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THE THEORY OF DERIVATIONS

IN ALMOST DISTRIBUTIVE LATTICES

G.C.RAO and K RAVI BABU

Abstract. In this paper, we introduce the concept of a derivation in an
Almost Distributive Lattice (ADL) and derive some important properties of

derivations in ADLs. Also we introduce the concepts of a principal derivation,
an isotone derivation and the fixed set of a derivation. We derive important
results on derivations in Heyting ADLs.

1. Introduction

The notation of derivation, introduced from the analytic theory, is helpful
for the research of structure and property in an algebraic system. Several authors
([5],[2]) have studied derivations in rings and near rings after Posner [9] has given
the definition of the derivation in ring theory. The concept of a derivation in lattices
was introduced by G.Szasz in 1974 [14]. X. L. Xin et al. [15] applied the notion of
derivation in the ring theory to lattices and investigated some properties. Later,
several authors ([1], [3], [4], [6], [7], [8] and [17]) have worked on this concept.

In 1980, the concept of an Almost Distributive Lattice(ADL) was introduced
by U.M.Swamy and G.C Rao [4]. This class of ADLs include most of the existing
ring theoretic generalizations of a Boolean algebra on one hand and the class of
distributive lattices on the other.

In this paper, we introduce the concept of a derivation in an ADL and inves-
tigate some important properties. Also, we introduce the concept of an isotone
derivation, a principal derivation in ADLs and investigate the relations among
them. We give some equivalent conditions under which a derivation on an ADL
becomes the identity map, a monomorphism, an epimorphism. Also, we establish
a set of conditions which are sufficient for a derivation on an ADL with a maximal
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element to become an isotone derivation. We define Fixd(L), the fixed set of a
derivation d in an ADL L and prove that it is an ideal of L if d is an isotone deriva-
tion. Also, we derive a necessary and sufficient condition for Fixd(L) to be a prime
ideal of L. We prove that the set of all isotone derivations on an ADL L is itself
an ADL. We derive a set of sufficient conditions in terms of principal derivations
for an ADL to become a Heyting ADL. We introduce a congruence relation ϕa,
induced by a ∈ L, on an ADL L and derive some useful properties of ϕa. We prove
that the set P(L) of all principal derivations on an ADL L is a distributive lattice
under pointwise operations and it is isomorphic to the lattice PI(L) (PF(L)) of
all principal ideals (filters) of L. Finally, we prove that the lattice P(L) is dually
isomorphic to {ϕa/a ∈ L}.

2. Preliminaries

In this section, we recollect certain basic concepts and certain important results
on Almost Distributive Lattices.

Definition 2.1. [3] An algebra (L,∨,∧) of type (2, 2) is called an Almost
Distributive Lattice, if it satisfies the following axioms:
L1 : (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c) (RD∧)
L2 : a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) (LD∧)
L3 : (a ∨ b) ∧ b = b
L4 : (a ∨ b) ∧ a = a
L5 : a ∨ (a ∧ b) = a, for all a, b, c ∈ L.

Definition 2.2. [3] Let X be any non-empty set. Define, for any x, y ∈ L, x∨
y = x and x∧ y = y. Then (X,∨,∧) is an ADL and such an ADL, we call discrete
ADL.

Throughout this paper L stands for an ADL (L,∨,∧) unless otherwise specified.

Lemma 2.1. [3] For any a, b ∈ L, we have
(i) a ∧ a = a
(ii) a ∨ a = a.
(iii) (a ∧ b) ∨ b = b
(iv) a ∧ (a ∨ b) = a
(v) a ∨ (b ∧ a) = a.
(vi) a ∨ b = a if and only if a ∧ b = b
(vii) a ∨ b = b if and only if a ∧ b = a.

Definition 2.3. [3] For any a, b ∈ L, we say that a is less than or equal to b
and write a 6 b, if a ∧ b = a or , equivalently, a ∨ b = b.

Definition 2.4. [3] For any a, b ∈ L, we say that a is less than or equal to b
and write a 6 b, if a ∧ b = a or , equivalently, a ∨ b = b.

Theorem 2.1. [3] For any a, b, c ∈ L, we have the following
(i) The relation 6 is a partial ordering on L.
(ii) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c). (LD∨)
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(iii) (a ∨ b) ∨ a = a ∨ b = a ∨ (b ∨ a).
(iv) (a ∨ b) ∧ c = (b ∨ a) ∧ c.
(v) The operation ∧ is associative in L.
(vi) a ∧ b ∧ c = b ∧ a ∧ c.

Theorem 2.2. [3] For any a, b ∈ L, the following are equivalent.
(i) (a ∧ b) ∨ a = a
(ii) a ∧ (b ∨ a) = a
(iii) (b ∧ a) ∨ b = b
(iv) b ∧ (a ∨ b) = b
(v) a ∧ b = b ∧ a
(vi) a ∨ b = b ∨ a
(vii) The supremum of a and b exists in L and equals to a ∨ b
(viii) there exists x ∈ L such that a 6 x and b 6 x
(ix) the infimum of a and b exists in L and equals to a ∧ b.

Definition 2.5. [3] L is said to be associative, if the operation ∨ in L is
associative.

