EXCELLENT DOMINATION IN FUZZY GRAPHS

K. M. Dharmalingam and P. Nithya

Abstract

Let G be a fuzzy graph. A subset D of V is said to be Fuzzy dominating set if every vertex $u \in V(G)$ there exists a vertex $v \in V-D$ such that $u v \in E(G)$ and $\mu(u v) \leqslant \sigma(u) \wedge \sigma(v)$. The minimum Cardinality of fuzzy dominating set is denoted by γ^{f}. A graph G is said to be fuzzy excellent if every vertex of G belongs to γ^{f}-sets of G. In this paper, we give a construction to imbedded non-excellent fuzzy graph G in an excellent fuzzy graph H such that $\gamma^{f}(H) \leqslant \gamma^{f}(G)+2$. We also show that for a given non-excellent fuzzy graph G, there is subdivision of G which is fuzzy excellent. Also, we introduce the concept of γ^{f}-flexible, fuzzy bridge independent dominating number $\gamma_{b_{i}}^{f}$ and obtain some interesting results for this new parameter in excellent fuzzy graphs.

1. Introduction

A mathematical frame work to describe the phenomena of uncertainty in real life situation is first suggested by L. A. Zadeh in 1965. Rosenfield [8] introduced the notion of fuzzy graphs and several fuzzy analogs of graph theoretic concepts Such as Path, Cycle and Connectedness. The study of dominating sets in graphs was begun by Orge and Berge. V. R. Kulli [10] wrote on theory of domination in graphs. A. Somasundaram, S. Somasundaram [9] presented the concepts of Domination in fuzzy graphs. Here we introduced the concept of Excellent domination in fuzzy graphs and their related concepts.

2. Preliminaries

Definition 2.1. A fuzzy graph $G=(\sigma, \mu)$ is a pair of functions $\sigma: V \rightarrow[0,1]$ and $\mu: V \times V \rightarrow[0,1]$ where for all $u, v \in V$, we have $\mu(u, v) \leqslant \sigma(u) \wedge \sigma(v)$.

[^0]Definition 2.2. The order p and size q of a fuzzy graph $G=(\sigma, \mu)$ are defined to be $p=\sum_{x \in V} \sigma(x)$ and $q=\sum_{x y \in E} \mu(x y)$.

Definition 2.3. The degree of vertex u is defined as the sum of the weights of the edges incident at u and is denoted by $d(u)$.

Definition 2.4. A subset D of V is called an fuzzy dominating set if for every $v \in V-D$ there exists a vertex $u \in D$ such that $u v \in E(G)$ such that $\mu(u v) \leqslant \sigma(u) \wedge \sigma(v)$. The minimum cardinality of such a dominating set is denoted by γ^{f} and is called the fuzzy domination number of G.

3. Main definitions and Results

Definition 3.1. A fuzzy graph G is said to be fuzzy excellent if for every vertex of G belongs to γ^{f}-sets of G. A vertex which belongs to γ^{f}-set is called Fuzzy good. (i.e) A Fuzzy graph G is said to be Fuzzy excellent if for every vertex of G is Fuzzy good.

Example 3.1.

Here γ^{f}-sets of G are $\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{5}\right\},\left\{v_{2}, v_{4}\right\}$. Hence Every vertex is Fuzzy good. Therefore G is Fuzzy excellent.

Definition 3.2. A Fuzzy graph G is said to be vertex-transitive if given any two vertices u and $v(\neq u)$ of G, there is an automorphism ϕ^{f} of G such that $\phi^{f}(u)=v$.

Theorem 3.1. Every vertex transitive fuzzy graph G is fuzzy excellent.
Proof. Let G be a vertex transitive fuzzy graph and D be a γ^{f}-set of G. Let $u \in V(G)$, select any vertex $v \in D$ such that $\mu(u v) \leqslant \sigma(u) \wedge \sigma(v)$. As G is vertex transitive, there is an automorphism ϕ^{f} of G which maps v to u. Let $D^{\prime}=\phi^{f}(D)=\left\{\phi^{f}(w) / w \in D\right\}$. Now we claim that D^{\prime} is also γ^{f}-set of G. As ϕ^{f} is an automorphism, $\left|D^{\prime}\right|=|D|=\gamma^{f}(G)$. Let a be a vertex of G not in D^{\prime} and let $b \in V(G)$ be such that $\phi^{f}(b)=a$. As $a \notin D^{\prime}, b \notin D$ and D is γ^{f}-set of $G, b \in N\left(w_{1}\right)$ for some $w_{1} \in D$. Then $a=\phi^{f}(b) \in N\left[\phi^{f}\left(w_{1}\right)\right]$. Hence D^{\prime} is a
dominating set of G and as $\left|D^{\prime}\right|=\gamma^{f}(G), D^{\prime}$ is a γ^{f}-set of G. Thus given any vertex ' a ' of G, there is a γ^{f}-set of G containing ' a '. Therefore G is Excellent fuzzy graph.

