
BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE
ISSN (p) 2303-4874, ISSN (o) 2303-4955
www.imvibl.org /JOURNALS / BULLETIN
Vol. 6(2016), 65-76

Former
BULLETIN OF THE SOCIETY OF MATHEMATICIANS BANJA LUKA

ISSN 0354-5792 (o), ISSN 1986-521X (p)

WEAK SEMI COMPATIBILITY AND FIXED POINT
THEOREMS FOR EXPANSIVE MAPPINGS IN

G-METRIC SPACES

A.S. Saluja1, M.K. Jain2, S. Manro 3

Abstract

In this paper we introduce the concept of g-compatible mapping, f−
compatible mapping, absorbing mappings and compatible mappings of
type (E) in the setting of G-metric space and establish some examples
to show their independency. Further we prove some fixed point theorems
for weak semi compatibility which also includes property E.A. Our results
are actually generalization of results of Manro [9].
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1 Introduction

In 1963, Gahler[5] introduced the concept of 2- metric spaces and claimed that 2-
metric is a generalization of the usual notion of metric, but some authors proved
that there is no relation between these two functions. It is clear that in 2- metric
space, d(x, y, z) is to be taken as the area the triangle with vertices x, y and z in
R2. In 1992, Dhage[4] introduced the concept of a D- metric space. The central
concept of D- metric space is different from 2- metric spaces. Geometrically, a
D-metric D(x, y, z) represents the perimeter of the triangle with vertices x, y
and z in R2. However, Mustafa et al. [12] have demonstrated that most of
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the claims concerning the fundamental topological structure of D- metric space
are incorrect. Alternatively, they have introduced [13] more appropriate notion
of generalized metric space which called G-metric space. They generalized the
concept of metric, in which the real number is assigned to every triplet of an
arbitrary set.

2 Preliminary

Definition 2.1 ([13]) Let X be a nonempty set and let G : X ×X ×X → R+

be a function satisfying:

(G1) G(x, y, z) = 0 if x = y = z,

(G2) 0 < G(x, x, y) for all x, y ∈ X, x ̸= y,

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z ̸= y,

(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) (Symmetry in all three variables),

(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z, a ∈ X (rectangle
inequality).

Then the function G is called a generalized metric space or, more specifically,
a G-metric on X and the pair (X,G) is G -metric space.

Example 2.1 ([13]) Let (X, d) be a usual metric space, and define Gs and Gm

on X ×X ×X to R+ by

Gs(x, y, z) = d(x, y) + d(y, z) + d(x, z)

Gm(x, y, z) = max{d(x, y), d(y, z), d(x, z)}.

Proposition 2.1 ([13]) Let (X,G) is a G− metric space. Then for any x, y, z
and a ∈ X it follows that:

(i) G(x, y, z) = 0 ⇒ x = y = z.

(ii) G(x, y, z) ≤ G(x, x, y) +G(x, x, z).

(iii) G(x, y, y) ≤ 2G(y, x, x).

(iv) G(x, y, z) ≤ G(x, a, z) +G(a, y, z).

(v) G(x, y, z) ≤ 2
3{G(x, y, a) +G(x, a, z) +G(a, y, z)}.

(vi) G(x, y, z) ≤ G(x, a, a) +G(y, a, a) +G(z, a, a).

Definition 2.2 ([13]) Let (X,G) be a G-metric space, and {xn} be a sequence
of points of X. A point x ∈ X is said to be the limit of the sequence {xn} if
limnG(x, xn, xm) = 0, one say that the sequence {xn} is G− convergent to x.

Definition 2.3 ([13]) Let (X,G) be a G-metric space. Then for a sequence
{xn} in X and a point x ∈ X, the following are equivalent:

(i) {xn} is convergent to x.

(ii) G(xn, xn, x) → 0, as n → ∞.

(iii) G(xn, x, x) → 0, as n → ∞.

(iv) G(xn, xm, x) → 0, as n,m → ∞.
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Definition 2.4 ([13]) Let (X,G) be a G-metric space. A sequence {xn} is
called G-cauchy if given ϵ > 0, there exist natural number N such that G(xn, xm, xl) <
ϵ for all l,m, n ≥ N , that is, G(xn, xm, xl) → 0 as l,m, n → ∞.