Theorem 2.3. [3] The following are equivalent.
(i) L is a distributive lattice.
(ii) the poset (L,6) is directed above.
(iii) a ∧ (b ∨ a) = a, for all a, b ∈ L.
(iv) the operation ∨ is commutative in L.
(v) the operation ∧ is commutative in L.
(vi) the relation θ := {(a, b) ∈ L× L | a ∧ b = b} is anti-symmetric.
(vii) the relation θ defined in (vi) is a partial order on L.

Lemma 2.2. [3] For any a, b, c, d ∈ L,we have the following
(i) a ∧ b 6 b and a 6 a ∨ b
(ii) a ∧ b = b ∧ a whenever a 6 b.
(iii) [a ∨ (b ∨ c)] ∧ d = [(a ∨ b) ∨ c] ∧ d.
(iv) a 6 b implies a ∧ c 6 b ∧ c, c ∧ a 6 c ∧ b and c ∨ a 6 c ∨ b.

Definition 2.6. [3] An element 0 ∈ L is called zero element of L, if 0∧a = 0
for all a ∈ L.

Lemma 2.3. [3] If L has 0, then for any a, b ∈ L , we have the following
(i) a ∨ 0 = a, (ii) 0 ∨ a = a and (iii) a ∧ 0 = 0.
(iv) a ∧ b = 0 if and only if b ∧ a = 0.

An element x ∈ L is called maximal if, for any y ∈ L, x 6 y implies x = y. We
immediately have the following.

Lemma 2.4. [3] For any m ∈ L, the following are equivalent:
(1) m is maximal
(2) m ∨ x = m for all x ∈ L
(3) m ∧ x = x for all x ∈ L.
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Definition 2.7. [17] L is called an almost chain if, for any x, y ∈ L ,
x ∧ y = y or y ∧ x = x.
If L has a maximal element m, then this is equivalent to x∧m 6 y ∧m or y ∧m 6
x ∧m for all x, y ∈ L.

Definition 2.8. [3]

(1) A non-empty subset I of L is said to be an ideal if, a∨b ∈ I for all a, b ∈ L
and a ∧ x ∈ I for any a ∈ I, x ∈ L.

(2) A proper ideal P of L is called a prime ideal if for any x, y ∈ L, x∧y ∈ P
implies that x ∈ P or y ∈ P .

(3) A non-empty subset F of L is said to be a filter if, a∧b ∈ F for all a, b ∈ F
and x ∨ a ∈ F for any a ∈ F, x ∈ L.

Theorem 2.4. [3] For any a, b ∈ L we have the following

(1) (a] = {a ∧ x/x ∈ L} is the smallest ideal containing ’a’ and is called the
principal ideal of L generated by ’a’.

(2) The set I(L) of all ideals of L forms a distributive lattice under set in-
clusion in which the glb and lub of I and J are respectively I ∧ J = I ∩ J
and I ∨ J = {x ∨ y/x ∈ I and y ∈ J}.

(3) (a] ∨ (b] = (a ∨ b] = (b ∨ a] and (a] ∧ (b] = (a ∧ b] = (b ∧ a].

Though lattice theoretic duality principle does not hold good in an ADL, we
have the following.

Theorem 2.5. [3] For any a, b ∈ L we have the following

(1) [a) = {x ∨ a/x ∈ L} is the smallest filter containing ’a’ and is called the
principal filter of L generated by ’a’.

(2) The set F(L) of all filters of L forms a distributive lattice under set in-
clusion in which the glb and lub of F and G are respectively by F ∧G =
F ∪G and F ∨G = {x ∧ y/x ∈ F and y ∈ G}.

(3) [a) ∨ [b) = [a ∧ b) = [b ∧ a) and [a) ∧ [b) = [a ∨ b) = [b ∨ a)
(4) (a] = (b] if and only if [a) = [b)
(5) The class PI(L)(PF(L)) of all principal ideals (filters) of L is a sub-

lattice of the distributive lattice I(L)(F(L)) of all ideals (filters) of L.
Moreover , the lattice PI(L) is ’dually isomorphic’ onto the lattice PF(L).

Definition 2.9. [11] Let (L,∨,∧, 0,m) be an ADL with 0 and a maximal
elementm. Suppose → is a binary operation on L satisfying the following conditions
for all x, y, z ∈ L.

(1) x→ x = m
(2) (x→ y) ∧ y = y
(3) x ∧ (x→ y) = x ∧ y ∧m
(4) x→ (y ∧ z) = (x→ y) ∧ (x→ z)
(5) (x ∨ y) → z = (x→ z) ∧ (y → z)

Then (L,∨,∧,→, 0,m) is called a Heyting Almost Distributive lattice (HADL).
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3. Derivations in ADLs

We begin this section with the following definition of a derivation in an ADL.

Definition 3.1. A function d : L→ L is called a derivation on L, if

d(x ∧ y) = (dx ∧ y) ∨ (x ∧ dy) for all x, y ∈ L.

Example 3.1. The identity map on L is a derivation on L. This is called the
identity derivation on L.

Example 3.2. If L has 0, define a function d on L by dx = 0 for all x ∈ L.
Then, d is a derivation on L, and it is called the zero derivation on L.

Example 3.3. In a discrete ADL L = {0, a, b}, if we define a function d on L
by d0 = 0, da = b, db = a, then d is not a derivation on L.