Theorem 3.2. Let G be a non-fuzzy excellent graph. Then there exist a fuzzy graph H such that
(i) H is γ^{f}-fuzzy excellent.
(ii) $\gamma^{f}(G)<\gamma^{f}(H) \leqslant \gamma^{f}(G)+2$.
(iii) G is an induced subgraph of H.

Proof. Let G be a non-fuzzy excellent graph. Let Z be a set of all fuzzy good vertices of G and T be the set of all fuzzy bad vertices of G. Since G is non-fuzzy excellent, $T \neq \phi$. Let $T=\left\{t_{1}, t_{2}, \ldots t_{n}\right\}$ and T^{*} be non-empty subset of T. Then

$$
\begin{equation*}
\gamma^{f}\left(G-T^{*}\right) \geqslant \gamma^{f}(G)-\left|T^{*}\right|+1 \tag{3.1}
\end{equation*}
$$

If $\gamma^{f}\left(G-T^{*}\right) \geqslant \gamma^{f}(G)-\left|T^{*}\right|+1$, then we say that T^{*} is an optimal fuzzy bad set. If T^{*} is an optimal fuzzy bad set and $G-T^{*}$ is γ^{f}-fuzzy excellent then we say that T is an extreme optimal fuzzy bad set.
Case 1: Let $|T|=1$ (i.e., $n=1$) and add a new vertex ' t ' and join it with t_{1} such that $\mu\left(t t_{1}\right) \leqslant \sigma(t) \wedge \sigma\left(t_{1}\right)$. In this case the resulting graph is fuzzy excellent graph H. Clearly G is an induced subgraph of $H, \gamma^{f}(H)=\gamma^{f}(G)+1$. For every γ^{f}-set D of $G, D \cup\{t\}$ and $D \cup\left\{t_{1}\right\}$ are $\gamma^{f}(H)$-sets of G. Therefore H is γ^{f}-fuzzy excellent.
Case 2: Assume that $|T| \geqslant 2$ and $T=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$. Now we assume that there is a non-empty subset T^{*} of T such that T^{*} is extreme optimal fuzzy bad set. Let $T^{*}=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$. In this case we construct H as follows:

$$
\begin{gathered}
V(H)=V(G) \cup\left\{v_{1}, v_{2}, \ldots, v_{k}\right\} \\
E(H)=E(G) \cup\left\{v_{i} t_{i} / i=1,2, \ldots, k\right\} \text { and } \mu\left(v_{i} t_{i}\right) \leqslant \sigma\left(v_{i}\right) \wedge \sigma\left(t_{i}\right) .
\end{gathered}
$$

Then obviously
(i) G is induced subgraph of H.
(ii) $\gamma^{f}(G) \leqslant \gamma^{f}(H)$
(iii) $\gamma^{f}(H)=\gamma^{f}(G)+1$, for each set γ^{f}-set D of $G-T^{*}, D \cup T^{*}$ is a dominating set for H.
(iv) H is fuzzy excellent.

Case 3: Let us consider the dominating set D of G such that $T \subset D$ and $|D|=\gamma^{f}(G)+1$. We construct a fuzzy graph H_{1} as follows. Let $\left\{t, v_{1}, v_{2}, \ldots v_{n}, w_{1}, w_{2}, \ldots w_{n}\right\}$ be a set disjoint with $V(G)$. Let

$$
V\left(H_{0}\right)=V(G) \cup\left\{t, v_{1}, v_{2}, \ldots, v_{n}, w_{1}, w_{2}, \ldots w_{n}\right\}
$$

and

$$
\begin{aligned}
E\left(H_{0}\right)=E(G) \cup\left\{v_{i} t_{i} / i\right. & =1,2, \ldots, n\} \\
\cup\left\{v_{i} w_{j}, w_{i} w_{j} / i \neq j, i=1,2, \ldots, n\right\} & \cup\left\{t w_{j} / j=1,2, \ldots, n\right\} .
\end{aligned}
$$

