BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN (p) 2303-4874, ISSN (o) 2303-4955 www.imvibl.org /JOURNALS / BULLETIN Vol. 7(2017), 203-216

Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA ISSN 0354-5792 (o), ISSN 1986-521X (p)

THE THEORY OF DERIVATIONS IN ALMOST DISTRIBUTIVE LATTICES

G.C.RAO and K RAVI BABU

ABSTRACT. In this paper, we introduce the concept of a derivation in an Almost Distributive Lattice (ADL) and derive some important properties of derivations in ADLs. Also we introduce the concepts of a principal derivation, an isotone derivation and the fixed set of a derivation. We derive important results on derivations in Heyting ADLs.

1. Introduction

The notation of derivation, introduced from the analytic theory, is helpful for the research of structure and property in an algebraic system. Several authors ([5],[2]) have studied derivations in rings and near rings after Posner [9] has given the definition of the derivation in ring theory. The concept of a derivation in lattices was introduced by G.Szasz in 1974 [14]. X. L. Xin et al. [15] applied the notion of derivation in the ring theory to lattices and investigated some properties. Later, several authors ([1], [3], [4], [6], [7], [8] and [17]) have worked on this concept.

In 1980, the concept of an Almost Distributive Lattice(ADL) was introduced by U.M.Swamy and G.C Rao [4]. This class of ADLs include most of the existing ring theoretic generalizations of a Boolean algebra on one hand and the class of distributive lattices on the other.

In this paper, we introduce the concept of a derivation in an ADL and investigate some important properties. Also, we introduce the concept of an isotone derivation, a principal derivation in ADLs and investigate the relations among them. We give some equivalent conditions under which a derivation on an ADL becomes the identity map, a monomorphism, an epimorphism. Also, we establish a set of conditions which are sufficient for a derivation on an ADL with a maximal

²⁰¹⁰ Mathematics Subject Classification. 06D99, 06D20.

Key words and phrases. Almost Distributive Lattice (ADL), Derivations, Isotone derivations, Principal derivations, Heyting ADL.

element to become an isotone derivation. We define $Fix_d(L)$, the fixed set of a derivation d in an ADL L and prove that it is an ideal of L if d is an isotone derivation. Also, we derive a necessary and sufficient condition for $Fix_d(L)$ to be a prime ideal of L. We prove that the set of all isotone derivations on an ADL L is itself an ADL. We derive a set of sufficient conditions in terms of principal derivations for an ADL to become a Heyting ADL. We introduce a congruence relation ϕ_a , induced by $a \in L$, on an ADL L and derive some useful properties of ϕ_a . We prove that the set $\mathcal{P}(L)$ of all principal derivations on an ADL L is a distributive lattice under pointwise operations and it is isomorphic to the lattice $\mathcal{PI}(L)$ ($\mathcal{PF}(L)$) of all principal ideals (filters) of L. Finally, we prove that the lattice $\mathcal{P}(L)$ is dually isomorphic to $\{\phi_a/a \in L\}$.

2. Preliminaries

In this section, we recollect certain basic concepts and certain important results on Almost Distributive Lattices.

DEFINITION 2.1. [3] An algebra (L, \lor, \land) of type (2, 2) is called an Almost Distributive Lattice, if it satisfies the following axioms: $L_1: (a \lor b) \land c = (a \land c) \lor (b \land c) (RD \land)$ $L_2: a \land (b \lor c) = (a \land b) \lor (a \land c) (LD \land)$ $L_3: (a \lor b) \land b = b$ $L_4: (a \lor b) \land a = a$ $L_5: a \lor (a \land b) = a$, for all $a, b, c \in L$.

DEFINITION 2.2. [3] Let X be any non-empty set. Define, for any $x, y \in L$, $x \vee y = x$ and $x \wedge y = y$. Then (X, \vee, \wedge) is an ADL and such an ADL, we call discrete ADL.

Throughout this paper L stands for an ADL (L, \vee, \wedge) unless otherwise specified.

LEMMA 2.1. [3] For any $a, b \in L$, we have (i) $a \wedge a = a$ (ii) $a \vee a = a$. (iii) $(a \wedge b) \vee b = b$ (iv) $a \wedge (a \vee b) = a$ (v) $a \vee (b \wedge a) = a$. (vi) $a \vee b = a$ if and only if $a \wedge b = b$ (vii) $a \vee b = b$ if and only if $a \wedge b = a$.

DEFINITION 2.3. [3] For any $a, b \in L$, we say that a is less than or equal to b and write $a \leq b$, if $a \wedge b = a$ or, equivalently, $a \vee b = b$.

DEFINITION 2.4. [3] For any $a, b \in L$, we say that a is less than or equal to b and write $a \leq b$, if $a \wedge b = a$ or, equivalently, $a \vee b = b$.

THEOREM 2.1. [3] For any $a, b, c \in L$, we have the following (i) The relation \leq is a partial ordering on L. (ii) $a \lor (b \land c) = (a \lor b) \land (a \lor c)$. (LD \lor) THE THEORY OF DERIVATIONS

(*iii*) $(a \lor b) \lor a = a \lor b = a \lor (b \lor a).$

- $(iv) \ (a \lor b) \land c = (b \lor a) \land c.$
- (v) The operation \wedge is associative in L.
- (vi) $a \wedge b \wedge c = b \wedge a \wedge c$.

THEOREM 2.2. [3] For any $a, b \in L$, the following are equivalent.

 $(i) \ (a \wedge b) \lor a = a$

- $(ii) \ a \wedge (b \vee a) = a$
- $(iii) \ (b \land a) \lor b = b$
- $(iv) \ b \land (a \lor b) = b$
- $(v) \ a \wedge b = b \wedge a$
- $(vi) \ a \lor b = b \lor a$
- (vii) The supremum of a and b exists in L and equals to $a \lor b$
- (viii) there exists $x \in L$ such that $a \leq x$ and $b \leq x$
- (ix) the infimum of a and b exists in L and equals to $a \wedge b$.

DEFINITION 2.5. [3] L is said to be associative, if the operation \lor in L is associative.

THEOREM 2.3. [3] The following are equivalent.

- (i) L is a distributive lattice.
- (ii) the poset (L, \leq) is directed above.
- (*iii*) $a \land (b \lor a) = a$, for all $a, b \in L$.
- (iv) the operation \lor is commutative in L.
- (v) the operation \wedge is commutative in L.
- (vi) the relation $\theta := \{(a, b) \in L \times L \mid a \land b = b\}$ is anti-symmetric.
- (vii) the relation θ defined in (vi) is a partial order on L.

