THE THEORY OF DERIVATIONS IN ALMOST DISTRIBUTIVE LATTICES

G.C.RAO and K RAVI BABU

Abstract

In this paper, we introduce the concept of a derivation in an Almost Distributive Lattice (ADL) and derive some important properties of derivations in ADLs. Also we introduce the concepts of a principal derivation, an isotone derivation and the fixed set of a derivation. We derive important results on derivations in Heyting ADLs.

1. Introduction

The notation of derivation, introduced from the analytic theory, is helpful for the research of structure and property in an algebraic system. Several authors ([5],[2]) have studied derivations in rings and near rings after Posner [9] has given the definition of the derivation in ring theory. The concept of a derivation in lattices was introduced by G.Szasz in 1974 [14]. X. L. Xin et al. [15] applied the notion of derivation in the ring theory to lattices and investigated some properties. Later, several authors ([1], [3], [4], [6], [7], [8] and [17]) have worked on this concept.

In 1980, the concept of an Almost Distributive Lattice(ADL) was introduced by U.M.Swamy and G.C Rao [4]. This class of ADLs include most of the existing ring theoretic generalizations of a Boolean algebra on one hand and the class of distributive lattices on the other.

In this paper, we introduce the concept of a derivation in an ADL and investigate some important properties. Also, we introduce the concept of an isotone derivation, a principal derivation in ADLs and investigate the relations among them. We give some equivalent conditions under which a derivation on an ADL becomes the identity map, a monomorphism, an epimorphism. Also, we establish a set of conditions which are sufficient for a derivation on an ADL with a maximal

[^0]element to become an isotone derivation. We define $F i x_{d}(L)$, the fixed set of a derivation d in an ADL L and prove that it is an ideal of L if d is an isotone derivation. Also, we derive a necessary and sufficient condition for $F i x_{d}(L)$ to be a prime ideal of L. We prove that the set of all isotone derivations on an ADL L is itself an ADL. We derive a set of sufficient conditions in terms of principal derivations for an ADL to become a Heyting ADL. We introduce a congruence relation ϕ_{a}, induced by $a \in L$, on an ADL L and derive some useful properties of ϕ_{a}. We prove that the set $\mathcal{P}(L)$ of all principal derivations on an ADL L is a distributive lattice under pointwise operations and it is isomorphic to the lattice $P \mathcal{I}(L)(P \mathcal{F}(L))$ of all principal ideals (filters) of L. Finally, we prove that the lattice $\mathcal{P}(L)$ is dually isomorphic to $\left\{\phi_{a} / a \in L\right\}$.

2. Preliminaries

In this section, we recollect certain basic concepts and certain important results on Almost Distributive Lattices.

Definition 2.1. [3] An algebra (L, \vee, \wedge) of type $(2,2)$ is called an Almost Distributive Lattice, if it satisfies the following axioms:
$L_{1}:(a \vee b) \wedge c=(a \wedge c) \vee(b \wedge c)(R D \wedge)$
$L_{2}: a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)(L D \wedge)$
$L_{3}:(a \vee b) \wedge b=b$
$L_{4}:(a \vee b) \wedge a=a$
$L_{5}: a \vee(a \wedge b)=a$, for all $a, b, c \in L$.
Definition 2.2. [3] Let X be any non-empty set. Define, for any $x, y \in L, x \vee$ $y=x$ and $x \wedge y=y$. Then (X, \vee, \wedge) is an $A D L$ and such an $A D L$, we call discrete $A D L$.

Throughout this paper L stands for an $\operatorname{ADL}(L, \vee, \wedge)$ unless otherwise specified.
Lemma 2.1. [3] For any $a, b \in L$, we have
(i) $a \wedge a=a$
(ii) $a \vee a=a$.
(iii) $(a \wedge b) \vee b=b$
(iv) $a \wedge(a \vee b)=a$
(v) $a \vee(b \wedge a)=a$.
(vi) $a \vee b=a$ if and only if $a \wedge b=b$
(vii) $a \vee b=b$ if and only if $a \wedge b=a$.

Definition 2.3. [3] For any $a, b \in L$, we say that a is less than or equal to b and write $a \leqslant b$, if $a \wedge b=a$ or, equivalently, $a \vee b=b$.

Definition 2.4. [3] For any $a, b \in L$, we say that a is less than or equal to b and write $a \leqslant b$, if $a \wedge b=a$ or, equivalently, $a \vee b=b$.

Theorem 2.1. [3] For any $a, b, c \in L$, we have the following
(i) The relation \leqslant is a partial ordering on L.
(ii) $a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$. $(L D \vee)$
(iii) $(a \vee b) \vee a=a \vee b=a \vee(b \vee a)$.
(iv) $(a \vee b) \wedge c=(b \vee a) \wedge c$.
(v) The operation \wedge is associative in L.
(vi) $a \wedge b \wedge c=b \wedge a \wedge c$.

Theorem 2.2. [3] For any $a, b \in L$, the following are equivalent.
(i) $(a \wedge b) \vee a=a$
(ii) $a \wedge(b \vee a)=a$
(iii) $(b \wedge a) \vee b=b$
(iv) $b \wedge(a \vee b)=b$
(v) $a \wedge b=b \wedge a$
(vi) $a \vee b=b \vee a$
(vii) The supremum of a and b exists in L and equals to $a \vee b$
(viii) there exists $x \in L$ such that $a \leqslant x$ and $b \leqslant x$
(ix) the infimum of a and b exists in L and equals to $a \wedge b$.

Definition 2.5. [3] L is said to be associative, if the operation \vee in L is associative.

Theorem 2.3. [3] The following are equivalent.
(i) L is a distributive lattice.
(ii) the poset (L, \leqslant) is directed above.
(iii) $a \wedge(b \vee a)=a$, for all $a, b \in L$.
(iv) the operation \vee is commutative in L.
(v) the operation \wedge is commutative in L.
(vi) the relation $\theta:=\{(a, b) \in L \times L \mid a \wedge b=b\}$ is anti-symmetric.
(vii) the relation θ defined in (vi) is a partial order on L.

Lemma 2.2. [3] For any $a, b, c, d \in L$, we have the following
(i) $a \wedge b \leqslant b$ and $a \leqslant a \vee b$
(ii) $a \wedge b=b \wedge a$ whenever $a \leqslant b$.
(iii) $[a \vee(b \vee c)] \wedge d=[(a \vee b) \vee c] \wedge d$.
(iv) $a \leqslant b$ implies $a \wedge c \leqslant b \wedge c, c \wedge a \leqslant c \wedge b$ and $c \vee a \leqslant c \vee b$.

Definition 2.6. [3] An element $0 \in L$ is called zero element of L, if $0 \wedge a=0$ for all $a \in L$.

Lemma 2.3. [3] If L has 0 , then for any $a, b \in L$, we have the following
(i) $a \vee 0=a$, (ii) $0 \vee a=a$ and (iii) $a \wedge 0=0$.
(iv) $a \wedge b=0$ if and only if $b \wedge a=0$.