Clearly G is an induced subgraph of H_{1}. Let

$$
V_{1}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, V_{2}=\left\{t, w_{1}, w_{2}, \ldots, w_{n}\right\} \text { and } V_{0}=V(G) .
$$

If D is a dominating set of G, then $D \cup\left\{v_{1}, w_{1}\right\}$ is a dominating set of H_{1}. Thus

$$
\begin{equation*}
\gamma^{f}\left(H_{1}\right) \leqslant \gamma^{f}(G)+2 \tag{3.2}
\end{equation*}
$$

If S is a minimum dominating set of H_{1}, then $\left|S \cap V_{2}\right| \geqslant 1$. If $\left|S \cap V_{2}\right|=1$, then either $S \cap V_{1} \neq \emptyset$ or $S \cap T \neq \emptyset$. Assume that $S \cap V_{1}$ is empty, since any $v_{i} \in S$ can be replaced by t_{i}. Then $S-V_{2}$ is a dominating set of G. If $\left|S \cap V_{2}\right|=1$, then by our assumption $S \cap V_{1}$ is empty, the set $S-V_{2}$ contains a vertex from T and $\left|T-V_{2}\right| \geqslant \gamma^{f}(G)+1$. If $\left|T \cap V_{2}\right| \geqslant 2$ then $\left|S \cap V_{2}\right| \geqslant \gamma^{f}(G)$. In either case $|S| \geqslant \gamma^{f}(G)+2$ and $\gamma^{f}\left(H_{1}\right)=\gamma^{f}(G)+2$. We now show that H_{1} is fuzzy excellent,
(1) If $a \in Z$, there is a $\gamma^{f}(G)$-set D of G containing ' a '. Then $D \cup\left\{v_{1}, w_{1}\right\}$ is a $\gamma^{f}\left(H_{1}\right)$-set;
(2) For each $i \in\{1,2, \ldots, n\}, D \cup\left\{t_{i}, w_{i}\right\}$ and $D \cup\left\{v_{i}, w_{i}\right\}$ are $\gamma^{f}\left(H_{1}\right)$ sets of H_{1}, where D is any $\gamma^{f}(G)$ set of G;
(3) If T is an optimal fuzzy bad set, take a γ^{f}-set S for $G-T$, then $\left|S_{1}\right|=$ $\gamma^{f}(G)-n+1$ and $S \cup V_{1} \cup\{t\}$ is a γ^{f}-set for H_{1}.

Case 4: Let G be a fuzzy graph which cannot be considered under any of the above cases. Construct the graph H_{1} as in Case 3. Let $H=H_{1}-\{t\}$, whenever D is a γ^{f}-set of $G, D \cup\left\{v_{1}, w_{1}\right\}$ is a dominating set for H. So $\gamma^{f}(H) \leqslant \gamma^{f}(G)+2$. Let S be a γ^{f}-set for H. The set S should contain atleast one element from $V_{1} \cup V_{2}$, where $V_{1}=\left\{v_{i} / i=1,2, \ldots, n\right\}, V_{2}=\left\{w_{i} / i=1,2, \ldots, n\right\}$. Let $V_{0}=V(G)$.
Subcase 1: Let $S \cap V_{1}=\emptyset$. Then either $\left|S \cap V_{2}\right|=2$ or $\left|S \cap V_{2}\right|=1$ and $S \cap T \neq \emptyset$. As $S \cap V_{1}=\emptyset, S \cap V_{0}$ is a dominating set for G and hence

$$
\left|S \cap V_{0}\right| \geqslant \begin{cases}\gamma^{f}(G) & \text { if } S \cap T=\emptyset \\ \gamma^{f}(G)+1 & \text { if } S \cap T \neq \emptyset\end{cases}
$$