LEMMA 2.2. [3] For any $a, b, c, d \in L$, we have the following (i) $a \wedge b \leq b$ and $a \leq a \vee b$

(ii) $a \wedge b = b \wedge a$ whenever $a \leq b$.

(*iii*) $[a \lor (b \lor c)] \land d = [(a \lor b) \lor c] \land d.$

(iv) $a \leq b$ implies $a \wedge c \leq b \wedge c$, $c \wedge a \leq c \wedge b$ and $c \vee a \leq c \vee b$.

DEFINITION 2.6. [3] An element $0 \in L$ is called zero element of L, if $0 \wedge a = 0$ for all $a \in L$.

LEMMA 2.3. [3] If L has 0, then for any $a, b \in L$, we have the following (i) $a \lor 0 = a$, (ii) $0 \lor a = a$ and (iii) $a \land 0 = 0$. (iv) $a \land b = 0$ if and only if $b \land a = 0$.

An element $x \in L$ is called maximal if, for any $y \in L$, $x \leq y$ implies x = y. We immediately have the following.

LEMMA 2.4. [3] For any $m \in L$, the following are equivalent: (1) m is maximal (2) $m \lor x = m$ for all $x \in L$ (3) $m \land x = x$ for all $x \in L$. DEFINITION 2.7. [17] L is called an almost chain if, for any $x, y \in L$, $x \wedge y = y$ or $y \wedge x = x$.

If L has a maximal element m, then this is equivalent to $x \wedge m \leq y \wedge m$ or $y \wedge m \leq x \wedge m$ for all $x, y \in L$.

Definition 2.8. [3]

- (1) A non-empty subset I of L is said to be an ideal if, $a \lor b \in I$ for all $a, b \in L$ and $a \land x \in I$ for any $a \in I$, $x \in L$.
- (2) A proper ideal P of L is called a prime ideal if for any $x, y \in L$, $x \wedge y \in P$ implies that $x \in P$ or $y \in P$.
- (3) A non-empty subset F of L is said to be a filter if, $a \land b \in F$ for all $a, b \in F$ and $x \lor a \in F$ for any $a \in F$, $x \in L$.

THEOREM 2.4. [3] For any $a, b \in L$ we have the following

- (1) $(a] = \{a \land x/x \in L\}$ is the smallest ideal containing 'a' and is called the principal ideal of L generated by 'a'.
- (2) The set $\mathcal{I}(L)$ of all ideals of L forms a distributive lattice under set inclusion in which the glb and lub of I and J are respectively $I \wedge J = I \cap J$ and $I \vee J = \{x \vee y/x \in I \text{ and } y \in J\}.$
- (3) $(a] \lor (b] = (a \lor b] = (b \lor a] and (a] \land (b] = (a \land b] = (b \land a].$

Though lattice theoretic duality principle does not hold good in an ADL, we have the following.

THEOREM 2.5. [3] For any $a, b \in L$ we have the following

- (1) $[a) = \{x \lor a/x \in L\}$ is the smallest filter containing 'a' and is called the principal filter of L generated by 'a'.
- (2) The set $\mathcal{F}(L)$ of all filters of L forms a distributive lattice under set inclusion in which the glb and lub of F and G are respectively by $F \wedge G = F \cup G$ and $F \vee G = \{x \wedge y | x \in F \text{ and } y \in G\}$.
- (3) $[a) \lor [b] = [a \land b] = [b \land a]$ and $[a) \land [b] = [a \lor b] = [b \lor a]$
- (4) (a] = (b] if and only if [a) = [b]
- (5) The class PI(L)(PF(L)) of all principal ideals (filters) of L is a sublattice of the distributive lattice I(L)(F(L)) of all ideals (filters) of L. Moreover, the lattice PI(L) is 'dually isomorphic' onto the lattice PF(L).

DEFINITION 2.9. [11] Let $(L, \lor, \land, 0, m)$ be an ADL with 0 and a maximal element m. Suppose \rightarrow is a binary operation on L satisfying the following conditions for all $x, y, z \in L$.

- (1) $x \to x = m$
- (2) $(x \to y) \land y = y$
- (3) $x \wedge (x \rightarrow y) = x \wedge y \wedge m$
- (4) $x \to (y \land z) = (x \to y) \land (x \to z)$
- (5) $(x \lor y) \to z = (x \to z) \land (y \to z)$

Then $(L, \lor, \land, \rightarrow, 0, m)$ is called a Heyting Almost Distributive lattice (HADL).

3. Derivations in ADLs

We begin this section with the following definition of a derivation in an ADL.

DEFINITION 3.1. A function
$$d: L \to L$$
 is called a derivation on L, if
 $d(x \land y) = (dx \land y) \lor (x \land dy)$ for all $x, y \in L$.

EXAMPLE 3.1. The identity map on L is a derivation on L. This is called the identity derivation on L.

EXAMPLE 3.2. If L has 0, define a function d on L by dx = 0 for all $x \in L$. Then, d is a derivation on L, and it is called the zero derivation on L.

EXAMPLE 3.3. In a discrete ADL $L = \{0, a, b\}$, if we define a function d on L by d0 = 0, da = b, db = a, then d is not a derivation on L.

EXAMPLE 3.4. Let L_1 and L_2 be two ADLs and d_1 and d_2 are derivations on L_1 and L_2 respectively. Then, $d_1 \times d_2$ is a derivation on $L_1 \times L_2$ where $(d_1 \times d_2)(x, y) = (d_1x, d_2y)$, for all $x \in L_1, y \in L_2$.

LEMMA 3.1. Let d be a derivation on L, then the following hold:

(i) $dx \leq x$, for any $x \in L$

(ii) $dx \wedge dy \leq d(x \wedge y)$ for all $x, y \in L$

(iii) If I is an ideal of L, then $dI \subseteq I$

(iv) If L has 0, then d0 = 0.

PROOF. (i) If $x \in L$, then $dx = d(x \wedge x) = (dx \wedge x) \lor (x \wedge dx) = dx \wedge x$ (by Lemma 2.1). Therefore, $dx \leq x$.