An element $x \in L$ is called maximal if, for any $y \in L, x \leqslant y$ implies $x=y$. We immediately have the following.

Lemma 2.4. [3] For any $m \in L$, the following are equivalent:
(1) m is maximal
(2) $m \vee x=m$ for all $x \in L$
(3) $m \wedge x=x$ for all $x \in L$.

Definition 2.7. [17] L is called an almost chain if, for any $x, y \in L$, $x \wedge y=y$ or $y \wedge x=x$.
If L has a maximal element m, then this is equivalent to $x \wedge m \leqslant y \wedge m$ or $y \wedge m \leqslant$ $x \wedge m$ for all $x, y \in L$.

Definition 2.8. [3]

(1) A non-empty subset I of L is said to be an ideal if, $a \vee b \in I$ for all $a, b \in L$ and $a \wedge x \in I$ for any $a \in I, x \in L$.
(2) A proper ideal P of L is called a prime ideal if for any $x, y \in L, x \wedge y \in P$ implies that $x \in P$ or $y \in P$.
(3) A non-empty subset F of L is said to be a filter if, $a \wedge b \in F$ for all $a, b \in F$ and $x \vee a \in F$ for any $a \in F, x \in L$.

Theorem 2.4. [3] For any $a, b \in L$ we have the following
(1) $(a]=\{a \wedge x / x \in L\}$ is the smallest ideal containing ' a ' and is called the principal ideal of L generated by ' a '.
(2) The set $\mathcal{I}(L)$ of all ideals of L forms a distributive lattice under set inclusion in which the glb and lub of I and J are respectively $I \wedge J=I \cap J$ and $I \vee J=\{x \vee y / x \in I$ and $y \in J\}$.
(3) $(a] \vee(b]=(a \vee b]=(b \vee a]$ and $(a] \wedge(b]=(a \wedge b]=(b \wedge a]$.

Though lattice theoretic duality principle does not hold good in an ADL, we have the following.

Theorem 2.5. [3] For any $a, b \in L$ we have the following
(1) $[a)=\{x \vee a / x \in L\}$ is the smallest filter containing ' a ' and is called the principal filter of L generated by 'a'.
(2) The set $\mathcal{F}(L)$ of all filters of L forms a distributive lattice under set inclusion in which the glb and lub of F and G are respectively by $F \wedge G=$ $F \cup G$ and $F \vee G=\{x \wedge y / x \in F$ and $y \in G\}$.
(3) $[a) \vee[b)=[a \wedge b)=[b \wedge a)$ and $[a) \wedge[b)=[a \vee b)=[b \vee a)$
(4) $(a]=(b]$ if and only if $[a)=[b)$
(5) The class $P \mathcal{I}(L)(P \mathcal{F}(L))$ of all principal ideals (filters) of L is a sublattice of the distributive lattice $\mathcal{I}(L)(\mathcal{F}(L))$ of all ideals (filters) of L. Moreover, the lattice $P \mathcal{I}(L)$ is 'dually isomorphic' onto the lattice $P \mathcal{F}(L)$.

Definition 2.9. [11] Let $(L, \vee, \wedge, 0, m)$ be an $A D L$ with 0 and a maximal element m. Suppose \rightarrow is a binary operation on L satisfying the following conditions for all $x, y, z \in L$.
(1) $x \rightarrow x=m$
(2) $(x \rightarrow y) \wedge y=y$
(3) $x \wedge(x \rightarrow y)=x \wedge y \wedge m$
(4) $x \rightarrow(y \wedge z)=(x \rightarrow y) \wedge(x \rightarrow z)$
(5) $(x \vee y) \rightarrow z=(x \rightarrow z) \wedge(y \rightarrow z)$

Then $(L, \vee, \wedge, \rightarrow, 0, m)$ is called a Heyting Almost Distributive lattice (HADL).

3. Derivations in ADLs

We begin this section with the following definition of a derivation in an ADL.
Definition 3.1. A function $d: L \rightarrow L$ is called a derivation on L, if

$$
d(x \wedge y)=(d x \wedge y) \vee(x \wedge d y) \text { for all } x, y \in L
$$

Example 3.1. The identity map on L is a derivation on L. This is called the identity derivation on L.

Example 3.2. If L has 0 , define a function d on L by $d x=0$ for all $x \in L$. Then, d is a derivation on L, and it is called the zero derivation on L.

Example 3.3. In a discrete ADL $L=\{0, a, b\}$, if we define a function d on L by $d 0=0, d a=b, d b=a$, then d is not a derivation on L.

Example 3.4. Let L_{1} and L_{2} be two ADLs and d_{1} and d_{2} are derivations on L_{1} and L_{2} respectively. Then, $d_{1} \times d_{2}$ is a derivation on $L_{1} \times L_{2}$ where $\left(d_{1} \times d_{2}\right)(x, y)=$ $\left(d_{1} x, d_{2} y\right)$, for all $x \in L_{1}, y \in L_{2}$.

Lemma 3.1. Let d be a derivation on L, then the following hold:
(i) $d x \leqslant x$, for any $x \in L$
(ii) $d x \wedge d y \leqslant d(x \wedge y)$ for all $x, y \in L$
(iii) If I is an ideal of L, then $d I \subseteq I$
(iv) If L has 0 , then $d 0=0$.

Proof. (i) If $x \in L$, then $d x=d(x \wedge x)=(d x \wedge x) \vee(x \wedge d x)=d x \wedge x$ (by Lemma 2.1). Therefore, $d x \leqslant x$.
(ii) Let $x, y \in L$. We have $d(x \wedge y)=(d x \wedge y) \vee(x \wedge d y)$. Therefore, $d x \wedge y \leqslant$ $d(x \wedge y)$. Now, by(i) above, we get that $d x \wedge d y \leqslant d x \wedge y \leqslant d(x \wedge y)$.
(iii) If $a \in I$, then by(i) above, $d a \leqslant a$ and hence $d a \in I$. Thus, $d I \subseteq I$.
(iv) If L has 0 , then by(i) above, $d 0 \leqslant 0$. Thus, $0 \leqslant d 0 \leqslant 0$ and hence $d 0=0$.

Theorem 3.1. If d is a derivation on L a discrete $A D L$ with 0 , then d is either a zero derivation or the identity derivation on L.

Proof. Suppose $d a \neq 0$ for some $a(\neq 0) \in L$.Then, $d a=d(a \wedge a)=(d a \wedge$ a) $\vee(a \wedge d a)=d a \wedge a=a$.Therefore d is either a zero derivation or the identity derivation.

Definition 3.2. A derivation d on L is called,
(1) an isotone derivation, if $d a \leqslant d b$ for all $a, b \in L$ with $a \leqslant b$.
(2) a monomorphic derivation, if d is an injection.
(3) an epimorphic derivation, if d is a surjection.