Thus in this case $|S| \geqslant \gamma^{f}(G)+2$.
Subcase 2: Let $S \cap V_{1} \neq \emptyset$. Then $\left|S \cap\left(V_{1} \cap V_{2}\right)\right| \geqslant 2$. Let $T^{\prime}=\left\{t_{i} / v_{i} \in S\right\}$. Then $S \cap V_{0}$ dominates $G-T^{\prime}$. Hence $\left(S \cap V_{0}\right) \cup T^{\prime}$ dominates of G and contains atleast one bad vertex in G. Then $\left|\left(S \cap V_{0}\right) \cup T^{\prime}\right| \geqslant \gamma^{f}(G)+1$ and $\left|\left(S \cap V_{0}\right)\right| \geqslant \gamma^{f}(G)+1-\left|T^{\prime}\right|$. As $\left|T^{\prime}\right|=\left|\left(S \cap V_{1}\right)\right|$ it follows that if $T \cap V_{2} \neq \emptyset$, then $|S| \geqslant \gamma^{f}(G)+2$. As $S \cap V_{1}$ does not dominate any vertex in $V_{1}-S$, if $S \cap V_{2}=\emptyset$, then $S \cap V_{0}$ must contain $T-T^{\prime}$. In this case $\left(S \cap V_{0}\right) \cup T^{\prime}$ is a dominating set for G, containing T. Hence $\left|\left(T \cap V_{0}\right) \cup T^{\prime}\right| \geqslant \gamma^{f}(G)+2$. So, $|S|=\left|S \cap V_{0}\right|+\left|S \cap V_{1}\right|=\left|S \cap V_{0}\right|+\left|T^{\prime}\right| \geqslant \gamma^{f}(G)+2$. H is γ^{f}-excellent:
(1) Given any vertex $a \in Z$, let D be any $\gamma^{f}(G)$ set for G containing ' a^{\prime}. then $D \cap\left\{v_{i}, w_{i}\right\}$ is a γ^{f}-set for H containing v_{i}, w_{i} and a.
(2) Let D be any $\gamma^{f}(G)$-set for G and $t_{i} \in T$. Then $D \cap\left\{t_{i}, w_{i}\right\}$ is a γ^{f}-set for H containing t_{i} and w_{i}.

Definition 3.3. (Subdivision of fuzzy graph). Let G be a fuzzy graph. Then $S^{f}(G)$ denotes the Subdivision of fuzzy graph G and is obtained from G by subdividing each edge of G once. A fuzzy graph H is said to be a Subdivision of G, if it is obtained from G by subdividing each edge of G at most once.

Theorem 3.3. If a fuzzy graph G is not excellent, then there is a Subdivision of fuzzy graph H of G which is excellent.

Proof. Let G be a fuzzy graph which is not excellent. Let A be the set of all good vertices of G and let $B=V(G)-A$. Since G is not excellent, $B \neq \emptyset$. Then fix one $x \in B$. Among all the γ^{f}-sets of G, select one γ^{f}-set D_{1} such that $\left|N^{f}(x) \cap D_{1}\right|$ is maximum. Let $V_{1}=N^{f}(x) \cap D_{1} \subseteq A$. For each $y \in N^{f}(x) \cap D_{1}$, subdivide the edge $x y$. Let w_{y} be the vertex introduced while subdividing the edge $x y$, such that $\mu(x y) \leqslant \sigma(x) \wedge \sigma(y)$. Let the resulting graph be H_{1}. Also, $V\left(H_{1}\right)=V(G) \cup\left\{w_{y} / y \in N^{f}(x) \cap D_{1}\right.$ in $\left.G\right\}$. As $D_{1} \cup\{x\}$ is dominating set for $H_{1}, \gamma^{f}\left(H_{1}\right) \leqslant \gamma^{f}(G)+1$. Now we have to prove that $\gamma^{f}\left(H_{1}\right)=\gamma^{f}(G)+1$. Assume that $\gamma^{f}\left(H_{1}\right)=\gamma^{f}(G)$ and let S be a γ^{f}-set of H_{1}. If $x \notin S$ and $x_{y} \notin S, \forall y \in V_{1}$, then $V_{1} \subseteq S$. Therefore, S must contain at least one vertex of $N^{f}(x) \cap(V(G)-$ $\left.V_{1}\right)$. As $|S|=\gamma^{f}(G)$ and $w_{y} \notin S, \forall y \in S, S$ is a γ^{f}-set for G also. Hence, $S \cap\left(N^{f}(x) \cap\left(V(G)-V_{1}\right) \subseteq A,\left|S \cap N^{f}(x)\right|>\left|D_{1} \cap N\left(x_{1}\right)\right|\right.$ which is contradiction to the selection of D_{1}. Thus S must contain either x or at least one w_{y}. If $x \in S$, then take $S_{1}=\left(S \cup\left\{y / w_{y} \in S\right\}\right)-\left\{w_{y} / w_{y} \in S\right\}$. Then S_{1} is a γ^{f}-set for G and as $x \in S, x \in A$ which is a contradiction. Hence $x \notin S$ and $w_{y} \in S$ for some y. Fix one y_{0} such that $y_{0} \in S$. Then $S_{2}=\left(S \cup\left\{y / y \neq y_{0}, w_{y} \in S\right\}\right)-\left\{w_{y} / y \neq y_{0}, w_{y} \in S\right\}$ is also a dominating set for H_{1}. Note that $x \notin S_{2}, w_{y} \notin S_{2}$ for every $y \neq y_{0}$ and $w_{y} \in S_{2}$. Thus $S_{2} \cup\{x\}-\left\{w y_{0}\right\}$ is a γ^{f}-set for G which is a contradiction as $x \notin A$. Then $\gamma^{f}\left(H_{1}\right) \neq \gamma^{f}(G)$. Hence $\gamma^{f}\left(H_{1}\right)=\gamma^{f}(G)+1$. For each $y \in V_{1}, D_{1} \cup\left\{w_{y}\right\}$ and $D_{1} \cup\{x\}$ are γ^{f}-sets of H_{1}. Let $a \in A$ and D^{*} be a γ^{f}-set of G such that $a \subseteq D^{*}$. Then $D^{*} \cup\{x\}$ is a γ^{f}-set of H_{1} containing ' a '. In H_{1}, the set of all vertices which are good and contains $A \cup\left\{x, w_{y} / y \in V_{1}\right\}$ and hence the set of all bad vertices in H_{1}, is a proper subset of B. Thus we see that
(i) H_{1} is a subdivision of G.
(ii) The set of all bad vertices of H_{1}, is a proper subset of the set of all bad vertices of G.
(iii) If x_{0} is a bad vertex of H_{1} and D_{2} is a γ^{f}-set of H_{1} such that, $\left|N^{f}\left(x_{0}\right) \cap D_{2}\right|$ is maximum, then obtain a subdivision H_{2} of H_{1} by subdividing the edges $x_{0} y, y \in N^{f}\left(x_{0}\right) \cap D_{2}, N^{f}\left(x_{0}\right) \subset V(G)$. As $N^{f}\left(x_{0}\right)$ is contained in $V(G)$, the subdivision H_{2} of H_{1} is a subdivision of G. That is, the edges H_{1} which are subdivides to obtain H_{2} are edges in G and they are not subdivided while obtaining H_{2}.
Therefore, the number of bad vertices in $H_{2}<$ the number of bad vertices of $H_{1}<$ the number of bad vertices of G.
Proceeding like this, we obtain a finite sequence $H_{1}, H_{2}, \ldots, H_{k}$ of subdivision of G with the following property:
(i) Each H_{i+1} is a subdivision of H_{i}.
(ii) The number of bad vertices of $H_{i+1}<$ the number of bad vertices of H_{i}. Hence for some $k_{1},(\leqslant|B|)$, we obtain an excellent graph H_{k}.