(ii) Let $x, y \in L$. We have $d(x \wedge y) = (dx \wedge y) \vee (x \wedge dy)$. Therefore, $dx \wedge y \leq d(x \wedge y)$. Now, by(i) above, we get that $dx \wedge dy \leq dx \wedge y \leq d(x \wedge y)$.

(iii) If $a \in I$, then by(i) above, $da \leq a$ and hence $da \in I$. Thus, $dI \subseteq I$.

(iv) If L has 0, then by (i) above, $d0 \leq 0$. Thus, $0 \leq d0 \leq 0$ and hence d0 = 0.

THEOREM 3.1. If d is a derivation on L a discrete ADL with 0, then d is either a zero derivation or the identity derivation on L.

PROOF. Suppose $da \neq 0$ for some $a \neq 0 \in L$. Then, $da = d(a \land a) = (da \land a) \lor (a \land da) = da \land a = a$. Therefore d is either a zero derivation or the identity derivation.

DEFINITION 3.2. A derivation d on L is called,

(1) an isotone derivation, if $da \leq db$ for all $a, b \in L$ with $a \leq b$.

(2) a monomorphic derivation, if d is an injection.

(3) an epimorphic derivation, if d is a surjection.

EXAMPLE 3.5. Every constant map on an ADL L is an isotone map , but not a derivation.

EXAMPLE 3.6. Let $L_1 = \{0, x, y, z\}$ be a discrete ADL and consider d_1 as the identity derivation on L_1 . Let $L_2 = \{0, a, b, 1\}$ be a chain and define d_2 on L_2 by

 $d_2x = a$ if x = 1 and $d_2x = x$ otherwise. Then d_2 is a derivation on L_2 . Observe that $d_1 \times d_2$ is a non-isotone derivation on the ADL $L_1 \times L_2$.

DEFINITION 3.3. Let L be an ADL and $a \in L$. Define a function d_a on L by $d_a x = a \wedge x$ for all $x \in L$. Then, d_a is a derivation on L and is called a principal derivation on L induced by a.

THEOREM 3.2. Every principal derivation on L is an isotone derivation.

PROOF. Let d_a be the principal derivation on L induced by $a \in L$. Now, for $x, y \in L$ with $x \leq y$, we have

$$d_a x = d_a (x \wedge y) = a \wedge x \wedge y = a \wedge x \wedge a \wedge y = d_a x \wedge d_a y.$$

Thus $d_a x \leq d_a y$ and hence d_a is an isotone derivation.

LEMMA 3.2. Suppose L has a maximal element m. Then, $(dm \wedge x) \leq dx$ for all $x \in L$.

PROOF. For $x \in L$, $dx = d(m \wedge x) = (dm \wedge x) \vee (m \wedge dx)$. Hence $(dm \wedge x) \leq dx$.

COROLLARY 3.1. Suppose m is a maximal element of L and d is a derivation on L. Then, we have,

(1) If $x \in L$, $x \ge dm$ then $dx \ge dm$.

(2) If $x \in L$, $x \leq dm$ then dx = x.

PROOF. (1) If $x \in L$ and $x \ge dm$ then $dm = (dm \land x) \le dx$ by above Lemma. (2) If $x \in L$ and $x \le dm$, then by above Lemma, $dx = (dm \land x) \lor dx = x \lor dx = x$. \Box

LEMMA 3.3. Let d be a derivation on L. If $y \leq x$ and dx = x then dy = y.

PROOF. Let $x, y \in L$ with $y \leq x$ and dx = x. Now,

$$dy = d(y \land x) = (dy \land x) \lor (y \land dx) = (dy \land x) \lor (y \land x) = (dy \land x) \lor y.$$

Since $dy \leq y \leq x$, we get $dy = dy \wedge x$. Thus, $dy = dy \vee y = y$.

LEMMA 3.4. Let d be an isotone derivation on L. Then, $d(x\vee y)\leqslant dx\vee dy$ for all $x,y\in L$.

PROOF. Let d be an isotone derivation on L and $x, y \in L$. Now

 $\begin{aligned} dx &= d[(x \lor y) \land x] = [d(x \lor y) \land x] \lor [(x \lor y) \land dx] = [d(x \lor y) \land x] \lor dx = [d(x \lor y) \lor dx] \land x. \end{aligned}$ Since d is isotone and $x \leqslant x \lor y$ implies $dx \leqslant d(x \lor y)$. Therefore, $dx = d(x \lor y) \land x.$ Also,

$$\begin{split} dy &= d[(x \lor y) \land y] = [d(x \lor y) \land y] \lor [(x \lor y) \land dy] = [d(x \lor y) \land y] \lor [(y \lor x) \land dy].\\ \text{Since } dy \leqslant y \leqslant y \lor x, \text{ we get } (y \lor x) \land dy = dy. \text{ Thus,} \end{split}$$

$$dy = [d(x \lor y) \land y] \lor dy = [d(x \lor y) \lor dy] \land y.$$

Now,

THE THEORY OF DERIVATIONS

$$\begin{split} d(x \lor y) \land (dx \lor dy) &= d(x \lor y) \land [[d(x \lor y) \land x] \lor [[d(x \lor y) \lor dy] \land y]] = \\ [d(x \lor y) \land x] \lor [d(x \lor y) \land y] &= d(x \lor y) \land (x \lor y) = d(x \lor y). \end{split}$$

Therefore, $d(x \lor y) \leq dx \lor dy$.

THEOREM 3.3. Let m be a maximal element of L and d be a derivation on L. Then dm = m if and only if d is the identity derivation.

PROOF. Suppose dm = m. For any $x \in L$,

$$dx = d(m \wedge x) = (dm \wedge x) \vee (m \wedge dx) = (m \wedge x) \vee dx = x \vee dx = x$$

Therefore, d is the identity map on L. The converse is obvious.

LEMMA 3.5. Let d be a derivation on L. Then, $d^2x = dx$ for all $x \in L$.

PROOF. For any $x \in L$, $d^2x = d(dx) \leq dx \leq x$. Now,

$$d^2x = d(dx) = d(dx \wedge x) = (d^2x \wedge x) \vee (dx \wedge dx) = d^2x \vee dx = dx.$$

THEOREM 3.4. Let d be a derivation on L. Then, the following are equivalent. (1) d is the identity map

(2) $d(x \lor y) = (x \lor dy) \land (dx \lor y)$ for all $x, y \in L$.

(3) d is a monomorphic derivation.

(4) d is an epimorphic derivation.