Example 3.5. Every constant map on an ADL L is an isotone map, but not a derivation.

Example 3.6. Let $L_{1}=\{0, x, y, z\}$ be a discrete ADL and consider d_{1} as the identity derivation on L_{1}. Let $L_{2}=\{0, a, b, 1\}$ be a chain and define d_{2} on L_{2} by
$d_{2} x=a$ if $x=1$ and $d_{2} x=x$ otherwise. Then d_{2} is a derivation on L_{2}. Observe that $d_{1} \times d_{2}$ is a non-isotone derivation on the ADL $L_{1} \times L_{2}$.

Definition 3.3. Let L be an $A D L$ and $a \in L$. Define a function d_{a} on L by $d_{a} x=a \wedge x$ for all $x \in L$. Then, d_{a} is a derivation on L and is called a principal derivation on L induced by a.

Theorem 3.2. Every principal derivation on L is an isotone derivation.
Proof. Let d_{a} be the principal derivation on L induced by $a \in L$. Now, for $x, y \in L$ with $x \leqslant y$, we have

$$
d_{a} x=d_{a}(x \wedge y)=a \wedge x \wedge y=a \wedge x \wedge a \wedge y=d_{a} x \wedge d_{a} y
$$

Thus $d_{a} x \leqslant d_{a} y$ and hence d_{a} is an isotone derivation.
Lemma 3.2. Suppose L has a maximal element m. Then, $(d m \wedge x) \leqslant d x$ for all $x \in L$.

Proof. For $x \in L, d x=d(m \wedge x)=(d m \wedge x) \vee(m \wedge d x)$. Hence $(d m \wedge x) \leqslant$ $d x$.

Corollary 3.1. Suppose m is a maximal element of L and d is a derivation on L. Then, we have,
(1) If $x \in L, x \geqslant d m$ then $d x \geqslant d m$.
(2) If $x \in L, x \leqslant d m$ then $d x=x$.

Proof. (1) If $x \in L$ and $x \geqslant d m$ then $d m=(d m \wedge x) \leqslant d x$ by above Lemma.
(2) If $x \in L$ and $x \leqslant d m$, then by above Lemma, $d x=(d m \wedge x) \vee d x=x \vee d x=x$.

Lemma 3.3. Let d be a derivation on L. If $y \leqslant x$ and $d x=x$ then $d y=y$.
Proof. Let $x, y \in L$ with $y \leqslant x$ and $d x=x$. Now,

$$
d y=d(y \wedge x)=(d y \wedge x) \vee(y \wedge d x)=(d y \wedge x) \vee(y \wedge x)=(d y \wedge x) \vee y
$$

Since $d y \leqslant y \leqslant x$, we get $d y=d y \wedge x$. Thus, $d y=d y \vee y=y$.
Lemma 3.4. Let d be an isotone derivation on L. Then, $d(x \vee y) \leqslant d x \vee d y$ for all $x, y \in L$.

Proof. Let d be an isotone derivation on L and $x, y \in L$. Now $d x=d[(x \vee y) \wedge x]=[d(x \vee y) \wedge x] \vee[(x \vee y) \wedge d x]=[d(x \vee y) \wedge x] \vee d x=[d(x \vee y) \vee d x] \wedge x$.
Since d is isotone and $x \leqslant x \vee y$ implies $d x \leqslant d(x \vee y)$. Therefore, $d x=d(x \vee y) \wedge x$. Also,
$d y=d[(x \vee y) \wedge y]=[d(x \vee y) \wedge y] \vee[(x \vee y) \wedge d y]=[d(x \vee y) \wedge y] \vee[(y \vee x) \wedge d y]$.
Since $d y \leqslant y \leqslant y \vee x$, we get $(y \vee x) \wedge d y=d y$. Thus,

$$
d y=[d(x \vee y) \wedge y] \vee d y=[d(x \vee y) \vee d y] \wedge y
$$

Now,

$$
\begin{gathered}
d(x \vee y) \wedge(d x \vee d y)=d(x \vee y) \wedge[[d(x \vee y) \wedge x] \vee[[d(x \vee y) \vee d y] \wedge y]]= \\
{[d(x \vee y) \wedge x] \vee[d(x \vee y) \wedge y]=d(x \vee y) \wedge(x \vee y)=d(x \vee y) .}
\end{gathered}
$$

Therefore, $d(x \vee y) \leqslant d x \vee d y$.
THEOREM 3.3. Let m be a maximal element of L and d be a derivation on L. Then $d m=m$ if and only if d is the identity derivation.

Proof. Suppose $d m=m$. For any $x \in L$,

$$
d x=d(m \wedge x)=(d m \wedge x) \vee(m \wedge d x)=(m \wedge x) \vee d x=x \vee d x=x
$$

Therefore, d is the identity map on L. The converse is obvious.
Lemma 3.5. Let d be a derivation on L. Then, $d^{2} x=d x$ for all $x \in L$.
Proof. For any $x \in L, d^{2} x=d(d x) \leqslant d x \leqslant x$. Now,

$$
d^{2} x=d(d x)=d(d x \wedge x)=\left(d^{2} x \wedge x\right) \vee(d x \wedge d x)=d^{2} x \vee d x=d x
$$

Theorem 3.4. Let d be a derivation on L. Then, the following are equivalent.
(1) d is the identity map
(2) $d(x \vee y)=(x \vee d y) \wedge(d x \vee y)$ for all $x, y \in L$.
(3) d is a monomorphic derivation.
(4) d is an epimorphic derivation.

Proof. Clearly (1) implies (2), (3) and (4).
If (2) holds, then for any $x \in L, d x=d(x \vee x)=(x \vee d x) \wedge(d x \vee x)=x \wedge x=x$. Therefore, d is the identity map.

Suppose (3) holds and $d a \neq a$ for some $a \in L$. Write $d a=a_{1}$. Then, $d a_{1} \leqslant a_{1}<a$. Now, $d a_{1}=d\left(a_{1} \wedge a\right)=\left(d a_{1} \wedge a\right) \vee\left(a_{1} \wedge d a\right)=d a_{1} \vee a_{1}=a_{1}=d a$, which is contradiction since d is monomorphic.

Finally suppose (4) holds and $x \in L$. Then $x=d y$ for some $y \in L$. Now, $d x=d(d y)=d^{2} y=d y=x$. Therefore, d is the identity map.

Theorem 3.5. Let m be a maximal element of L and d be a derivation on L. Then the following are equivalent.
(1) d is isotone
(2) $d x=d m \wedge x$ for all $x \in L$
(3) $d(x \wedge y)=d x \wedge y$ for all $x, y \in L$
(4) $d(x \wedge y)=d x \wedge d y$ for all $x, y \in L$
(5) $d(x \vee y)=d x \vee d y$ for all $x, y \in L$.