Example 3.4. Let L1 and L2 be two ADLs and d1 and d2 are derivations on L1

and L2 respectively. Then, d1×d2 is a derivation on L1×L2 where (d1×d2)(x, y) =
(d1x, d2y), for all x ∈ L1, y ∈ L2.

Lemma 3.1. Let d be a derivation on L, then the following hold:
(i) dx 6 x, for any x ∈ L
(ii) dx ∧ dy 6 d(x ∧ y) for all x, y ∈ L
(iii) If I is an ideal of L, then dI ⊆ I
(iv) If L has 0, then d0 = 0.

Proof. (i) If x ∈ L, then dx = d(x ∧ x) = (dx ∧ x) ∨ (x ∧ dx) = dx ∧ x(by
Lemma 2.1). Therefore, dx 6 x.

(ii) Let x, y ∈ L. We have d(x ∧ y) = (dx ∧ y) ∨ (x ∧ dy). Therefore, dx ∧ y 6
d(x ∧ y). Now, by(i) above , we get that dx ∧ dy 6 dx ∧ y 6 d(x ∧ y).

(iii) If a ∈ I, then by(i) above, da 6 a and hence da ∈ I. Thus, dI ⊆ I.
(iv) If L has 0, then by(i) above, d0 6 0. Thus, 0 6 d0 6 0 and hence

d0 = 0. �
Theorem 3.1. If d is a derivation on L a discrete ADL with 0 , then d is

either a zero derivation or the identity derivation on L.

Proof. Suppose da ̸= 0 for some a( ̸= 0) ∈ L.Then, da = d(a ∧ a) = (da ∧
a) ∨ (a ∧ da) = da ∧ a = a.Therefore d is either a zero derivation or the identity
derivation. �

Definition 3.2. A derivation d on L is called,
(1) an isotone derivation, if da 6 db for all a, b ∈ L with a 6 b.
(2) a monomorphic derivation, if d is an injection.
(3) an epimorphic derivation, if d is a surjection.

Example 3.5. Every constant map on an ADL L is an isotone map , but not
a derivation.

Example 3.6. Let L1 = {0, x, y, z} be a discrete ADL and consider d1 as the
identity derivation on L1. Let L2 = {0, a, b, 1} be a chain and define d2 on L2 by
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d2x = a if x = 1 and d2x = x otherwise. Then d2 is a derivation on L2. Observe
that d1 × d2 is a non-isotone derivation on the ADL L1 × L2.

Definition 3.3. Let L be an ADL and a ∈ L. Define a function da on L by
dax = a ∧ x for all x ∈ L. Then, da is a derivation on L and is called a principal
derivation on L induced by a.

Theorem 3.2. Every principal derivation on L is an isotone derivation .

Proof. Let da be the principal derivation on L induced by a ∈ L. Now, for
x, y ∈ L with x 6 y, we have

dax = da(x ∧ y) = a ∧ x ∧ y = a ∧ x ∧ a ∧ y = dax ∧ day.

Thus dax 6 day and hence da is an isotone derivation . �

Lemma 3.2. Suppose L has a maximal element m. Then, (dm ∧ x) 6 dx for
all x ∈ L.

Proof. For x ∈ L, dx = d(m ∧ x) = (dm ∧ x) ∨ (m ∧ dx). Hence (dm ∧ x) 6
dx. �

Corollary 3.1. Suppose m is a maximal element of L and d is a derivation
on L. Then, we have ,
(1) If x ∈ L, x > dm then dx > dm.
(2) If x ∈ L, x 6 dm then dx = x.

Proof. (1) If x ∈ L and x > dm then dm = (dm∧ x) 6 dx by above Lemma.
(2) If x ∈ L and x 6 dm, then by above Lemma, dx = (dm∧x)∨dx = x∨dx = x. �

Lemma 3.3. Let d be a derivation on L. If y 6 x and dx = x then dy = y.

Proof. Let x, y ∈ L with y 6 x and dx = x. Now,

dy = d(y ∧ x) = (dy ∧ x) ∨ (y ∧ dx) = (dy ∧ x) ∨ (y ∧ x) = (dy ∧ x) ∨ y.

Since dy 6 y 6 x, we get dy = dy ∧ x. Thus, dy = dy ∨ y = y. �

Lemma 3.4. Let d be an isotone derivation on L. Then, d(x∨ y) 6 dx∨ dy for
all x, y ∈ L .

Proof. Let d be an isotone derivation on L and x, y ∈ L. Now

dx = d[(x∨y)∧x] = [d(x∨y)∧x]∨[(x∨y)∧dx] = [d(x∨y)∧x]∨dx = [d(x∨y)∨dx]∧x.

Since d is isotone and x 6 x∨y implies dx 6 d(x∨y). Therefore, dx = d(x∨y)∧x.
Also,

dy = d[(x ∨ y) ∧ y] = [d(x ∨ y) ∧ y] ∨ [(x ∨ y) ∧ dy] = [d(x ∨ y) ∧ y] ∨ [(y ∨ x) ∧ dy].

Since dy 6 y 6 y ∨ x, we get (y ∨ x) ∧ dy = dy. Thus,

dy = [d(x ∨ y) ∧ y] ∨ dy = [d(x ∨ y) ∨ dy] ∧ y.