PROOF. Clearly (1) implies (2), (3) and (4).

If (2) holds, then for any $x \in L$, $dx = d(x \lor x) = (x \lor dx) \land (dx \lor x) = x \land x = x$. Therefore, d is the identity map.

Suppose (3) holds and $da \neq a$ for some $a \in L$. Write $da = a_1$. Then, $da_1 \leq a_1 < a$. Now, $da_1 = d(a_1 \wedge a) = (da_1 \wedge a) \vee (a_1 \wedge da) = da_1 \vee a_1 = a_1 = da$, which is contradiction since d is monomorphic.

Finally suppose (4) holds and $x \in L$. Then x = dy for some $y \in L$. Now, $dx = d(dy) = d^2y = dy = x$. Therefore, d is the identity map.

THEOREM 3.5. Let m be a maximal element of L and d be a derivation on L. Then the following are equivalent.

(1) d is isotone

(2) $dx = dm \wedge x$ for all $x \in L$

(3) $d(x \wedge y) = dx \wedge y$ for all $x, y \in L$

(4) $d(x \wedge y) = dx \wedge dy$ for all $x, y \in L$

(5) $d(x \lor y) = dx \lor dy$ for all $x, y \in L$.

PROOF. (1) \Rightarrow (2): Suppose d is an isotone and $x \in L$. Then

$$dx = d(m \wedge x) = (dm \wedge x) \lor (m \wedge dx) = (dm \wedge x) \lor dx.$$

Therefore, $dm \wedge x \leq dx$. Also,

$$dx = dx \land x = (dx \land m) \land x \leq d(x \land m) \land x \leq dm \land x$$

since d is isotone. Therefore, $dm \wedge x = dx$.

(2) \Rightarrow (4): Assume (2) and $x, y \in L$. Then $d(x \wedge y) = dm \wedge x \wedge y = dx \wedge dy$. Thus, we get (4).

(2) \Rightarrow (5): Assume (2) and $x, y \in L$. Then $d(x \lor y) = dm \land (x \lor y) = (dm \land x) \lor (dm \land y) = dx \lor dy$. Thus, we get (5).

 $(4) \Rightarrow (1)$: Trivial.

 $(5) \Rightarrow (1)$: Trivial.

Thus (1), (2), (4) and (5) are equivalent.

(2) \Rightarrow (3): For any $x, y \in L$, $d(x \wedge y) = dm \wedge x \wedge y = dx \wedge y$.

(3) \Rightarrow (2): For any $x, y \in L$, $dx = d(m \land x) = dm \land x$.

DEFINITION 3.4. Let d be a derivation on L. We define

$$Fix_d(L) = \{x \in L/dx = x\}.$$

THEOREM 3.6. Let L be an ADL with a maximal element m and d be an isotone derivation on L. Then, $Fix_d(L)$ is an ideal of L.

PROOF. By Lemma 3.5, $dx \in Fix_d(L)$ for any $x \in L$ and thus $\phi \neq Fix_d(L) \subseteq L$. Also, by Lemma 3.3, $Fix_d(L)$ is an initial segment of L. Now, let $x, y \in Fix_d(L)$. By Theorem 3.5, we have, $d(x \lor y) = dx \lor dy = x \lor y$. Hence, $Fix_d(L)$ is an ideal of L.

LEMMA 3.6. Let d_1 and d_2 be two isotone derivations on L. Then $d_1 = d_2$ if and only if $Fix_{d_1}(L) = Fix_{d_2}(L)$.

PROOF. If $d_1 = d_2$ then clearly $Fix_{d_1}(L) = Fix_{d_2}(L)$. Suppose $Fix_{d_1}(L) = Fix_{d_2}(L)$. For any $x \in L$, $d_1(d_1x) = d_1x$, thus $d_1x \in Fix_{d_1}(L)$. So that $d_1x \in Fix_{d_2}(L)$. Therefore, $d_2(d_1x) = d_1x$ and hence $d_2d_1 = d_1$. Similarly, we get that $d_1d_2 = d_2$. Since d_1, d_2 are isotones and $d_1x \leq x$, we get $d_2d_1x \leq d_2x$ thus, $d_2d_1 \leq d_2$. That is $d_1 \leq d_2$. By symmetry we get $d_2 = d_1$.

THEOREM 3.7. Let *m* be a maximal element of *L* and $\mathcal{D}(L)$ be the set of all isotone derivations on *L*. Then $(\mathcal{D}(L), \lor, \land)$ is an ADL where for $d_1, d_2 \in \mathcal{D}(L)$, $(d_1 \land d_2)x = d_1x \land d_2x$ and $(d_1 \lor d_2)x = d_1x \lor d_2x$ for all $x, y \in L$.

PROOF. Let $d_1, d_2 \in \mathcal{D}(L)$ and $x, y \in L$. Then

$$[(d_1 \lor d_2)x] \land y = (d_1x \lor d_2x) \land y = (d_1x \land y) \lor (d_2x \land y) = d_1(x \land y) \lor d_2(x \land y) = (d_1 \lor d_2)(x \land y)$$

and

$$x \wedge (d_1 \vee d_2)y = x \wedge (d_1y \vee d_2y) = (x \wedge d_1y) \vee (x \wedge d_2y) = (x \wedge d_1m \wedge y) \vee (x \wedge d_2m \wedge y) = (d_1m \wedge x \wedge y) \vee (d_2m \wedge x \wedge y) = (d_1x \wedge y) \vee (d_2x \wedge y) = d_1(x \wedge y) \vee d_2(x \wedge y) = (d_1 \vee d_2)(x \wedge y).$$

Now, $(d_1 \vee d_2)(x \wedge y) = [(d_1 \vee d_2)x \wedge y] \vee [x \wedge (d_1 \vee d_2)y]$ and hence $d_1 \vee d_2$ is a derivation on L. Also,

 $(d_1 \lor d_2)x = d_1x \lor d_2x = (d_1m \land x) \lor (d_2m \land x) = (d_1m \lor d_2m) \land x = (d_1 \lor d_2)m \land x.$

Therefore, by Theorem 3.5 $d_1 \vee d_2$ is an isotone derivation on L. Now,

 $(d_1 \wedge d_2)x \wedge y = d_1x \wedge d_2x \wedge y = d_1x \wedge y \wedge d_2x \wedge y = d_1(x \wedge y) \wedge d_2(x \wedge y) = (d_1 \wedge d_2)(x \wedge y).$