Proof. (1) $\Rightarrow(2)$: Suppose d is an isotone and $x \in L$. Then

$$
d x=d(m \wedge x)=(d m \wedge x) \vee(m \wedge d x)=(d m \wedge x) \vee d x
$$

Therefore, $d m \wedge x \leqslant d x$. Also,

$$
d x=d x \wedge x=(d x \wedge m) \wedge x \leqslant d(x \wedge m) \wedge x \leqslant d m \wedge x
$$

since d is isotone. Therefore, $d m \wedge x=d x$.
(2) \Rightarrow (4): Assume (2) and $x, y \in L$. Then $d(x \wedge y)=d m \wedge x \wedge y=d x \wedge d y$. Thus, we get (4).
(2) \Rightarrow (5): Assume (2) and $x, y \in L$. Then $d(x \vee y)=d m \wedge(x \vee y)=(d m \wedge x) \vee$ $(d m \wedge y)=d x \vee d y$. Thus, we get (5).
$(4) \Rightarrow(1):$ Trivial.
$(5) \Rightarrow(1)$: Trivial.
Thus (1), (2), (4) and (5) are equivalent.
(2) \Rightarrow (3): For any $x, y \in L, d(x \wedge y)=d m \wedge x \wedge y=d x \wedge y$.
$(3) \Rightarrow(2)$: For any $x, y \in L, d x=d(m \wedge x)=d m \wedge x$.
Definition 3.4. Let d be a derivation on L. We define

$$
\operatorname{Fix}_{d}(L)=\{x \in L / d x=x\}
$$

Theorem 3.6. Let L be an ADL with a maximal element m and d be an isotone derivation on L. Then, $F i x_{d}(L)$ is an ideal of L.

Proof. By Lemma 3.5, $d x \in \operatorname{Fix}_{d}(L)$ for any $x \in L$ and thus $\phi \neq F i x_{d}(L) \subseteq$ L. Also, by Lemma 3.3, $F i x_{d}(L)$ is an initial segment of L. Now, let $x, y \in F i x_{d}(L)$. By Theorem 3.5, we have, $d(x \vee y)=d x \vee d y=x \vee y$. Hence, Fix $x_{d}(L)$ is an ideal of L.

Lemma 3.6. Let d_{1} and d_{2} be two isotone derivations on L. Then $d_{1}=d_{2}$ if and only if $\operatorname{Fix}_{d_{1}}(L)=\operatorname{Fix}_{d_{2}}(L)$.

Proof. If $d_{1}=d_{2}$ then clearly Fix $_{d_{1}}(L)=$ Fix $_{d_{2}}(L)$. Suppose Fix $x_{d_{1}}(L)=$ Fix $x_{d_{2}}(L)$. For any $x \in L, d_{1}\left(d_{1} x\right)=d_{1} x$, thus $d_{1} x \in$ Fix $_{d_{1}}(L)$. So that $d_{1} x \in$ Fix $d_{2}(L)$. Therefore, $d_{2}\left(d_{1} x\right)=d_{1} x$ and hence $d_{2} d_{1}=d_{1}$. Similarly, we get that $d_{1} d_{2}=d_{2}$. Since d_{1}, d_{2} are isotones and $d_{1} x \leqslant x$, we get $d_{2} d_{1} x \leqslant d_{2} x$ thus, $d_{2} d_{1} \leqslant d_{2}$. That is $d_{1} \leqslant d_{2}$. By symmetry we get $d_{2}=d_{1}$.

THEOREM 3.7. Let m be a maximal element of L and $\mathcal{D}(L)$ be the set of all isotone derivations on L. Then $(\mathcal{D}(L), \vee, \wedge)$ is an $A D L$ where for $d_{1}, d_{2} \in \mathcal{D}(L)$, $\left(d_{1} \wedge d_{2}\right) x=d_{1} x \wedge d_{2} x$ and $\left(d_{1} \vee d_{2}\right) x=d_{1} x \vee d_{2} x$ for all $x, y \in L$.

Proof. Let $d_{1}, d_{2} \in \mathcal{D}(L)$ and $x, y \in L$. Then

$$
\begin{gathered}
{\left[\left(d_{1} \vee d_{2}\right) x\right] \wedge y=\left(d_{1} x \vee d_{2} x\right) \wedge y=\left(d_{1} x \wedge y\right) \vee\left(d_{2} x \wedge y\right)=d_{1}(x \wedge y) \vee d_{2}(x \wedge y)=} \\
\left(d_{1} \vee d_{2}\right)(x \wedge y)
\end{gathered}
$$

and

$$
\begin{gathered}
x \wedge\left(d_{1} \vee d_{2}\right) y=x \wedge\left(d_{1} y \vee d_{2} y\right)=\left(x \wedge d_{1} y\right) \vee\left(x \wedge d_{2} y\right)= \\
\left(x \wedge d_{1} m \wedge y\right) \vee\left(x \wedge d_{2} m \wedge y\right)=\left(d_{1} m \wedge x \wedge y\right) \vee\left(d_{2} m \wedge x \wedge y\right)= \\
\left(d_{1} x \wedge y\right) \vee\left(d_{2} x \wedge y\right)=d_{1}(x \wedge y) \vee d_{2}(x \wedge y)=\left(d_{1} \vee d_{2}\right)(x \wedge y)
\end{gathered}
$$

Now, $\left(d_{1} \vee d_{2}\right)(x \wedge y)=\left[\left(d_{1} \vee d_{2}\right) x \wedge y\right] \vee\left[x \wedge\left(d_{1} \vee d_{2}\right) y\right]$ and hence $d_{1} \vee d_{2}$ is a derivation on L. Also,
$\left(d_{1} \vee d_{2}\right) x=d_{1} x \vee d_{2} x=\left(d_{1} m \wedge x\right) \vee\left(d_{2} m \wedge x\right)=\left(d_{1} m \vee d_{2} m\right) \wedge x=\left(d_{1} \vee d_{2}\right) m \wedge x$.
Therefore, by Theorem $3.5 d_{1} \vee d_{2}$ is an isotone derivation on L. Now,
$\left(d_{1} \wedge d_{2}\right) x \wedge y=d_{1} x \wedge d_{2} x \wedge y=d_{1} x \wedge y \wedge d_{2} x \wedge y=d_{1}(x \wedge y) \wedge d_{2}(x \wedge y)=\left(d_{1} \wedge d_{2}\right)(x \wedge y)$.
Again,

$$
\begin{gathered}
x \wedge\left(d_{1} \wedge d_{2}\right) y=x \wedge d_{1} y \wedge d_{2} y=x \wedge d_{1} m \wedge y \wedge d_{2} m \wedge y= \\
d_{1} m \wedge x \wedge y \wedge d_{2} m \wedge x \wedge y=d_{1}(x \wedge y) \wedge d_{2}(x \wedge y)=\left(d_{1} \wedge d_{2}\right)(x \wedge y)
\end{gathered}
$$

Therefore, $\left(d_{1} \wedge d_{2}\right)(x \wedge y)=\left[\left(d_{1} \wedge d_{2}\right) x \wedge y\right] \vee\left[x \wedge\left(d_{1} \wedge d_{2}\right) y\right]$ and hence $d_{1} \wedge d_{2}$ is a derivation on L. Also,

$$
\left(d_{1} \wedge d_{2}\right) x=d_{1} x \wedge d_{2} x=d_{1} m \wedge x \wedge d_{2} m \wedge x=d_{1} m \wedge d_{2} m \wedge x=\left(d_{1} \wedge d_{2}\right) m \wedge x
$$

Therefore, by Theorem 3.5, $d_{1} \wedge d_{2}$ is an isotone derivation on L.
Therefore, $\mathcal{D}(L)$ is closed under \wedge and \vee and clearly it satisfies the properties of an ADL.