Definition 3.4. (Fuzzy excellent subdivision number) For a given fuzzy graph G, if $S^{f}(G)$ is a subdivision of $G,\left|V\left(S^{f}(G)\right)-V(G)\right|$ is denoted by $P\left(S^{f}(G)\right)$, then
$\min \left\{P\left(S^{f}(G)\right): S^{f}(G)\right.$ is a subdivision of G and $S^{f}(G)$ is fuzzy excellent $\}$ is called the fuzzy excellent subdivision number of G and is denoted by $E S^{f} d_{n}(G)$, We note that
(i) If G itself is fuzzy excellent, then $E S^{f} d_{n}(G)=0$.
(ii) For $G=K_{1, n}(n \geqslant 2), E S^{f} d_{n}(G)=n-1$.
(iii) $E S^{f} d_{n}(G)=1$ if $n \equiv 0(\bmod 3)$. If $n \equiv 0(\bmod 3)$ and $n \geqslant 6, P_{n}$ has exactly $\frac{n}{3}$ good vertices and $\frac{2 n}{3}$ bad vertices, while subdividing any one of the edges of P_{n}, it becomes an excellent graph. Thus $E S^{f} d_{n}(G)=1$ while $\left|B\left(P_{n}\right)\right|=\frac{2 n}{3}$.

Example 3.2.

Also P_{3} contains one good vertex and two bad vertex and $E S^{f} d_{n}\left(P_{3}\right)=1$.

4. Fuzzy Bridge independent graph

Definition 4.1. (Fuzzy Bridge) A subset S of G is said to be fuzzy bridge independent dominating set of G if every $u \in S$, there exists a vertex $v \in V-S$ such that $u v \in E$ and $\mu(u v) \leqslant \sigma(u) \wedge \sigma(v)$ does not increase the component of G.

Definition 4.2. (Fuzzy Bridge dominating set) A dominating set D of G is said to be an fuzzy bridge independent dominating set, if $\langle D\rangle$ contains no bridge of G. The minimum cardinality of a fuzzy bridge independent dominating set of G is said to be the fuzzy bridge independent domination numner and is denoted by $\gamma_{b_{i}}^{f}(G)$.