Again,

$$x \wedge (d_1 \wedge d_2)y = x \wedge d_1y \wedge d_2y = x \wedge d_1m \wedge y \wedge d_2m \wedge y = d_1m \wedge x \wedge y \wedge d_2m \wedge x \wedge y = d_1(x \wedge y) \wedge d_2(x \wedge y) = (d_1 \wedge d_2)(x \wedge y).$$

Therefore, $(d_1 \wedge d_2)(x \wedge y) = [(d_1 \wedge d_2)x \wedge y] \vee [x \wedge (d_1 \wedge d_2)y]$ and hence $d_1 \wedge d_2$ is a derivation on L. Also,

$$(d_1 \wedge d_2)x = d_1x \wedge d_2x = d_1m \wedge x \wedge d_2m \wedge x = d_1m \wedge d_2m \wedge x = (d_1 \wedge d_2)m \wedge x.$$

Therefore, by Theorem 3.5, $d_1 \wedge d_2$ is an isotone derivation on L.

Therefore, $\mathcal{D}(L)$ is closed under \wedge and \vee and clearly it satisfies the properties of an ADL.

THEOREM 3.8. Let *m* be a maximal element of *L* and $\mathcal{F} = \{Fix_d(L)/d \in \mathcal{D}(L)\}$. For $d_1, d_2 \in \mathcal{D}(L)$, if we define $Fix_{d_1}(L) \vee Fix_{d_2}(L) = Fix_{d_1 \vee d_2}(L)$ and $Fix_{d_1}(L) \wedge Fix_{d_2}(L) = Fix_{d_1 \wedge d_2}(L)$, then $(\mathcal{F}, \vee, \wedge)$ is an ADL and it is isomorphic to $\mathcal{D}(L)$.

PROOF. Define $Fix_{d_1}(L) \vee Fix_{d_2}(L) = Fix_{d_1 \vee d_2}(L)$ and $Fix_{d_1}(L) \wedge Fix_{d_2}(L) = Fix_{d_1 \wedge d_2}(L)$, for any $d_1, d_2 \in \mathcal{D}(L)$. Then by Theorem 3.7, we get that \mathcal{F} is closed under \vee and \wedge . Since $(\mathcal{D}(L), \vee, \wedge)$ is an ADL, we can verify that $(\mathcal{F}, \vee, \wedge)$ is an ADL. Now, define $\phi: \mathcal{D}(L) \to \mathcal{F}$ by $\phi(d) = Fix_d(L)$. By Lemma 3.6, ϕ is well-defined and injective. Clearly ϕ is surjective. Also, for any $d_1, d_2 \in \mathcal{D}(L), \phi(d_1 \wedge d_2) = Fix_{d_1 \wedge d_2}(L) = Fix_{d_1}(L) \wedge Fix_{d_2}(L) = \phi(d_1) \wedge \phi(d_2)$ and $\phi(d_1 \vee d_2) = Fix_{d_1 \vee d_2}(L) = Fix_{d_1}(L) \vee Fix_{d_2}(L)$. Hence, ϕ is an isomorphism. \Box

LEMMA 3.7. Let m be a maximal element of L and d be an isotone epimorphic derivation on L. Then, dm is a maximal element in L.

PROOF. Let $x \in L$. Since d is epimorphic, dy = x for some $y \in L$. Now, $dm \wedge x = dm \wedge dy = d(m \wedge y) = dy = x$ and hence $dm \vee x = dm$. Thus, dm is a maximal element in L.

The following theorem gives a necessary and sufficient condition for $Fix_d(L)$ to be a prime ideal.

THEOREM 3.9. Let m be a maximal element of L. Then the following are equivalent.

(1) L is an almost chain.

(2) For any isotone derivation d, $Fix_d(L)$ is a prime ideal.

PROOF. (1) \Rightarrow (2): Suppose *L* is an Almost Chain and let *d* be an isotone derivation on *L*. Let $x, y \in L$ such that $x \wedge y \in Fix_d(L)$. Since *L* is an Almost Chain $x \wedge m \leq y \wedge m$ or $y \wedge m \leq x \wedge m$. Without loss of generality assume $x \wedge m \leq y \wedge m$. Then $dx = dx \wedge x = dx \wedge m \wedge x = d(x \wedge m) \wedge x = d(x \wedge y \wedge m) \wedge x = x \wedge m \wedge x = x$. Therefore, $x \in Fix_d(L)$.

(2) \Rightarrow (1): Assume (2). Let $x, y \in L$. Consider the principal derivation $d_{x \wedge y}$ induced by $x \wedge y$. By Theorem 3.2, $d_{x \wedge y}$ is an isotone derivation on L and $d_{x \wedge y}(x \wedge y) = x \wedge y$, so that $x \wedge y \in Fix_{d_{x \wedge y}}(L)$. Hence, by our assumption, we get either $x \in Fix_{d_{x \wedge y}}(L)$ or $y \in Fix_{d_{x \wedge y}}(L)$. Without loss of generality assume $x \in Fix_{d_{x \wedge y}}(L)$. Now, $(x \wedge m) \wedge (y \wedge m) = y \wedge x \wedge m = [(x \wedge y) \wedge x] \wedge m = d_{x \wedge y}(x) \wedge m = x \wedge m$ and hence $x \wedge m \leq y \wedge m$. Therefore, L is an Almost Chain.

THEOREM 3.10. Let m be a maximal element of L and $a \in L$. Then $Fix_{d_a}(L)$ is a principal ideal.

PROOF. Let $a \in L$. By Theorem 3.2 and by Theorem 3.6, $Fix_{d_a}(L)$ is an ideal of L. Now, let $x \in L$. Then

$$x \in Fix_{d_a}(L) \Longleftrightarrow d_a x = x \Longleftrightarrow a \land x = x \Longleftrightarrow x \in (a].$$

Hence, $Fix_{d_a}(L) = (a]$.

THEOREM 3.11. If I is a principal ideal of L, then there exists unique isotone derivation d such that $Fix_d(L) = I$.

PROOF. Let I = (a] be a principal ideal of L where $a \in L$ and d_a be the principal derivation on L induced by a. Now, we have

$$x \in Fix_{d_a}(L) \Longleftrightarrow d_a x = x \Longleftrightarrow a \land x = x \Longleftrightarrow x \in (a].$$

Therefore, $Fix_{d_a}(L) = I$. Uniqueness of d follows from Lemma 3.6.