Definition 2.5 ([13]) In a G-metric space (X,G), the following are equivalent:
(i) the sequence {xn} is G-cauchy sequence.
(ii) for every ϵ > 0, there exist natural number N such that G(xn, xm, xl) < ϵ

for all l,m, n ≥ N .

Definition 2.6 ([13]) Let (X,G) and (X ′, G′) be two G-metric spaces, and let
f : (X,G) → (X ′, G′) be a function, then f− is said to be G− continuous at
a point a ∈ X iff, given ϵ > 0, there exist δ > 0 such that x, y ∈ X, and
G(a, x, y) < δ implies G′(f(a), f(x), f(y)) < ϵ. A function f is G-continuous in
X iff it is G-continuous at all a ∈ X.

Definition 2.7 (13) Let (X,G) and (X ′, G′) be two G-metric spaces. Then
a function f : (X,G) → (X ′, G′) is G-continuous at a point x ∈ X iff it is
G-sequentially continuous at x; that is, whenever {xn} is G-convergent to x, we
have {f(xn)} is G-continuous to f(x).

Definition 2.8 ([13]) A G-metric (X,G) is called symmetric G-metric space
if G(x, y, y) = G(y, x, x) for all x, y ∈ X.

Proposition 2.2 ([13]) Every G-metric space (X,G) induces a metric space
(X, dG) defined by

dG(x, y) = G(x, y, y) +G(y, x, x) for all x, y ∈ X.
Note that if (X,G) is symmetric, then
dG(x, y) = 2G(x, y, y) for all x, y ∈ X.
However, if (X,G) is not symmetric then it holds by the G -metric properties,

that is
3
2G(x, y, y) ≤ dG(x, y) ≤ 3G(x, y, y) for all x, y ∈ X.

Definition 2.9 ([13]) A G-metric space (X,G) is said to be G-complete if ev-
ery G-cauchy sequence in (X,G) is G-convergent in (X,G).

Proposition 2.3 ([13]) A G-metric space (X,G) is G-complete iff (X, dG) is
a complete metric space.

Proposition 2.4 ([13]) Let (X,G) be a G-metric space. Then the function
G(x, y, z) is jointly continuous in all three of its variables.

Two self maps f and g of metric space (X, d) are said to be f -compatible of
type (E) ([26]) if limnffxn = limnfgxn = gt, whenever {xn} is a sequence
in X such that limnfxn = limngxn = t, for some t ∈ X. Similarly, two self
maps f and g of metric space (X, d) are said to be g compatible of type (E)[26]
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if limnggxn = limngfxn = ft, whenever {xn} is a sequence in X such that
limnfxn = limngxn = t, for some t ∈ X.

On the same account, we introduce the concept of f -compatible of type (E)
and g-compatible of type (E) in G-metric space setting as follows:

Definition 2.10 Let (X,G) be a G-metric space. Then self mappings f and g
are said to be f - compatible of type (E) if

limnG(fgxn, gt, gt) = limnG(ffxn, gt, gt) = 0,

whenever {xn} is a sequence in X such that limnfxn = limngxn = t, for some
t ∈ X. Similarly, self mappings f and g are said to be g-compatible of type (E)
if

limnG(gfxn, ft, ft) = limnG(ggxn, ft, ft) = 0,

whenever {xn} is a sequence in X such that limnfxn = limngxn = t, for some
t ∈ X.

Remark 2.1 f -compatible of type (E) and g-compatible of type (E) are inde-
pendent notion as following example supports:

Example 2.2 Let X = [1,∞) and (X,G) be a G-metric space defined by
G(x, y, z) =| x − y | + | y − z | + | z − x | for all x, y, z ∈ X and f and g
be self mappings of G-metric space (X,G) defined by

fx = x+ 3 if x ∈ [1, 4) and fx = 7 if x ≥ 4.
gx = 4 if x is not an integer and gx = 7 if x is an integer.
Then for sequence xn = 1 + ϵn where ϵn = 1

n ,, n > 1 and also as n → ∞,
ϵn → 0,

limnfxn = limnf(1 + ϵn) = 4 and limngxn = limng(1 + ϵn) = 4.
Therefore limnfxn = limngxn = 4(say t).
Now limnfgxn = limnfg(1 + ϵn) = limnf(4) = 7.
Also limnffxn = limnff(1 + ϵn) = 7. Therefore
limnG(fgxn, gt, gt) = G(7, 7, 7) = 0.
Also, limnG(ffxn, gt, gt) = G(7, 7, 7) = 0.
These conclude that f and g are f -compatible of type (E), that is
limnG(fgxn, gt, gt) = limnG(ffxn, gt, gt) = 0. Again limngfxn = limngf(1+

ϵn) = 4 also limnggxn = limngg(1 + ϵn) = 7. Therefore limnG(ggxn, ft, ft) =
G(7, 7, 7) = 0.