Theorem 3.8. Let m be a maximal element of L and $\mathcal{F}=\left\{\operatorname{Fix}_{d}(L) / d \in\right.$ $\mathcal{D}(L)\}$. For $d_{1}, d_{2} \in \mathcal{D}(L)$, if we define Fix $d_{d_{1}}(L) \vee$ Fix $_{d_{2}}(L)=$ Fix $_{d_{1} \vee d_{2}}(L)$ and Fix $d_{d_{1}}(L) \wedge F i x_{d_{2}}(L)=F i x_{d_{1} \wedge d_{2}}(L)$, then $(\mathcal{F}, \vee, \wedge)$ is an ADL and it is isomorphic to $\mathcal{D}(L)$.

Proof. Define Fix $_{d_{1}}(L) \vee$ Fix $_{d_{2}}(L)=$ Fix $_{d_{1} \vee d_{2}}(L)$ and Fix $_{d_{1}}(L) \wedge$ Fix $x_{d_{2}}(L)=$ $\operatorname{Fix}_{d_{1} \wedge d_{2}}(L)$, for any $d_{1}, d_{2} \in \mathcal{D}(L)$. Then by Theorem 3.7, we get that \mathcal{F} is closed under \vee and \wedge. Since $(\mathcal{D}(L), \vee, \wedge)$ is an ADL, we can verify that $(\mathcal{F}, \vee, \wedge)$ is an ADL. Now, define $\phi: \mathcal{D}(L) \rightarrow \mathcal{F}$ by $\phi(d)=F i x_{d}(L)$. By Lemma 3.6, ϕ is well-defined and injective. Clearly ϕ is surjective. Also, for any $d_{1}, d_{2} \in$ $\mathcal{D}(L), \phi\left(d_{1} \wedge d_{2}\right)=\operatorname{Fix}_{d_{1} \wedge d_{2}}(L)=$ Fix $_{d_{1}}(L) \wedge \operatorname{Fix}_{d_{2}}(L)=\phi\left(d_{1}\right) \wedge \phi\left(d_{2}\right)$ and $\phi\left(d_{1} \vee d_{2}\right)=\operatorname{Fix}_{d_{1} \vee d_{2}}(L)=\operatorname{Fix}_{d_{1}}(L) \vee$ Fix $_{d_{2}}(L)$. Hence, ϕ is an isomorphism.

Lemma 3.7. Let m be a maximal element of L and d be an isotone epimorphic derivation on L. Then, $d m$ is a maximal element in L.

Proof. Let $x \in L$. Since d is epimorphic, $d y=x$ for some $y \in L$. Now, $d m \wedge x=d m \wedge d y=d(m \wedge y)=d y=x$ and hence $d m \vee x=d m$. Thus, $d m$ is a maximal element in L.

The following theorem gives a necessary and sufficient condition for Fix $_{d}(L)$ to be a prime ideal.

Theorem 3.9. Let m be a maximal element of L. Then the following are equivalent.
(1) L is an almost chain.
(2) For any isotone derivation d, Fix $_{d}(L)$ is a prime ideal.

Proof. (1) $\Rightarrow(2)$: Suppose L is an Almost Chain and let d be an isotone derivation on L. Let $x, y \in L$ such that $x \wedge y \in \operatorname{Fix}_{d}(L)$. Since L is an Almost Chain $x \wedge m \leqslant y \wedge m$ or $y \wedge m \leqslant x \wedge m$. Without loss of generality assume $x \wedge m \leqslant y \wedge m$. Then $d x=d x \wedge x=d x \wedge m \wedge x=d(x \wedge m) \wedge x=d(x \wedge y \wedge m) \wedge x=x \wedge m \wedge x=x$. Therefore, $x \in \operatorname{Fix} x_{d}(L)$.
$(2) \Rightarrow(1):$ Assume (2). Let $x, y \in L$. Consider the principal derivation $d_{x \wedge y}$ induced by $x \wedge y$. By Theorem 3.2, $d_{x \wedge y}$ is an isotone derivation on L and $d_{x \wedge y}(x \wedge$ $y)=x \wedge y$, so that $x \wedge y \in \operatorname{Fix}_{d_{x \wedge y}}(L)$. Hence, by our assumption, we get either $x \in$ $\operatorname{Fix}_{d_{x \wedge y}}(L)$ or $y \in \operatorname{Fix}_{d_{x \wedge y}}(L)$. Without loss of generality assume $x \in \operatorname{Fix}_{d_{x \wedge y}}(L)$. Now, $(x \wedge m) \wedge(y \wedge m)=y \wedge x \wedge m=[(x \wedge y) \wedge x] \wedge m=d_{x \wedge y}(x) \wedge m=x \wedge m$ and hence $x \wedge m \leqslant y \wedge m$. Therefore, L is an Almost Chain.

Theorem 3.10. Let m be a maximal element of L and $a \in L$. Then Fix $x_{d_{a}}(L)$ is a principal ideal.

Proof. Let $a \in L$. By Theorem 3.2 and by Theorem 3.6, Fix $_{d_{a}}(L)$ is an ideal of L. Now, let $x \in L$. Then

$$
x \in \operatorname{Fix}_{d_{a}}(L) \Longleftrightarrow d_{a} x=x \Longleftrightarrow a \wedge x=x \Longleftrightarrow x \in(a] .
$$

Hence, Fix $_{d_{a}}(L)=(a]$.
Theorem 3.11. If I is a principal ideal of L, then there exists unique isotone derivation d such that Fix ${ }_{d}(L)=I$.

Proof. Let $I=(a]$ be a principal ideal of L where $a \in L$ and d_{a} be the principal derivation on L induced by a. Now, we have

$$
x \in \operatorname{Fix}_{d_{a}}(L) \Longleftrightarrow d_{a} x=x \Longleftrightarrow a \wedge x=x \Longleftrightarrow x \in(a] .
$$

Therefore, Fix $_{d_{a}}(L)=I$. Uniqueness of d follows from Lemma 3.6.
Now, we introduce the concepts of a weak ideal and a principal weak ideal in an ADL in the following.