Now, we introduce the concepts of a weak ideal and a principal weak ideal in an ADL in the following.

DEFINITION 3.5. A nonempty subset I of L is said to be a weak ideal if it satisfies the following.

(i)
$$x, y \in I \implies x \lor y \in I$$

 $(ii)x \in I, a \in L \text{ and } a \leq x \text{ implies } a \in I.$

It can be observe that, for $a \in L$, $(a) = \{x \land a/x \in L\}$ is the smallest weak ideal containing 'a' and it is called the principal weak ideal generated by 'a' in L.

LEMMA 3.8. For $a, b \in L$, then $S_a(b) = \{x \land m/x \in L, d_a(x \land m) \leq b \land m\}$ is a weak ideal in L where d_a is the principal derivation induced by a on L.

PROOF. Let $a, b \in L$. We have $d_a(b \wedge m) = a \wedge b \wedge m \leq b \wedge m$. Thus $b \wedge m \in S_a(b)$ and hence $\phi \neq S_a(b) \subseteq L$. Let $x, y \in L$ such that $x \leq y$ and $y \in S_a(b)$. Thus,

$$\begin{aligned} x &= x \wedge y = x \wedge y \wedge m \\ a \wedge x \wedge y \wedge m \wedge m &= a \wedge x \wedge y \wedge m \leqslant a \wedge y \wedge m \leqslant b \wedge m \end{aligned}$$

and hence $x \in S_a(b)$. Now, let $x, y \in S_a(b)$. Thus,

$$\begin{aligned} x \lor y &= (x \land m) \lor (y \land m) = (x \lor y) \land m \\ a \land (x \lor y) \land m &= (x \land a \land m) \lor (y \land a \land m) \leqslant b \land m \end{aligned}$$

and hence $x \lor y \in S_a(b)$. Therefore, $S_a(b)$ is a weak ideal of L.

THEOREM 3.12. Let m be a maximal element of L. Then the following are equivalent.

(1) L is a Heyting ADL with a maximal element m.

(2) For $a, b \in L$, $S_a(b)$ has greatest element.

(3) For $a \in L$, $b \in Fix_{d_a}(L)$, $S_a(b)$ has greatest element.

(4) For $a \in L$, $b \in Fix_{d_a}(L)$, $S_a(b)$ is a principal weak ideal of L.

PROOF. (1) \Rightarrow (2): Let $a, b \in L$. We prove that $(a \to b) \land m$ is the greatest element of $S_a(b)$. Since $a \land (a \to b) \land m \leq b \land m$, we get that $(a \to b) \land m \in S_a(b)$. Let $x \land m \in S_a(b)$. Then $a \land x \land m \leq b \land m$. Thus, $x \land m \leq (a \to x) \land m = a \to (x \land m) = a \to (a \land x \land m) \leq a \to (b \land m) = (a \to b) \land m$ and hence $(a \to b) \land m$ is the greatest element of $S_a(b)$.

 $(2) \Rightarrow (3)$ is trivial and

 $(3) \Rightarrow (4)$ follows from Lemma 3.8.

 $(4) \Rightarrow (1)$: Assume (4) and $a, b \in L$. Then $a \wedge b \in Fix_{d_a}(L)$ since $d_a(a \wedge b) = a \wedge a \wedge b = a \wedge b$. Hence, by (4), $S_a(a \wedge b)$ is a principal weak ideal. Write $S_a(a \wedge b) = (p)$ for some $p \in L$. Now, define $a \to b = p$. Clearly $a \to b$ is well defined (since $(p) = (q) \iff p = q$).

Now we verify that $(L, \lor, \land, \rightarrow)$ is a Heyting ADL. Let $a, b \in L$.

(i) Observe that $S_a(a) = (m)$. Hence $a \to a = m$.

(ii) Since $a \wedge b \wedge m \leq a \wedge b \wedge m$, we get $b \wedge m \in S_a(a \wedge b)$ and hence $b \wedge m \leq a \to b$. Therefore, $b \wedge m = b \wedge m \wedge (a \to b)$. Thus, $(a \to b) \wedge b = b \wedge (a \to b) \wedge b = b \wedge m \wedge b = b$. (iii) Clearly $a \wedge (a \to b) \leq a \wedge b \wedge m$. Also from above, $b \wedge m \leq (a \to b)$ and

hence $a \wedge b \wedge m \leq a \wedge (a \rightarrow b)$. Therefore, $a \wedge (a \rightarrow b) = a \wedge b \wedge m$. (iv) By (iii), $a \wedge [a \rightarrow (b \wedge c)] = a \wedge b \wedge c \wedge m \leq a \wedge b \wedge m$. So that $a \rightarrow (b \wedge c) \in$

(iv) By (iii), $a \wedge [a \to (b \wedge c)] = a \wedge b \wedge c \wedge m \leqslant a \wedge b \wedge m$. So that $a \to (b \wedge c) \in S_a(a \wedge b)$ and hence $a \to (b \wedge c) \leqslant a \to b$. Similarly we get $a \to (b \wedge c) \leqslant a \to c$. Now, $a \wedge (a \to b) \wedge (a \to c) = a \wedge b \wedge m \wedge a \wedge c \wedge m = a \wedge b \wedge c \wedge m$ and hence $(a \to b) \wedge (a \to c) \in S_a(a \wedge b \wedge c)$. Therefore, $(a \to b) \wedge (a \to c) \leqslant a \to (b \wedge c)$. Thus, $a \to (b \wedge c) = (a \to b) \wedge (a \to c)$.

(v) Let $a \wedge m \leq b \wedge m$. Then $a \wedge (b \to c) \leq b \wedge (b \to c) \leq b \wedge c \wedge m$. So that $a \wedge (b \to c) = a \wedge a \wedge (b \to c) \leq a \wedge b \wedge c \wedge m = a \wedge c \wedge m$. Thus, $b \to c \in S_a(a \wedge c)$. Therefore, $b \to c \leq a \to c$. Therefore, we get $(a \vee b) \to c \leq (a \to c) \wedge (b \to c)$. On the other hand

$$(a \lor b) \land (a \to c) \land (b \to c) = [(a \land (a \to c) \land (b \to c))] \lor [(b \land (a \to c) \land (b \to c))] \leqslant \\ [a \land c \land (b \to c)] \lor [b \land c \land (a \to c)] = (a \land c \land m) \lor (b \land c \land m) = (a \lor b) \land c \land m.$$

Thus, $(a \to c) \land (b \to c) \in S_{a \lor b}((a \lor b) \land c)$ and hence $(a \to c) \land (b \to c) \leq (a \lor b) \to c$. Therefore, (L, \lor, \land, \to) is a Heyting ADL. THEOREM 3.13. Let P be a prime ideal of L. Then there exists a derivation d on L such that $Fix_d(L) = P$.