Now,
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d(x ∨ y) ∧ (dx ∨ dy) = d(x ∨ y) ∧ [[d(x ∨ y) ∧ x] ∨ [[d(x ∨ y) ∨ dy] ∧ y]] =
[d(x ∨ y) ∧ x] ∨ [d(x ∨ y) ∧ y] = d(x ∨ y) ∧ (x ∨ y) = d(x ∨ y).

Therefore, d(x ∨ y) 6 dx ∨ dy. �

Theorem 3.3. Let m be a maximal element of L and d be a derivation on L.
Then dm = m if and only if d is the identity derivation.

Proof. Suppose dm = m. For any x ∈ L,

dx = d(m ∧ x) = (dm ∧ x) ∨ (m ∧ dx) = (m ∧ x) ∨ dx = x ∨ dx = x.

Therefore, d is the identity map on L. The converse is obvious. �

Lemma 3.5. Let d be a derivation on L. Then, d2x = dx for all x ∈ L.

Proof. For any x ∈ L, d2x = d(dx) 6 dx 6 x. Now,

d2x = d(dx) = d(dx ∧ x) = (d2x ∧ x) ∨ (dx ∧ dx) = d2x ∨ dx = dx.

�

Theorem 3.4. Let d be a derivation on L. Then, the following are equivalent.
(1) d is the identity map
(2) d(x ∨ y) = (x ∨ dy) ∧ (dx ∨ y) for all x, y ∈ L.
(3) d is a monomorphic derivation.
(4) d is an epimorphic derivation.

Proof. Clearly (1) implies (2), (3) and (4).
If (2) holds, then for any x ∈ L, dx = d(x∨x) = (x∨dx)∧(dx∨x) = x∧x = x.

Therefore, d is the identity map.
Suppose (3) holds and da ̸= a for some a ∈ L . Write da = a1. Then,

da1 6 a1 < a. Now, da1 = d(a1 ∧ a) = (da1 ∧ a) ∨ (a1 ∧ da) = da1 ∨ a1 = a1 = da,
which is contradiction since d is monomorphic.

Finally suppose (4) holds and x ∈ L. Then x = dy for some y ∈ L. Now,
dx = d(dy) = d2y = dy = x. Therefore, d is the identity map. �

Theorem 3.5. Let m be a maximal element of L and d be a derivation on L.
Then the following are equivalent.
(1) d is isotone
(2) dx = dm ∧ x for all x ∈ L
(3) d(x ∧ y) = dx ∧ y for all x, y ∈ L
(4) d(x ∧ y) = dx ∧ dy for all x, y ∈ L
(5) d(x ∨ y) = dx ∨ dy for all x, y ∈ L.

Proof. (1) ⇒ (2): Suppose d is an isotone and x ∈ L. Then

dx = d(m ∧ x) = (dm ∧ x) ∨ (m ∧ dx) = (dm ∧ x) ∨ dx.

Therefore, dm ∧ x 6 dx. Also,

dx = dx ∧ x = (dx ∧m) ∧ x 6 d(x ∧m) ∧ x 6 dm ∧ x
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since d is isotone. Therefore, dm ∧ x = dx.

(2) ⇒ (4): Assume (2) and x, y ∈ L. Then d(x∧ y) = dm∧ x∧ y = dx∧ dy. Thus,
we get (4).

(2) ⇒ (5): Assume (2) and x, y ∈ L. Then d(x ∨ y) = dm ∧ (x ∨ y) = (dm ∧ x) ∨
(dm ∧ y) = dx ∨ dy. Thus, we get (5).

(4) ⇒ (1): Trivial.

(5) ⇒ (1): Trivial.

Thus (1), (2), (4) and (5) are equivalent.

(2) ⇒ (3): For any x, y ∈ L, d(x ∧ y) = dm ∧ x ∧ y = dx ∧ y.
(3) ⇒ (2): For any x, y ∈ L, dx = d(m ∧ x) = dm ∧ x. �

Definition 3.4. Let d be a derivation on L. We define

Fixd(L) = {x ∈ L/dx = x}.

Theorem 3.6. Let L be an ADL with a maximal element m and d be an isotone
derivation on L. Then, Fixd(L) is an ideal of L.

Proof. By Lemma 3.5, dx ∈ Fixd(L) for any x ∈ L and thus ϕ ̸= Fixd(L) ⊆
L. Also, by Lemma 3.3, Fixd(L) is an initial segment of L. Now, let x, y ∈ Fixd(L).
By Theorem 3.5, we have, d(x ∨ y) = dx ∨ dy = x ∨ y. Hence, Fixd(L) is an ideal
of L. �

Lemma 3.6. Let d1 and d2 be two isotone derivations on L. Then d1 = d2 if
and only if Fixd1(L) = Fixd2(L).