Definition 4.3. A fuzzy graph G is said to be $\gamma_{b_{i}}^{f}$-excellent if each vertex of G is in some $\gamma_{b_{i}}^{f}$-set of G.

Example 4.1.

Therefore every vertex of G belongs to $\gamma_{b_{i}}^{f}(G)$. Hence G is $\gamma_{b_{i}}^{f}$-fuzzy excellent.
Definition 4.4. A fuzzy graph G is said to be γ^{f}-flexible, if given any vertex $u \in G$, there is a γ^{f}-set S of G not containing u.

Proosition 4.1. Every connected fuzzy graph G of order P is an fuzzy induced subgraph of a γ^{f}-excellent, $\gamma_{b_{i}}^{f}$-excellent, γ^{f}-flexible graph H of order $P+\gamma^{f}(G)+1$ and further $\gamma^{f}(G) \leqslant \gamma^{f}(H) \leqslant \gamma_{b_{i}}^{f}(H) \leqslant \gamma^{f}(G)+1$.

Proof. Let G be a connected fuzzy graph of order P. Let $D=\left\{d_{1}, d_{2}, \ldots, d_{m}\right\}$ be a γ^{f}-set of G. Let us construct a fuzzy graph H as follows

$$
\begin{gathered}
V(H)=V(G) \cup\left\{d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{m}^{\prime}, w\right\} \\
E(H)=E(G) \cup\left\{d_{i} d_{i}^{\prime} / i=1,2, \ldots, m \text { and } \mu\left(d_{i} d_{i}^{\prime}\right) \leqslant \sigma\left(d_{i}\right) \wedge \sigma\left(d_{i}^{\prime}\right)\right\} \\
\cup\{d w / d \subset V(G)-D \& \mu(d w) \leqslant \sigma(d) \wedge \sigma(w)\}
\end{gathered}
$$

Clearly $\gamma^{f}(H)=\gamma^{f}(G)+1$. Now let $S=\left\{d_{i}, w / i=1,2, \ldots, m\right\}$. To each i, let $S_{i}=\left\{d_{i}, d_{i}^{\prime}, w / j \neq i\right\}$. To each $u \in V(G)-D$, let $S_{u}=\left\{v, d_{i} / i=1,2, \ldots, m\right\}$ and $S_{0}=\left\{d_{i}^{\prime}, w / i=1,2, \ldots, m\right\}$. The sets $S, S_{i}(1 \leqslant i \leqslant m), S_{u}(u \notin D)$ and S_{0} are $\gamma^{f}-$ sets of H. It follows that H is γ^{f}-excellent, $\gamma_{b_{i}}^{f}$-excellent, γ_{i}^{f}-excellent, γ^{f}-flexible and $\gamma^{f}(G) \leqslant \gamma^{f}(H) \leqslant \gamma_{b_{i}}^{f}(H) \leqslant \gamma^{f}(G)+1$.

Lemma 4.1. Let X_{1} and X_{2} be two γ^{f}-sets for G. Let uv be an edge in X_{1} such that $\mu(u v) \leqslant \sigma(u) \wedge \sigma(v)$, which is a fuzzy bridge in G. Let G_{1} and G_{2} be the components of $G-u v$. Let $A_{i}=X_{1} \cap G_{i}$ and $B_{i}=X_{2} \cap G_{i}$ for $i=1,2$. Then $A_{i} \cup B_{j}$ is a γ^{f}-set for G, where $\{i, j\}=\{1,2\}$.

Proof. If A_{i} is a γ^{f}-set for G_{i}, then A_{i} is a fuzzy dominating set for G_{i}. Suppose A_{i} is not a γ^{f}-set for G_{i}. Let C be a γ^{f}-set for G_{i}. Clearly $|C|<\left|A_{i}\right|$ and $C \cup A_{j}, j \neq i$ is a dominating set for G . Thus

$$
\left|C \cup A_{j}\right|=|C|+\left|A_{j}\right|<\left|A_{i}\right|+\left|A_{j}\right|=\left|X_{1}\right|=\gamma^{f},
$$

which is contradiction. Therefore, A_{i} is γ^{f}-set of G_{i}. Let A_{i} dominates $G_{i} \cup\{u v\}$ and B_{i} dominates $G_{i}-\{u v\}$. Therefore $D_{1}=A_{1} \cup B_{2}$ and $D_{3}=A_{2} \cup B_{1}$ are fuzzy dominating sets for G.