PROOF. Let P be a prime ideal of L. Choose $a \in P$. Define, for any $x \in L$, dx = x if $x \in P$ and $dx = a \wedge x$ otherwise. If $x \notin P$ and $y \notin P$ then $x \wedge y \notin P$. Thus, $d(x \wedge y) = a \wedge x \wedge y = [(a \wedge x) \wedge y] \vee [x \wedge (a \wedge y)] = (dx \wedge y) \vee (x \wedge dy)$. Now assume that $x \in P$. Then $x \wedge y \in P$ and $(dx \wedge y) \vee (x \wedge dy) = (x \wedge y) \vee (x \wedge dy) = x \wedge (y \vee dy) = x \wedge y = d(x \wedge y)$. Therefore, d is a derivation on L. Also, if $x \in P$ then by the definition of $d, x \in Fix_d(L)$. Suppose $x \in Fix_d(L)$. Then dx = x. If $x \notin P$, then $x = a \wedge x \in P$ and hence we get $x \in P$. Thus $Fix_d(L) = P$.

DEFINITION 3.6. Let $(L, \lor, \land, 0)$ be an ADL. For any $a \in L$, define $\phi_a = \{(x, y) \in L \times L/d_a(x) = d_a(y)\}$ where d_a is the principal derivation induced by a on L.

LEMMA 3.9. Let L be an ADL. Then for any $a \in L$, ϕ_a is a congruence relation on L.

PROOF. Clearly ϕ_a is an equivalence relation on L. Now, let $(x, y), (p, q) \in \phi_a$. Then $a \wedge x = a \wedge y$ and $a \wedge p = a \wedge q$. Now, $a \wedge x \wedge p = a \wedge x \wedge a \wedge p = a \wedge y \wedge a \wedge q = a \wedge y \wedge q$ and $a \wedge (x \vee p) = (a \wedge x) \vee (a \wedge p) = (a \wedge y) \vee (a \wedge q) = a \wedge (y \vee q)$. Therefore, $(x \wedge p, y \wedge q), (x \vee p, y \vee q) \in \phi_a$. Hence, ϕ_a is a congruence relation on L.

LEMMA 3.10. For any $a, b \in L$, the following hold.

(1) $\phi_{a \wedge b} = \phi_{b \wedge a}$

(2) $\phi_{a\vee b} = \phi_{b\vee a}$

 $(3) \ \phi_a \cap \phi_b = \phi_{a \lor b}$

(4) $\phi_a o \phi_b = \phi_{a \wedge b} = \phi_a \lor \phi_b.$

PROOF. Since $a \wedge b \wedge x = b \wedge a \wedge x$ and $(a \vee b) \wedge x = (b \vee a) \wedge x$, we get that $\phi_{a \wedge b} = \phi_{b \wedge a}$ and $\phi_{a \vee b} = \phi_{b \vee a}$. Again,

$$(x,y) \in \phi_a \land \phi_b \iff a \land x = a \land y \text{ and } b \land x = b \land y$$
$$\iff (a \lor b) \land x = (a \lor b) \land y \iff (x,y) \in \phi_{a \lor b}.$$

Thus $\phi_{a\vee b} = \phi_a \cap \phi_b$.

Now, if $(x, y) \in \phi_a o \phi_b$, then there exists $z \in L$ such that $(x, z) \in \phi_b$ and $(z, y) \in \phi_a$. So that $b \wedge x = b \wedge z$ and $a \wedge z = a \wedge y$. Now,

 $(a \wedge b) \wedge x = a \wedge b \wedge x = a \wedge b \wedge z = b \wedge a \wedge z = b \wedge a \wedge y = a \wedge b \wedge y.$

Thus $(x, y) \in \phi_{a \wedge b}$. Therefore, $\phi_a o \phi_b \subseteq \phi_{a \wedge b}$.

Also, if $(x, y) \in \phi_{a \wedge b}$, then $a \wedge b \wedge x = a \wedge b \wedge y$. Now take $z = (b \wedge x) \vee (a \wedge y)$. Then,

$$b \wedge z = b \wedge [(b \wedge x) \vee (a \wedge y)] = (b \wedge x) \vee (b \wedge a \wedge y) = (b \wedge x) \vee (a \wedge b \wedge y) = (b \wedge x) \vee (a \wedge b \wedge x) = b \wedge x \text{ and } a \wedge z = a \wedge [(b \wedge x) \vee (a \wedge y)] = (a \wedge b \wedge x) \vee (a \wedge y) = (a \wedge b \wedge y) \vee (a \wedge y) = [b \wedge (a \wedge y)] \vee (a \wedge y) = a \wedge y.$$

Hence, $(x, y) \in \phi_a o \phi_b$. Therefore $\phi_{a \wedge b} \subseteq \phi_a o \phi_b$ and hence $\phi_a o \phi_b = \phi_{a \wedge b}$. By symmetry and by (1) we get that $\phi_b o \phi_a = \phi_{b \wedge a} = \phi_{a \wedge b}$. Hence, $\phi_{a \wedge b} = \phi_a \vee \phi_b$. \Box

THEOREM 3.14. Let L be an ADL. Then, the set of all principal derivations $\mathcal{P}(L) = \{d_a/a \in L\}$ is a distributive lattice with the following operations,

 $d_a \lor d_b = d_{a \lor b}$ and $d_a \land d_b = d_{a \land b}$ for all $a, b \in L$.

Also, $\mathcal{P}(L)$ is isomorphic to $\mathcal{PI}(L)$ as well as $\mathcal{PF}(L)$.