Proof. If d1 = d2 then clearly Fixd1(L) = Fixd2(L) . Suppose Fixd1(L) =
Fixd2(L). For any x ∈ L, d1(d1x) = d1x, thus d1x ∈ Fixd1(L). So that d1x ∈
Fixd2(L). Therefore, d2(d1x) = d1x and hence d2d1 = d1. Similarly, we get that
d1d2 = d2. Since d1, d2 are isotones and d1x 6 x, we get d2d1x 6 d2x thus,
d2d1 6 d2. That is d1 6 d2. By symmetry we get d2 = d1. �

Theorem 3.7. Let m be a maximal element of L and D(L) be the set of all
isotone derivations on L. Then (D(L),∨,∧) is an ADL where for d1, d2 ∈ D(L),
(d1 ∧ d2)x = d1x ∧ d2x and (d1 ∨ d2)x = d1x ∨ d2x for all x, y ∈ L.

Proof. Let d1, d2 ∈ D(L) and x, y ∈ L. Then

[(d1 ∨ d2)x] ∧ y = (d1x ∨ d2x) ∧ y = (d1x ∧ y) ∨ (d2x ∧ y) = d1(x ∧ y) ∨ d2(x ∧ y) =
(d1 ∨ d2)(x ∧ y)

and

x ∧ (d1 ∨ d2)y = x ∧ (d1y ∨ d2y) = (x ∧ d1y) ∨ (x ∧ d2y) =
(x ∧ d1m ∧ y) ∨ (x ∧ d2m ∧ y) = (d1m ∧ x ∧ y) ∨ (d2m ∧ x ∧ y) =
(d1x ∧ y) ∨ (d2x ∧ y) = d1(x ∧ y) ∨ d2(x ∧ y) = (d1 ∨ d2)(x ∧ y).

Now, (d1 ∨ d2)(x ∧ y) = [(d1 ∨ d2)x ∧ y] ∨ [x ∧ (d1 ∨ d2)y] and hence d1 ∨ d2 is a
derivation on L. Also,
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(d1∨d2)x = d1x∨d2x = (d1m∧x)∨ (d2m∧x) = (d1m∨d2m)∧x = (d1∨d2)m∧x.

Therefore, by Theorem 3.5 d1 ∨ d2 is an isotone derivation on L. Now,

(d1∧d2)x∧y = d1x∧d2x∧y = d1x∧y∧d2x∧y = d1(x∧y)∧d2(x∧y) = (d1∧d2)(x∧y).

Again,

x ∧ (d1 ∧ d2)y = x ∧ d1y ∧ d2y = x ∧ d1m ∧ y ∧ d2m ∧ y =
d1m ∧ x ∧ y ∧ d2m ∧ x ∧ y = d1(x ∧ y) ∧ d2(x ∧ y) = (d1 ∧ d2)(x ∧ y).

Therefore, (d1 ∧ d2)(x ∧ y) = [(d1 ∧ d2)x ∧ y]∨ [x ∧ (d1 ∧ d2)y] and hence d1 ∧ d2 is
a derivation on L. Also,

(d1 ∧ d2)x = d1x ∧ d2x = d1m ∧ x ∧ d2m ∧ x = d1m ∧ d2m ∧ x = (d1 ∧ d2)m ∧ x.

Therefore, by Theorem 3.5, d1 ∧ d2 is an isotone derivation on L.
Therefore, D(L) is closed under ∧ and ∨ and clearly it satisfies the properties

of an ADL. �

Theorem 3.8. Let m be a maximal element of L and F = {Fixd(L)/d ∈
D(L)}. For d1, d2 ∈ D(L), if we define Fixd1(L) ∨ Fixd2(L) = Fixd1∨d2(L) and
Fixd1(L)∧Fixd2(L) = Fixd1∧d2(L), then (F ,∨,∧) is an ADL and it is isomorphic
to D(L).

Proof. Define Fixd1(L)∨Fixd2(L) = Fixd1∨d2(L) and Fixd1(L)∧Fixd2(L) =
Fixd1∧d2(L), for any d1, d2 ∈ D(L). Then by Theorem 3.7, we get that F is
closed under ∨ and ∧. Since (D(L),∨,∧) is an ADL, we can verify that (F ,∨,∧)
is an ADL. Now, define ϕ: D(L) → F by ϕ(d) = Fixd(L). By Lemma 3.6,
ϕ is well-defined and injective. Clearly ϕ is surjective. Also, for any d1, d2 ∈
D(L), ϕ(d1 ∧ d2) = Fixd1∧d2(L) = Fixd1(L) ∧ Fixd2(L) = ϕ(d1) ∧ ϕ(d2) and
ϕ(d1∨d2) = Fixd1∨d2(L) = Fixd1(L)∨Fixd2(L). Hence, ϕ is an isomorphism. �

Lemma 3.7. Let m be a maximal element of L and d be an isotone epimorphic
derivation on L. Then, dm is a maximal element in L.

Proof. Let x ∈ L. Since d is epimorphic, dy = x for some y ∈ L. Now,
dm ∧ x = dm ∧ dy = d(m ∧ y) = dy = x and hence dm ∨ x = dm. Thus, dm is a
maximal element in L. �

The following theorem gives a necessary and sufficient condition for Fixd(L)
to be a prime ideal.

