)
g(x)

)

+ ln[
(− ln F̄(x))i−1

(− ln Ḡ(x))i−1 ]}dx

=
m

∑
i=1

m(− ln F̄(x))i−1

m(i − 1)!

∫
f (x) ln[

f (x)
g(x)

]dx

+
m

∑
i=1

∫ f (x){− ln F̄(x)}i−1

(i − 1)!

× ln[
(− ln F̄(x))i−1

(− ln Ḡ(x))i−1 ]dx

=
m

∑
i=1

(− ln F̄(x))i−1

m(i − 1)!
K(XSRS,YSRS)

+BF,G(m), (48)

where

BF,G(m) =
m

∑
i=1

∫ 1

0

[− ln(1 − u)]i−1

(i − 1)!

× ln(
[− ln(1 − u)]i−1

[− ln Ḡ(F−1(u))]i−1 )du

=
m

∑
i=1

(i − 1)ψ(i)

−
m

∑
i=1

(i − 1)
∫ ∞

0

zi−1e−z

(i − 1)!

× ln(− ln(Ḡ[F−1(1 − e−z)]))dz

=
m

∑
i=1

(i − 1)

×[ψ(i)− E[ln(− ln(Ḡ[F−1(1 − e−z)]))]],

where Z ∼ Gamma(i,1). Note that BF,G(m) is dependent
on the parent distributions of X and Y samples. Here
again K(XSRS,YSRS) ≤ K(UR,VR), if BF,G(m) ≥ 0.

Example 4.1. Suppose X and Y have exponential dis-
tribution with parameters θ1 and θ2 and cdfs F(x) =

1 − exp(−θ1x) and G(y) = 1 − exp(−θ2y), respectively.
We can find

f (G−1(1 − e−w)) = θ1 exp(− θ1

θ2
w),

and

A f ,G(m) =
−aθ2

1 + a
{ (m + 2)(m − 1)

2
[γ + ln(a + 1)]

+
m

∑
i=1

ln((i − 1)!)} ≤ 0, (49)

where a = θ1
θ2

∈ (0,∞). Since A f ,G(m) ≤ 0, we have
K(XSRS,YSRS) ≤ K(XSRS,VR). Also, we immediately
find that

BF,G(m) =
m

∑
i=1

(i − 1)ψ(i)

−
m

∑
i=1

(i − 1)
∫ ∞

0

zi−1e−z

(i − 1)!
ln(

θ2

θ1
z)dz

=
(m + 2)(m − 1)

2
ln a ≥ 0, f or all a ≥ 1.

(50)

So, for the exponential distribution, K(XSRS,YSRS) ≤
K(UR,VR) for all a = θ1

θ2
∈ [1,∞).

5 Conclusion

In this paper, we consider the uncertainty and informa-
tion content of RRSS data using the Shannon entropy,
Rényi entropy and KL information. We show that the
difference between the Shannon entropy of RRSS and
SRS data is depends on the parent distribution F. In the
sequel, we compare the Shannon entropy of RRSS data
with SRS in the uniform, exponential, Weibull, Pareto,
and gamma distributions. We show that if X has an
uniform distribution on (0,1), then the record ranked
set sampling provides the amount of the Rényi entropy
less than simple random sampling. We also consider
when X has a standard exponential distribution, then
the Rényi entropy of RRSS data could be bigger than
the Rényi entropy of SRS data for λ > 1. Also, we ob-
tain upper bounds of Shannon and Rényi entropies for
RRSS data. Finally, we show that the KL information
between the distribution of XSRS and distribution of UR
is distribution -free and increases as the sample size
increases.
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280: 337-345.

Madadi, M. and Tata, M. (2011). Shannon information
in record data. Metrika, 74: 11-31.

McIntyre, G. (1952). A method for unbiased selective
sampling using ranked set sampling. Australian Journal
of Agricultural Research, 3: 385-390.

Rao, M., Chen. Y., Vemuri, B. C. and Wang, F. (2004).
Cumulative residual entropy: a new measure of infor-
mation. IEEE Trans. Inform. Theor, 50(6): 1220-1228.
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