Definition 3.5. A nonempty subset I of L is said to be a weak ideal if it satisfies the following.
(i) $x, y \in I \Rightarrow x \vee y \in I$
(ii) $x \in I, a \in L$ and $a \leqslant x$ implies $a \in I$.

It can be observe that, for $a \in L,(a)=\{x \wedge a / x \in L\}$ is the smallest weak ideal containing ' a ' and it is called the principal weak ideal generated by ' a ' in L.

Lemma 3.8. For $a, b \in L$, then $S_{a}(b)=\left\{x \wedge m / x \in L, d_{a}(x \wedge m) \leqslant b \wedge m\right\}$ is a weak ideal in L where d_{a} is the principal derivation induced by a on L.

Proof. Let $a, b \in L$. We have $d_{a}(b \wedge m)=a \wedge b \wedge m \leqslant b \wedge m$. Thus $b \wedge m \in S_{a}(b)$ and hence $\phi \neq S_{a}(b) \subseteq L$. Let $x, y \in L$ such that $x \leqslant y$ and $y \in S_{a}(b)$. Thus,

$$
\begin{aligned}
x & =x \wedge y=x \wedge y \wedge m \\
a \wedge x \wedge y \wedge m \wedge m & =a \wedge x \wedge y \wedge m \leqslant a \wedge y \wedge m \leqslant b \wedge m
\end{aligned}
$$

and hence $x \in S_{a}(b)$. Now, let $x, y \in S_{a}(b)$. Thus,

$$
\begin{gathered}
x \vee y=(x \wedge m) \vee(y \wedge m)=(x \vee y) \wedge m \\
a \wedge(x \vee y) \wedge m=(x \wedge a \wedge m) \vee(y \wedge a \wedge m) \leqslant b \wedge m
\end{gathered}
$$

and hence $x \vee y \in S_{a}(b)$. Therefore, $S_{a}(b)$ is a weak ideal of L.
ThEOREM 3.12. Let m be a maximal element of L. Then the following are equivalent.
(1) L is a Heyting ADL with a maximal element m.
(2) For $a, b \in L, S_{a}(b)$ has greatest element.
(3) For $a \in L, b \in \operatorname{Fix}_{d_{a}}(L), S_{a}(b)$ has greatest element.
(4) For $a \in L, b \in \operatorname{Fix}_{d_{a}}(L), S_{a}(b)$ is a principal weak ideal of L.

Proof. (1) $\Rightarrow(2)$: Let $a, b \in L$. We prove that $(a \rightarrow b) \wedge m$ is the greatest element of $S_{a}(b)$. Since $a \wedge(a \rightarrow b) \wedge m \leqslant b \wedge m$, we get that $(a \rightarrow b) \wedge m \in S_{a}(b)$. Let $x \wedge m \in S_{a}(b)$. Then $a \wedge x \wedge m \leqslant b \wedge m$. Thus, $x \wedge m \leqslant(a \rightarrow x) \wedge m=a \rightarrow$ $(x \wedge m)=a \rightarrow(a \wedge x \wedge m) \leqslant a \rightarrow(b \wedge m)=(a \rightarrow b) \wedge m$ and hence $(a \rightarrow b) \wedge m$ is the greatest element of $S_{a}(b)$.
$(2) \Rightarrow(3)$ is trivial and
$(3) \Rightarrow(4)$ follows from Lemma 3.8.
$(4) \Rightarrow(1):$ Assume (4) and $a, b \in L$. Then $a \wedge b \in$ Fix $_{d_{a}}(L)$ since $d_{a}(a \wedge b)=$ $a \wedge a \wedge b=a \wedge b$. Hence, by (4), $S_{a}(a \wedge b)$ is a principal weak ideal. Write $S_{a}(a \wedge b)=(p)$ for some $p \in L$. Now, define $a \rightarrow b=p$. Clearly $a \rightarrow b$ is well defined (since $(p)=(q) \Longleftrightarrow p=q$).

Now we verify that $(L, \vee, \wedge, \rightarrow)$ is a Heyting ADL. Let $a, b \in L$.
(i) Observe that $S_{a}(a)=(m)$. Hence $a \rightarrow a=m$.
(ii) Since $a \wedge b \wedge m \leqslant a \wedge b \wedge m$, we get $b \wedge m \in S_{a}(a \wedge b)$ and hence $b \wedge m \leqslant a \rightarrow b$. Therefore, $b \wedge m=b \wedge m \wedge(a \rightarrow b)$. Thus, $(a \rightarrow b) \wedge b=b \wedge(a \rightarrow b) \wedge b=b \wedge m \wedge b=b$.
(iii) Clearly $a \wedge(a \rightarrow b) \leqslant a \wedge b \wedge m$. Also from above, $b \wedge m \leqslant(a \rightarrow b)$ and hence $a \wedge b \wedge m \leqslant a \wedge(a \rightarrow b)$. Therefore, $a \wedge(a \rightarrow b)=a \wedge b \wedge m$.
(iv) By (iii), $a \wedge[a \rightarrow(b \wedge c)]=a \wedge b \wedge c \wedge m \leqslant a \wedge b \wedge m$. So that $a \rightarrow(b \wedge c) \in$ $S_{a}(a \wedge b)$ and hence $a \rightarrow(b \wedge c) \leqslant a \rightarrow b$. Similarly we get $a \rightarrow(b \wedge c) \leqslant a \rightarrow c$. Now, $a \wedge(a \rightarrow b) \wedge(a \rightarrow c)=a \wedge b \wedge m \wedge a \wedge c \wedge m=a \wedge b \wedge c \wedge m$ and hence $(a \rightarrow b) \wedge(a \rightarrow c) \in S_{a}(a \wedge b \wedge c)$. Therefore, $(a \rightarrow b) \wedge(a \rightarrow c) \leqslant a \rightarrow(b \wedge c)$. Thus, $a \rightarrow(b \wedge c)=(a \rightarrow b) \wedge(a \rightarrow c)$.
(v) Let $a \wedge m \leqslant b \wedge m$. Then $a \wedge(b \rightarrow c) \leqslant b \wedge(b \rightarrow c) \leqslant b \wedge c \wedge m$. So that $a \wedge(b \rightarrow c)=a \wedge a \wedge(b \rightarrow c) \leqslant a \wedge b \wedge c \wedge m=a \wedge c \wedge m$. Thus, $b \rightarrow c \in S_{a}(a \wedge c)$. Therefore, $b \rightarrow c \leqslant a \rightarrow c$. Therefore, we get $(a \vee b) \rightarrow c \leqslant(a \rightarrow c) \wedge(b \rightarrow c)$. On the other hand
$(a \vee b) \wedge(a \rightarrow c) \wedge(b \rightarrow c)=[(a \wedge(a \rightarrow c) \wedge(b \rightarrow c))] \vee[(b \wedge(a \rightarrow c) \wedge(b \rightarrow c))] \leqslant$ $[a \wedge c \wedge(b \rightarrow c)] \vee[b \wedge c \wedge(a \rightarrow c)]=(a \wedge c \wedge m) \vee(b \wedge c \wedge m)=(a \vee b) \wedge c \wedge m$.
Thus, $(a \rightarrow c) \wedge(b \rightarrow c) \in S_{a \vee b}((a \vee b) \wedge c)$ and hence $(a \rightarrow c) \wedge(b \rightarrow c) \leqslant(a \vee b) \rightarrow c$. Therefore, $(L, \vee, \wedge, \rightarrow)$ is a Heyting ADL.