Theorem 3.9. Let m be a maximal element of L. Then the following are
equivalent.
(1) L is an almost chain.
(2) For any isotone derivation d, Fixd(L) is a prime ideal.
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Proof. (1) ⇒ (2): Suppose L is an Almost Chain and let d be an isotone
derivation on L. Let x, y ∈ L such that x∧y ∈ Fixd(L). Since L is an Almost Chain
x∧m 6 y∧m or y∧m 6 x∧m. Without loss of generality assume x∧m 6 y∧m.
Then dx = dx∧x = dx∧m∧x = d(x∧m)∧x = d(x∧ y ∧m)∧x = x∧m∧x = x.
Therefore, x ∈ Fixd(L).

(2) ⇒ (1): Assume (2). Let x, y ∈ L. Consider the principal derivation dx∧y

induced by x∧y. By Theorem 3.2, dx∧y is an isotone derivation on L and dx∧y(x∧
y) = x∧y, so that x∧y ∈ Fixdx∧y (L). Hence, by our assumption, we get either x ∈
Fixdx∧y (L) or y ∈ Fixdx∧y (L). Without loss of generality assume x ∈ Fixdx∧y (L).
Now, (x∧m)∧ (y ∧m) = y ∧ x∧m = [(x∧ y)∧ x]∧m = dx∧y(x)∧m = x∧m and
hence x ∧m 6 y ∧m. Therefore, L is an Almost Chain. �

Theorem 3.10. Let m be a maximal element of L and a ∈ L. Then Fixda(L)
is a principal ideal.

Proof. Let a ∈ L. By Theorem 3.2 and by Theorem 3.6, Fixda(L) is an ideal
of L. Now, let x ∈ L. Then

x ∈ Fixda(L) ⇐⇒ dax = x⇐⇒ a ∧ x = x⇐⇒ x ∈ (a].

Hence, Fixda(L) = (a]. �

Theorem 3.11. If I is a principal ideal of L, then there exists unique isotone
derivation d such that Fixd(L) = I.

Proof. Let I = (a] be a principal ideal of L where a ∈ L and da be the
principal derivation on L induced by a. Now, we have

x ∈ Fixda
(L) ⇐⇒ dax = x⇐⇒ a ∧ x = x⇐⇒ x ∈ (a].

Therefore, Fixda(L) = I. Uniqueness of d follows from Lemma 3.6. �

Now, we introduce the concepts of a weak ideal and a principal weak ideal in
an ADL in the following.

Definition 3.5. A nonempty subset I of L is said to be a weak ideal if it
satisfies the following.
(i) x, y ∈ I ⇒ x ∨ y ∈ I
(ii)x ∈ I, a ∈ L and a 6 x implies a ∈ I.

It can be observe that, for a ∈ L, (a) = {x ∧ a/x ∈ L} is the smallest weak
ideal containing ′a′ and it is called the principal weak ideal generated by ′a′ in L.

Lemma 3.8. For a, b ∈ L, then Sa(b) = {x ∧m/x ∈ L, da(x ∧m) 6 b ∧m} is
a weak ideal in L where da is the principal derivation induced by a on L.

Proof. Let a, b ∈ L. We have da(b∧m) = a∧b∧m 6 b∧m. Thus b∧m ∈ Sa(b)
and hence ϕ ̸= Sa(b) ⊆ L. Let x, y ∈ L such that x 6 y and y ∈ Sa(b). Thus,

x = x ∧ y = x ∧ y ∧m
a ∧ x ∧ y ∧m ∧m = a ∧ x ∧ y ∧m 6 a ∧ y ∧m 6 b ∧m
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and hence x ∈ Sa(b). Now, let x, y ∈ Sa(b). Thus,

x ∨ y = (x ∧m) ∨ (y ∧m) = (x ∨ y) ∧m
a ∧ (x ∨ y) ∧m = (x ∧ a ∧m) ∨ (y ∧ a ∧m) 6 b ∧m

and hence x ∨ y ∈ Sa(b). Therefore, Sa(b) is a weak ideal of L. �

Theorem 3.12. Let m be a maximal element of L. Then the following are
equivalent.

(1) L is a Heyting ADL with a maximal element m.
(2) For a, b ∈ L, Sa(b) has greatest element.
(3) For a ∈ L, b ∈ Fixda(L), Sa(b) has greatest element.
(4) For a ∈ L, b ∈ Fixda(L), Sa(b) is a principal weak ideal of L.

Proof. (1) ⇒ (2): Let a, b ∈ L. We prove that (a → b) ∧m is the greatest
element of Sa(b). Since a ∧ (a→ b) ∧m 6 b ∧m, we get that (a→ b) ∧m ∈ Sa(b).
Let x ∧m ∈ Sa(b). Then a ∧ x ∧m 6 b ∧m. Thus, x ∧m 6 (a → x) ∧m = a →
(x∧m) = a→ (a∧ x∧m) 6 a→ (b∧m) = (a→ b)∧m and hence (a→ b)∧m is
the greatest element of Sa(b).

(2) ⇒ (3) is trivial and

(3) ⇒ (4) follows from Lemma 3.8.

(4) ⇒ (1): Assume (4) and a, b ∈ L. Then a ∧ b ∈ Fixda(L) since da(a ∧ b) =
a ∧ a ∧ b = a ∧ b. Hence, by (4), Sa(a ∧ b) is a principal weak ideal. Write
Sa(a ∧ b) = (p) for some p ∈ L. Now, define a → b = p. Clearly a → b is well
defined (since (p) = (q) ⇐⇒ p = q).