$$
2 \gamma^{f}(G) \leqslant\left|D_{1}\right|+\left|D_{2}\right|=\left|A_{1}\right|+\left|B_{2}\right|+\left|A_{2}\right|+\left|B_{1}\right|=\left|X_{1}\right|+\left|X_{2}\right|=2 \gamma^{f}(G) .
$$

Hence $\left|D_{1}\right|=\left|D_{2}\right|=\gamma^{f}(G)$. Thus $A_{i} \cup B_{j}, i \neq j$ is a γ^{f}-set for G.
Lemma 4.2. If G is γ^{f}-excellent and γ^{f}-flexible, then G is $\gamma_{b_{i}}^{f}$-excellent. Further $\gamma_{b_{i}}^{f}(G)=\gamma^{f}(G)$.

Proof. Let us assume that G be connected. Let u be a vertex in G. Since G is γ^{f}-excellent, there is a γ^{f}-set X_{1} containing u. Let $e=a b$ be bridge in G and let $d^{f}(e)=\min \left\{d^{f}(u, a), d^{f}(u, b)\right\}$. Label the bridges of G as $e_{1}, e_{2}, \ldots, e_{k}$ such that, $i<j$ and $d^{f}\left(e_{i}\right) \leqslant d^{f}\left(e_{j}\right)$. This is possible only when each e_{i} is an bridge. If $\left\langle X_{1}\right\rangle$ contains no bridge e_{i}, then X_{1} is a $\gamma_{b_{i}}^{f}$-set containing u. Suppose that $\left\langle X_{1}\right\rangle$ contains some e_{i}. Assume that $e_{1}, e_{2}, \ldots e_{i-1} \notin\left\langle X_{1}\right\rangle$ and $e_{i} \in\left\langle X_{1}\right\rangle$. Let $e_{i}=a b$, then both $a, b \in X_{1}$. Let G_{1} be the component of $G-e_{i}$ which contains u and a \& the component G_{2} contains b. Since G is flexible, there is γ^{f}-set X_{2} of G not containing b. By the above lemma, $D=\left(X_{1} \cap G_{1}\right) \cup\left(X_{2} \cap G_{2}\right)$ is a γ^{f}-set of G. By using labelling procedure, $e_{1}, e_{2}, \ldots e_{i-1} \in G_{1}$ as $e_{1}, e_{2}, \ldots e_{i-1} \notin\left\langle X_{1}\right\rangle$ they are not in $\langle D\rangle$ also. Thus $e_{1}, e_{2}, \ldots e_{i-1}, e_{i} \notin\langle D\rangle$. Therefore, we get a γ^{f}-set D of G containing u and the edges $e_{1}, e_{2}, \ldots e_{i} \notin\langle D\rangle$. Proceeding like this, we get γ^{f}-set D^{\prime} of G containing u and $e_{j} \notin\left\langle D^{\prime}\right\rangle$, for every j. This dominating set D^{\prime} is a $\gamma_{b_{i}}^{f}$-set of G containing u. Hence, as u is arbitrary, G is $\gamma_{b_{i}}^{f}$-excellent and $\gamma_{b_{i}}^{f}(G)=\gamma^{f}(G)$.

Definition 4.5. (Fuzzy distance) For any two points u, v of a fuzzy graph we define fuzzy distance between u and v by
$d^{f}(u, v)=\{$ the sum of the edges weights of the edges in the shortest $u-v$ path such that $\mu(u v) \leqslant \sigma(u) \wedge \sigma(v), \forall u, v \in P\}$.

Corollary 4.1. Let G be a γ^{f}-excellent graph. Let $u \in V(G)$ such that u is in every γ^{f}-set of G. Let $v_{1}, v_{2}, \ldots, v_{k} \in V(G)$ such that $u v_{i}$ is a bridge in G, $\forall i=1,2, \ldots, k$ and $\mu\left(u v_{i}\right) \leqslant \sigma(u) \wedge \sigma\left(v_{i}\right)$. Then there is a γ^{f}-set S of G containing all v_{i} 's.

Corollary 4.2. Let G be a γ^{f}-excellent graph. Let u be a vertex which belongs to every γ^{f}-set of G. Then there is at least one edge uw such that $\mu(u w) \leqslant$ $\sigma(u) \wedge \sigma(w)$, which is not a bridge.