Theorem 3.13. Let P be a prime ideal of L. Then there exists a derivation d on L such that $\operatorname{Fix}_{d}(L)=P$.

Proof. Let P be a prime ideal of L. Choose $a \in P$. Define, for any $x \in L$, $d x=x$ if $x \in P$ and $d x=a \wedge x$ otherwise. If $x \notin P$ and $y \notin P$ then $x \wedge y \notin P$. Thus, $d(x \wedge y)=a \wedge x \wedge y=[(a \wedge x) \wedge y] \vee[x \wedge(a \wedge y)]=(d x \wedge y) \vee(x \wedge d y)$. Now assume that $x \in P$. Then $x \wedge y \in P$ and $(d x \wedge y) \vee(x \wedge d y)=(x \wedge y) \vee(x \wedge d y)=$ $x \wedge(y \vee d y)=x \wedge y=d(x \wedge y)$. Therefore, d is a derivation on L. Also, if $x \in P$ then by the definition of $d, x \in F i x_{d}(L)$. Suppose $x \in F i x_{d}(L)$. Then $d x=x$. If $x \notin P$, then $x=a \wedge x \in P$ and hence we get $x \in P$. Thus $F i x_{d}(L)=P$.

Definition 3.6. Let $(L, \vee, \wedge, 0)$ be an $A D L$. For any $a \in L$, define $\phi_{a}=$ $\left\{(x, y) \in L \times L / d_{a}(x)=d_{a}(y)\right\}$ where d_{a} is the principal derivation induced by a on L.

Lemma 3.9. Let L be an $A D L$. Then for any $a \in L, \phi_{a}$ is a congruence relation on L.

Proof. Clearly ϕ_{a} is an equivalence relation on L. Now, let $(x, y),(p, q) \in \phi_{a}$. Then $a \wedge x=a \wedge y$ and $a \wedge p=a \wedge q$. Now, $a \wedge x \wedge p=a \wedge x \wedge a \wedge p=a \wedge y \wedge a \wedge q=a \wedge y \wedge q$ and $a \wedge(x \vee p)=(a \wedge x) \vee(a \wedge p)=(a \wedge y) \vee(a \wedge q)=a \wedge(y \vee q)$. Therefore, $(x \wedge p, y \wedge q),(x \vee p, y \vee q) \in \phi_{a}$. Hence, ϕ_{a} is a congruence relation on L.

Lemma 3.10. For any $a, b \in L$, the following hold.
(1) $\phi_{a \wedge b}=\phi_{b \wedge a}$
(2) $\phi_{a \vee b}=\phi_{b \vee a}$
(3) $\phi_{a} \cap \phi_{b}=\phi_{a \vee b}$
(4) $\phi_{a} \circ \phi_{b}=\phi_{a \wedge b}=\phi_{a} \vee \phi_{b}$.

Proof. Since $a \wedge b \wedge x=b \wedge a \wedge x$ and $(a \vee b) \wedge x=(b \vee a) \wedge x$, we get that $\phi_{a \wedge b}=\phi_{b \wedge a}$ and $\phi_{a \vee b}=\phi_{b \vee a}$. Again,

$$
\begin{aligned}
& (x, y) \in \phi_{a} \wedge \phi_{b} \Longleftrightarrow a \wedge x=a \wedge y \text { and } b \wedge x=b \wedge y \\
& \quad \Longleftrightarrow(a \vee b) \wedge x=(a \vee b) \wedge y \Longleftrightarrow(x, y) \in \phi_{a \vee b}
\end{aligned}
$$

Thus $\phi_{a \vee b}=\phi_{a} \cap \phi_{b}$.
Now, if $(x, y) \in \phi_{a} O \phi_{b}$, then there exists $z \in L$ such that $(x, z) \in \phi_{b}$ and $(z, y) \in \phi_{a}$. So that $b \wedge x=b \wedge z$ and $a \wedge z=a \wedge y$. Now,

$$
(a \wedge b) \wedge x=a \wedge b \wedge x=a \wedge b \wedge z=b \wedge a \wedge z=b \wedge a \wedge y=a \wedge b \wedge y
$$

Thus $(x, y) \in \phi_{a \wedge b}$. Therefore, $\phi_{a} o \phi_{b} \subseteq \phi_{a \wedge b}$.
Also, if $(x, y) \in \phi_{a \wedge b}$, then $a \wedge b \wedge x=a \wedge b \wedge y$. Now take $z=(b \wedge x) \vee(a \wedge y)$. Then,

$$
\begin{gathered}
b \wedge z=b \wedge[(b \wedge x) \vee(a \wedge y)]=(b \wedge x) \vee(b \wedge a \wedge y)=(b \wedge x) \vee(a \wedge b \wedge y)= \\
(b \wedge x) \vee(a \wedge b \wedge x)=b \wedge x \text { and } a \wedge z=a \wedge[(b \wedge x) \vee(a \wedge y)]= \\
(a \wedge b \wedge x) \vee(a \wedge y)=(a \wedge b \wedge y) \vee(a \wedge y)=[b \wedge(a \wedge y)] \vee(a \wedge y)=a \wedge y
\end{gathered}
$$

Hence, $(x, y) \in \phi_{a} o \phi_{b}$. Therefore $\phi_{a \wedge b} \subseteq \phi_{a} o \phi_{b}$ and hence $\phi_{a} o \phi_{b}=\phi_{a \wedge b}$. By symmetry and by (1) we get that $\phi_{b} o \phi_{a}=\phi_{b \wedge a}=\phi_{a \wedge b}$. Hence, $\phi_{a \wedge b}=\phi_{a} \vee \phi_{b}$.