PROOF. Let $a, b \in L$. For any $x \in L$,

$$(d_a \lor d_b)x = d_a x \lor d_b x = (a \land x) \lor (b \land x) = (a \lor b) \land x = d_{a \lor b} x.$$

Therefore, $d_a \vee d_b = d_{a \vee b} \in \mathcal{P}(L)$. Also,

 $(d_a \wedge d_b)x = d_a x \wedge d_b x = a \wedge x \wedge b \wedge x = a \wedge b \wedge x = d_{a \wedge b} x.$

Therefore, $d_a \wedge d_b = d_{a \wedge b} \in \mathcal{P}(L)$. Hence $\mathcal{P}(L)$ is closed under \vee and \wedge and hence $\mathcal{P}(L)$ is a sub-ADL of $\mathcal{D}(L)$. Also, for any $x \in L$, $d_{a \wedge b}x = a \wedge b \wedge x = b \wedge a \wedge x = d_{b \wedge a}x$. Thus $d_{a \wedge b} = d_{b \wedge a}$. Therefore $d_a \wedge d_b = d_b \wedge d_a$. Hence, $\mathcal{P}(L)$ is a distributive lattice. Now, define $\psi : \mathcal{P}(L) \to \mathcal{PI}(L)$ by $\psi(d_a) = (a]$ for all $a \in L$. By Lemma 3.6, Theorem 3.10 and Theorem 3.11 we get that ψ is bijection. Now, for $a, b \in L$, $\psi(d_a \vee d_b) = \psi(d_{a \vee b}) = (a \vee b] = (a] \vee (b]$ and $\psi(d_a \wedge d_b) = \psi(d_{a \wedge b}) =$ $(a \wedge b] = (a] \wedge (b]$. Therefore, ψ is an isomorphism. Since $\mathcal{PI}(L)$ is isomorphic to $\mathcal{PF}(L)$, we get that $\mathcal{P}(L)$ is isomorphic to $\mathcal{PF}(L)$.

Finally we conclude this paper with the following theorem.

THEOREM 3.15. $C = \{\phi_a | a \in L\}$ is dually isomorphic to $\mathcal{P}(L)$, the set of all principal derivations on L.

PROOF. Define $\psi : \mathcal{C} \to \mathcal{P}(L)$ by $\psi(d_a) = \phi_a$ for all $a \in L$. Let $a, b \in L$ such that $d_a = d_b$. Now, for any $x, y \in L$,

$$(x,y) \in \phi_a \iff a \land x = a \land y \iff d_a x = d_a y \iff d_b x = d_b y \iff b \land x = b \land y \iff (x,y) \in \phi_b.$$

Thus $\phi_a = \phi_b$ and hence ψ is well defined.

On the other hand , let $\phi_a = \phi_b$. For any $x \in L$,

$$(x, a \land x) \in \phi_a \Rightarrow (x, a \land x) \in \phi_b \Rightarrow b \land x = b \land a \land x \leqslant a \land x,$$

by symmetry, we get that $a \wedge x = b \wedge x$ and hence $d_a = d_b$. Now, for $a, b \in L$, by Lemma 3.10,

$$\psi(a \wedge b) = \phi_{a \wedge b} = \phi_a \vee \phi_b = \psi(a) \vee \psi(b) \text{ and } \psi(a \vee b) = \phi_{a \vee b} = \phi_a \wedge \phi_b = \psi(a) \wedge \psi(b).$$

Thus, ψ is a dual isomorphism.

The authors express their sincere thanks to the referee for his valuable comments and suggestions.

G.C.RAO AND K RAVI BABU

References

- N.O.Alshehri. Generalized derivations of lattices, Int. J. Contemp. Math. Sciences, 5(13)(2010), 629-640.
- H.E.Bell and L.C.Kappe. Ring in which derivations satisfy certain algebraic conditions, Acta Math. Hung., 53(3-4)(1989), 339-346.
- [3] Y. Ceven and M. A. Ozturk. On f-derivations of lattice, Bull. Korean Math. Soc., 45(4)(2008), 701-707.
- [4] Y. Ceven. Symmetric Bi-derivations of lattice, Quaestiones Mathematicae, 32(2)(2009), 241-245.
- [5] K.Kaya. Prime rings with a derivations, Bull. Mater. Sci. Eng, 16(1987), 63-71.
- [6] K. H. Kim. Symmetric Bi-f-derivations in lattices, Int. J. Math. Archive, 3(10)(2012), 3676-3683.
- [7] M. Asci and S. Ceran. Generalized (f,g)-Derivations of Lattices, Math. Sci. Appl., E-notes, 1(2)(2013), 56-62.
- [8] M. A. ztrk, H. Yazarli and K. H. Kim. Permuting tri-derivations in lattices, *Quaestiones Mathematicae*, 32(3)(2009), 415-425.
- [9] E. Posner. Derivations in prime rings, Proc. Amer. Math. Soc., 8(6)(1957), 1093-1100.
- [10] Rao, G.C. Almost Distributive Lattices. Doctoral Thesis, Dept. of Mathematics, Andhra University, Visakhapatnam. 1980
- [11] Rao, G.C. B. Assaye and M. V. Ratna Mani. Heyting Almost Distributive Lattices, Int. J. Comput. Cognition, 8(3)(2010), 85-89.
- [12] Rao, G.C. and Mihret Alamneh, Po Almost Distributive Lattices, (To appear)
- [13] U.M. Swamy and G.C. Rao. Almost Distributive Lattices, J. Aust. Math. Soc. (Series A), 31(1981), 77-91.
- [14] G. Szasz. Derivations of lattices, Acta Sci. Math. (Szeged), **37**(1-2)(1975), 149-154.
- [15] X.L.Xin, T. Y. Li and J. H. Lu. On derivations of lattices*, Information Science, 178(2008), 307-316.
- [16] X.L.Xin, The fixed set of derivations in lattices, Fixed Point Theory and Appl., 2012: 218. doi:10.1186/1687-1812-2012-218
- [17] H. Yazarli and M. A. Ozlurk., Permuting Tri-f-derivations in lattices, Commun. Korean Math. Soc., 26(1)(2011), 13-21.

Received by editors 24.03.2016; Revised version 13.11.2016; Available online 21.11.2016.

DEPARTMENT OF MATHEMATICS, ANDHRA UNIVERSITY, ANDHRA PRADESH, INDIA - 530003 *E-mail address*: gcraomaths@yahoo.co.in

 $\label{eq:constraint} Department of Mathematics, Govt. \ Degree \ College, \ Sabbavaram, Visakhapatnam, Andhra Pradesh, INDIA$

E-mail address: ravikavuru.99@gmail.com