Definition 4.6. Let G be a fuzzy graph and for each $u \neq v \in V(G)$ there exist $u v \in E(G)$ such that $\mu(u v) \leqslant \sigma(u) \wedge \sigma(v)$. Then $\gamma^{u f}(G, u)=\min \{|D|: D \subseteq$ $V ; D$ dominates $G-u, N[v] \cap S \neq \emptyset\}$.

Definition 4.7. (i) If $\gamma^{u f}(G, u)=\gamma^{f}(G)$ then u is fuzzy level vertex of G. (ii) If $\gamma^{u f}(G, u)=\gamma^{f}(G)-1$ then u is fuzzy non-level vertex of G.

Example 4.2. 1).
G:

Here $\gamma^{f}(G)=1$ and $\gamma^{v_{3} f}\left(G, v_{3}\right)=1 . v_{3}$ is level vertex of G.
$2)$.

Here $\gamma^{f}(G)=3 . v_{6}$ is non-level vertex of G.
Lemma 4.3. For every $u \in V(G), \gamma^{u f}(G, u) \leqslant \gamma^{f}(G) \leqslant \gamma^{u f}(G, u)+1$.
Proof. As every γ^{f}-set of G dominates $G-u$, we have $\gamma^{u f}(G, u) \leqslant \gamma^{f}(G)$. Let D be a $\gamma^{u f}(G, u)$-set of G. If $N[u] \cap S \neq \emptyset$, then D dominates G, so in this case $\gamma^{f}(G) \leqslant|D|=\gamma^{u f}(G, u) \leqslant \gamma^{f}(G)$ and $\gamma^{u f}(G, u)=\gamma^{f}(G)$. If $N[u] \cap S=\emptyset$, then $D \cup\{u\}$ is a dominating set of G and hence $\gamma^{f}(G) \leqslant|D \cup\{u\}|=|D|+1 \leqslant$ $\gamma^{u f}(G, u)+1$.

5. Applications

The fuzzy relations are wide spread and important in the field of Clustering analysis, Computer networks and Pattern recognition. The earliest ideas of dominating sets data back, to the origin of game of Chess in India. In this game, one studies of chess pieces which cover various opposing pieces or various squares of the board.

6. Conclusion

In this paper we define new concept called Excellent Domination in fuzzy graphs and fuzzy bridge independent domination graph. Further, We can extend this concept to various types of Excellent fuzzy graphs.

References

[1] Allam, R.B. and Laskar, R. On domination and independent domination numbers of a graph, Discrete Math., 23(2)(1978), 73-76.
[2] Haynes,T.W., Hedetniemi, S.T. and Slater, P.J. Fundamentals of domination in Graphs, Marcel Dekker, New York, 1998.
[3] Sampathkumar, E. and Pushpalatha, L. Set domination in Graphs, J. Graph Theory, 18(5)(1994), 489-495.
[4] Mordeson, J.N. and Nair, P.S. Fuzzy graphs and Fuzzy Hyper graphs, Physica-Verlag Heidelberg, Heidelberg, Second edition 2001.
[5] Nagoorkani, A. and Chandrasekaran, V. T. Domination in fuzzy graph, Advances in fuzzy sets and systems, $\mathbf{1}(1)(2006), 17-26$.
[6] Sridharan, N. and Yamuna, M. Excellent-Just Excellent-Very Excellent graphs, J. Math. Phy. Sci., 14(5)(1980), 471-475.
[7] Sridharan, N. and Yamuna, M. A note on Excellent graphs, Ars Combinatoria, 78(2006), 267-276.
[8] Rosenfeld, A., Fuzzy graphs, In Zadeh, L.A., Fu, K.S. and Shimura.M. (Eds.). Fuzzy sets and their Applications to cognitive and Decision Processes (pp. 77-95). Proceedings of the USJapan Seminar on Fuzzy Sets and their Applications, Held at the University of California, Berkeley, California, July 14, 1974. Accedemic Press, New York 1975.
[9] Somasundaram, A. and Somasundaram, S. Domination in Fuzzy Graphs-I, Pattern Recognition Letters, 19(9)(1998), 787-791.
[10] Kulli, V.R. Theory of domination in Graphs, Vishwa International Publication, Gulbarga, India, 2012.

Received by editors 14.03.2016; Available online 26.12.2016.
Department of Mathematics, The Madura College, Madurai-625011
E-mail address: kmdharma6902@yahoo.in
E-mail address: nithyahashini125@gmail.com

[^0]: 2010 Mathematics Subject Classification. 05C72.
 Key words and phrases. Fuzzy excellent, γ^{f} - flexible, Fuzzy bridge independent domination number.