Theorem 3.14. Let L be an ADL. Then, the set of all principal derivations $\mathcal{P}(L)=\left\{d_{a} / a \in L\right\}$ is a distributive lattice with the following operations,

$$
d_{a} \vee d_{b}=d_{a \vee b} \text { and } d_{a} \wedge d_{b}=d_{a \wedge b} \text { for all } a, b \in L
$$

Also, $\mathcal{P}(L)$ is isomorphic to $P \mathcal{I}(L)$ as well as $\operatorname{P\mathcal {F}}(L)$.
Proof. Let $a, b \in L$. For any $x \in L$,

$$
\left(d_{a} \vee d_{b}\right) x=d_{a} x \vee d_{b} x=(a \wedge x) \vee(b \wedge x)=(a \vee b) \wedge x=d_{a \vee b} x
$$

Therefore, $d_{a} \vee d_{b}=d_{a \vee b} \in \mathcal{P}(L)$. Also,

$$
\left(d_{a} \wedge d_{b}\right) x=d_{a} x \wedge d_{b} x=a \wedge x \wedge b \wedge x=a \wedge b \wedge x=d_{a \wedge b} x
$$

Therefore, $d_{a} \wedge d_{b}=d_{a \wedge b} \in \mathcal{P}(L)$. Hence $\mathcal{P}(L)$ is closed under \vee and \wedge and hence $\mathcal{P}(L)$ is a sub-ADL of $\mathcal{D}(L)$. Also, for any $x \in L, d_{a \wedge b} x=a \wedge b \wedge x=$ $b \wedge a \wedge x=d_{b \wedge a} x$. Thus $d_{a \wedge b}=d_{b \wedge a}$. Therefore $d_{a} \wedge d_{b}=d_{b} \wedge d_{a}$. Hence, $\mathcal{P}(L)$ is a distributive lattice. Now, define $\psi: \mathcal{P}(L) \rightarrow P \mathcal{I}(L)$ by $\psi\left(d_{a}\right)=(a]$ for all $a \in L$. By Lemma 3.6 , Theorem 3.10 and Theorem 3.11 we get that ψ is bijection. Now, for $a, b \in L, \psi\left(d_{a} \vee d_{b}\right)=\psi\left(d_{a \vee b}\right)=(a \vee b]=(a] \vee(b]$ and $\psi\left(d_{a} \wedge d_{b}\right)=\psi\left(d_{a \wedge b}\right)=$ $(a \wedge b]=(a] \wedge(b]$. Therefore, ψ is an isomorphism. Since $P \mathcal{I}(L)$ is isomorphic to $P \mathcal{F}(L)$, we get that $\mathcal{P}(L)$ is isomorphic to $P \mathcal{F}(L)$.

Finally we conclude this paper with the following theorem.
THEOREM 3.15. $\mathcal{C}=\left\{\phi_{a} / a \in L\right\}$ is dually isomorphic to $\mathcal{P}(L)$, the set of all principal derivations on L.

Proof. Define $\psi: \mathcal{C} \rightarrow \mathcal{P}(L)$ by $\psi\left(d_{a}\right)=\phi_{a}$ for all $a \in L$.
Let $a, b \in L$ such that $d_{a}=d_{b}$. Now, for any $x, y \in L$,

$$
\begin{gathered}
(x, y) \in \phi_{a} \Longleftrightarrow a \wedge x=a \wedge y \Longleftrightarrow d_{a} x=d_{a} y \Longleftrightarrow d_{b} x=d_{b} y \Longleftrightarrow b \wedge x=b \wedge y \Longleftrightarrow \\
(x, y) \in \phi_{b} .
\end{gathered}
$$

Thus $\phi_{a}=\phi_{b}$ and hence ψ is well defined.
On the other hand, let $\phi_{a}=\phi_{b}$. For any $x \in L$,

$$
(x, a \wedge x) \in \phi_{a} \Rightarrow(x, a \wedge x) \in \phi_{b} \Rightarrow b \wedge x=b \wedge a \wedge x \leqslant a \wedge x
$$

by symmetry, we get that $a \wedge x=b \wedge x$ and hence $d_{a}=d_{b}$. Now, for $a, b \in L$, by Lemma 3.10,
$\psi(a \wedge b)=\phi_{a \wedge b}=\phi_{a} \vee \phi_{b}=\psi(a) \vee \psi(b)$ and $\psi(a \vee b)=\phi_{a \vee b}=\phi_{a} \wedge \phi_{b}=\psi(a) \wedge \psi(b)$.
Thus, ψ is a dual isomorphism.
The authors express their sincere thanks to the referee for his valuable comments and suggestions.

References

[1] N.O.Alshehri. Generalized derivations of lattices, Int. J. Contemp. Math. Sciences, 5(13)(2010), 629-640.
[2] H.E.Bell and L.C.Kappe. Ring in which derivations satisfy certain algebraic conditions, Acta Math. Hung., 53(3-4)(1989), 339-346.
[3] Y. Ceven and M. A. Ozturk. On f-derivations of lattice, Bull. Korean Math. Soc., 45(4)(2008), 701-707.
[4] Y. Ceven. Symmetric Bi-derivations of lattice, Quaestiones Mathematicae, 32(2)(2009), 241245.
[5] K.Kaya. Prime rings with a derivations, Bull. Mater. Sci. Eng,16(1987), 63-71.
[6] K. H. Kim. Symmetric Bi-f-derivations in lattices, Int. J. Math. Archive, 3(10)(2012), 36763683.
[7] M. Asci and S. Ceran. Generalized (f,g)-Derivations of Lattices, Math. Sci. Appl., E-notes, 1(2)(2013), 56-62.
[8] M. A. ztrk, H. Yazarli and K. H. Kim. Permuting tri-derivations in lattices, Quaestiones Mathematcae, 32(3)(2009), 415-425.
[9] E. Posner. Derivations in prime rings, Proc. Amer. Math. Soc., 8(6)(1957), 1093-1100.
[10] Rao, G.C. Almost Distributive Lattices. Doctoral Thesis, Dept. of Mathematics, Andhra University, Visakhapatnam. 1980
[11] Rao, G.C. B. Assaye and M. V. Ratna Mani. Heyting Almost Distributive Lattices, Int. J. Comput. Cognition, 8(3)(2010), 85-89.
[12] Rao, G.C. and Mihret Alamneh, Po Almost Distributive Lattices, (To appear)
[13] U.M. Swamy and G.C. Rao. Almost Distributive Lattices, J. Aust. Math. Soc. (Series A), 31(1981), 77-91.
[14] G. Szasz. Derivations of lattices, Acta Sci. Math.(Szeged), 37(1-2)(1975), 149-154.
[15] X.L.Xin, T. Y. Li and J. H. Lu. On derivations of lattices*, Information Science, 178(2008), 307-316.
[16] X.L.Xin, The fixed set of derivations in lattices, Fixed Point Theory and Appl., 2012: 218. doi:10.1186/1687-1812-2012-218
[17] H. Yazarli and M. A. Ozlurk., Permuting Tri-f-derivations in lattices, Commun. Korean Math. Soc., 26(1)(2011), 13-21.

Received by editors 24.03.2016; Revised version 13.11.2016; Available online 21.11.2016.
Department of Mathematics, Andhra University, Andhra Pradesh, India - 530003
E-mail address: gcraomaths@yahoo.co.in
Department of Mathematics, Govt. Degree College, Sabbavaram, Visakhapatnam, Andhra

Pradesh, INDIA

E-mail address: ravikavuru.99@gmail.com

[^0]: 2010 Mathematics Subject Classification. 06D99, 06D20.
 Key words and phrases. Almost Distributive Lattice (ADL), Derivations, Isotone derivatoins, Principal derivations, Heyting ADL.