Now we verify that (L,∨,∧,→) is a Heyting ADL. Let a, b ∈ L.
(i) Observe that Sa(a) = (m). Hence a→ a = m.
(ii) Since a∧b∧m 6 a∧b∧m, we get b∧m ∈ Sa(a∧b) and hence b∧m 6 a→ b.

Therefore, b∧m = b∧m∧(a→ b). Thus, (a→ b)∧b = b∧(a→ b)∧b = b∧m∧b = b.
(iii) Clearly a ∧ (a → b) 6 a ∧ b ∧m. Also from above, b ∧m 6 (a → b) and

hence a ∧ b ∧m 6 a ∧ (a→ b). Therefore, a ∧ (a→ b) = a ∧ b ∧m.
(iv) By (iii), a∧ [a→ (b∧ c)] = a∧ b∧ c∧m 6 a∧ b∧m. So that a→ (b∧ c) ∈

Sa(a ∧ b) and hence a → (b ∧ c) 6 a → b. Similarly we get a → (b ∧ c) 6 a → c.
Now, a ∧ (a → b) ∧ (a → c) = a ∧ b ∧ m ∧ a ∧ c ∧m = a ∧ b ∧ c ∧m and hence
(a → b) ∧ (a → c) ∈ Sa(a ∧ b ∧ c). Therefore, (a → b) ∧ (a → c) 6 a → (b ∧ c).
Thus, a→ (b ∧ c) = (a→ b) ∧ (a→ c).

(v) Let a ∧m 6 b ∧m. Then a ∧ (b → c) 6 b ∧ (b → c) 6 b ∧ c ∧m. So that
a ∧ (b→ c) = a ∧ a ∧ (b→ c) 6 a ∧ b∧ c∧m = a∧ c∧m. Thus, b→ c ∈ Sa(a ∧ c).
Therefore, b → c 6 a → c. Therefore, we get (a ∨ b) → c 6 (a → c) ∧ (b → c). On
the other hand

(a ∨ b) ∧ (a→ c) ∧ (b→ c) = [(a ∧ (a→ c) ∧ (b→ c))] ∨ [(b ∧ (a→ c) ∧ (b→ c))] 6
[a ∧ c ∧ (b→ c)] ∨ [b ∧ c ∧ (a→ c)] = (a ∧ c ∧m) ∨ (b ∧ c ∧m) = (a ∨ b) ∧ c ∧m.

Thus, (a→ c)∧(b→ c) ∈ Sa∨b((a∨b)∧c) and hence (a→ c)∧(b→ c) 6 (a∨b) → c.
Therefore, (L,∨,∧,→) is a Heyting ADL. �
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Theorem 3.13. Let P be a prime ideal of L. Then there exists a derivation d
on L such that Fixd(L) = P .

Proof. Let P be a prime ideal of L. Choose a ∈ P . Define , for any x ∈ L,
dx = x if x ∈ P and dx = a ∧ x otherwise. If x /∈ P and y /∈ P then x ∧ y /∈ P .
Thus, d(x ∧ y) = a ∧ x ∧ y = [(a ∧ x) ∧ y] ∨ [x ∧ (a ∧ y)] = (dx ∧ y) ∨ (x ∧ dy). Now
assume that x ∈ P . Then x ∧ y ∈ P and (dx ∧ y) ∨ (x ∧ dy) = (x ∧ y) ∨ (x ∧ dy) =
x ∧ (y ∨ dy) = x ∧ y = d(x ∧ y). Therefore, d is a derivation on L. Also, if x ∈ P
then by the definition of d, x ∈ Fixd(L). Suppose x ∈ Fixd(L). Then dx = x. If
x /∈ P , then x = a ∧ x ∈ P and hence we get x ∈ P . Thus Fixd(L) = P . �

Definition 3.6. Let (L,∨,∧, 0) be an ADL. For any a ∈ L, define ϕa =
{(x, y) ∈ L × L/da(x) = da(y)} where da is the principal derivation induced by a
on L.

Lemma 3.9. Let L be an ADL. Then for any a ∈ L, ϕa is a congruence relation
on L.

Proof. Clearly ϕa is an equivalence relation on L. Now, let (x, y),(p, q) ∈ ϕa.
Then a∧x = a∧y and a∧p = a∧q. Now, a∧x∧p = a∧x∧a∧p = a∧y∧a∧q = a∧y∧q
and a ∧ (x ∨ p) = (a ∧ x) ∨ (a ∧ p) = (a ∧ y) ∨ (a ∧ q) = a ∧ (y ∨ q). Therefore,
(x ∧ p, y ∧ q), (x ∨ p, y ∨ q) ∈ ϕa. Hence, ϕa is a congruence relation on L. �

Lemma 3.10. For any a, b ∈ L, the following hold.
(1) ϕa∧b = ϕb∧a

(2) ϕa∨b = ϕb∨a

(3) ϕa ∩ ϕb = ϕa∨b

(4) ϕaoϕb = ϕa∧b = ϕa ∨ ϕb.

Proof. Since a ∧ b ∧ x = b ∧ a ∧ x and (a ∨ b) ∧ x = (b ∨ a) ∧ x, we get that
ϕa∧b = ϕb∧a and ϕa∨b = ϕb∨a. Again,

(x, y) ∈ ϕa ∧ ϕb ⇐⇒ a ∧ x = a ∧ y and b ∧ x = b ∧ y
⇐⇒ (a ∨ b) ∧ x = (a ∨ b) ∧ y ⇐⇒ (x, y) ∈ ϕa∨b.

Thus ϕa∨b = ϕa ∩ ϕb.
Now, if (x, y) ∈ ϕaoϕb, then there exists z ∈ L such that (x, z) ∈ ϕb and

(z, y) ∈ ϕa. So that b ∧ x = b ∧ z and a ∧ z = a ∧ y. Now,

(a ∧ b) ∧ x = a ∧ b ∧ x = a ∧ b ∧ z = b ∧ a ∧ z = b ∧ a ∧ y = a ∧ b ∧ y.

Thus (x, y) ∈ ϕa∧b. Therefore, ϕaoϕb ⊆ ϕa∧b.

Also, if (x, y) ∈ ϕa∧b , then a∧ b∧x = a∧ b∧ y. Now take z = (b∧x)∨ (a∧ y).
Then,

b ∧ z = b ∧ [(b ∧ x) ∨ (a ∧ y)] = (b ∧ x) ∨ (b ∧ a ∧ y) = (b ∧ x) ∨ (a ∧ b ∧ y) =
(b ∧ x) ∨ (a ∧ b ∧ x) = b ∧ x and a ∧ z = a ∧ [(b ∧ x) ∨ (a ∧ y)] =

(a ∧ b ∧ x) ∨ (a ∧ y) = (a ∧ b ∧ y) ∨ (a ∧ y) = [b ∧ (a ∧ y)] ∨ (a ∧ y) = a ∧ y.
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Hence, (x, y) ∈ ϕaoϕb. Therefore ϕa∧b ⊆ ϕaoϕb and hence ϕaoϕb = ϕa∧b. By
symmetry and by (1) we get that ϕboϕa = ϕb∧a = ϕa∧b. Hence, ϕa∧b = ϕa∨ϕb. �

Theorem 3.14. Let L be an ADL. Then, the set of all principal derivations
P(L) = {da/a ∈ L} is a distributive lattice with the following operations,

da ∨ db = da∨b and da ∧ db = da∧b for all a, b ∈ L.

Also, P(L) is isomorphic to PI(L) as well as PF(L).

Proof. Let a, b ∈ L. For any x ∈ L,

(da ∨ db)x = dax ∨ dbx = (a ∧ x) ∨ (b ∧ x) = (a ∨ b) ∧ x = da∨bx.

Therefore, da ∨ db = da∨b ∈ P(L). Also,

(da ∧ db)x = dax ∧ dbx = a ∧ x ∧ b ∧ x = a ∧ b ∧ x = da∧bx.

Therefore, da ∧ db = da∧b ∈ P(L). Hence P(L) is closed under ∨ and ∧ and
hence P(L) is a sub-ADL of D(L). Also, for any x ∈ L, da∧bx = a ∧ b ∧ x =
b ∧ a ∧ x = db∧ax. Thus da∧b = db∧a. Therefore da ∧ db = db ∧ da. Hence, P(L) is
a distributive lattice. Now, define ψ : P(L) → PI(L) by ψ(da) = (a] for all a ∈ L.
By Lemma 3.6 , Theorem 3.10 and Theorem 3.11 we get that ψ is bijection. Now,
for a, b ∈ L, ψ(da ∨ db) = ψ(da∨b) = (a ∨ b] = (a]∨ (b] and ψ(da ∧ db) = ψ(da∧b) =
(a ∧ b] = (a] ∧ (b]. Therefore, ψ is an isomorphism. Since PI(L) is isomorphic to
PF(L), we get that P(L) is isomorphic to PF(L). �

Finally we conclude this paper with the following theorem.

Theorem 3.15. C = {ϕa/a ∈ L} is dually isomorphic to P(L), the set of all
principal derivations on L.

Proof. Define ψ : C → P(L) by ψ(da) = ϕa for all a ∈ L.
Let a, b ∈ L such that da = db. Now, for any x, y ∈ L,

(x, y) ∈ ϕa ⇐⇒ a∧ x = a∧ y ⇐⇒ dax = day ⇐⇒ dbx = dby ⇐⇒ b∧ x = b∧ y ⇐⇒
(x, y) ∈ ϕb.

Thus ϕa = ϕb and hence ψ is well defined.
On the other hand , let ϕa = ϕb. For any x ∈ L,

(x, a ∧ x) ∈ ϕa ⇒ (x, a ∧ x) ∈ ϕb ⇒ b ∧ x = b ∧ a ∧ x 6 a ∧ x,

by symmetry, we get that a ∧ x = b ∧ x and hence da = db. Now, for a, b ∈ L, by
Lemma 3.10,

ψ(a∧b) = ϕa∧b = ϕa∨ϕb = ψ(a)∨ψ(b) and ψ(a∨b) = ϕa∨b = ϕa∧ϕb = ψ(a)∧ψ(b).

Thus, ψ is a dual isomorphism. �

The authors express their sincere thanks to the referee for his valuable com-
ments and suggestions.
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