But limnG(gfxn, ft, ft) = G(4, 7, 7) ̸= 0. These conclude that f and g are
not g-compatible of type (E).

Two self maps f and g of metric space (x, d) are called compatible [7] if
limnd(fgxn, gfxn) = 0, whenever {xn} is a sequence inX such that limnfxn =

limngxn = t for some in t ∈ X. Further, f and g are called g-compatible
([22]cited from [27]) if limnd(gfxn, ffxn) = 0, whenever {xn} is a sequence in
X such that limnfxn = limngxn = t for some in t ∈ X. Similarly, maps f and
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g are called f -compatible ([22], [27]) if limnd(fgxn, ggxn) = 0,, whenever {xn}
is a sequence in X such that limnfxn = limngxn = t for some in t ∈ X.

On the same account, the following definition of compatible mappings in
G-metric setting is given:

Definition 2.11 ([10], [11], [28]) Let (X,G) be a G-metric space. Then self
mappings f and g are said to be compatible if limnG(fgxn, gfxn, gfxn) = 0
and limnG(gfxn, fgxn, fgxn) = 0 whenever {xn} is a sequence in X such that
limnfxn = limngxn = t for some in t ∈ X.

Now we define f -compatibility and g-compatibility in the setting of G-metric
space as follows:

Definition 2.12 Let (X,G) be a G-metric space. Then self mappings f and g
are said to be f -compatible if limnG(fgxn, ggxn, ggxn) = 0 whenever {xn} is a
sequence in X such that limnfxn = limngxn = t for some in t ∈ X. Similarly,
self mappings f and g are said to be g-compatible if limnG(gfxn, ffxn, ffxn) =
0 whenever {xn} is a sequence in X such that limnfxn = limngxn = t for some
in t ∈ X.

Remark 2.2 f -compatibility and g-compatibility are independent notion as fol-
lowing example supports:

Example 2.3 Let X = R and (X,G) be a G-metric space defined by G(x, y, z) =|
x− y | + | y − z | + | z − x | for all x, y, z ∈ X and f and g be self mappings of
G-metric space (X,G) defined by

fx = x+ 1 if x ∈ R and
gx = 2 if x is not an integer and gx = 3 if x is an integer.
Then for sequence xn = 1 + ϵn where ϵn = 1

n ,, n > 1 and also as n → ∞,
ϵn → 0,

limnfxn = limnf(1 + ϵn) = 2 and limngxn = limng(1 + ϵn) = 2.
Therefore limnfxn = limngxn = 2(say t).
Now limnfgxn = limnfg(1 + ϵn) = limnf(2) = 3.
Also limnggxn = limngg(1 + ϵn) = 3. Therefore
limnG(fgxn, ggxn, ggxn) = G(3, 3, 3) = 0.
On the other hand, limngfxn = limngf(1 + ϵn) = 2. Also limnffxn =

limnff(1 + ϵn) = 3. Therefore limnG(gfxn, ffxn, ffxn) = G(2, 3, 3) ̸= 0.
This concludes that f and g are f - compatible but not g-compatible.

Compatible mappings are independent from f - compatibility and g- compati-
bility.

Now we define f -absorbing and g-absorbing in the setting of G-metric space
on the same lines as [6] in metric spaces as follows:

Definition 2.13 Let (X,G) be a G-metric space. Then self mapping f and
g will be called g -absorbing if there exists a real number R > 0 such that
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G(gfx, gx, gx) ≤ RG(fx, gx, gx) for all x ∈ X. Similarly, self mapping f and
g will be called f -absorbing if there exists a real number R > 0 such that
G(fgx, fx, fx) ≤ RG(fx, gx, gx) for all x ∈ X.

f -absorbing and g-absorbing are independent notions.

Definition 2.14 ([10], [21]) Let (X,G) be a G-metric space. Then self map-
ping f and g are said to be R-weak commuting of type (Af ) if there exists
a real number R > 0 such that G(fgx, ggx, ggx) ≤ RG(fx, gx, gx) for all
x ∈ X.imilarly, f and g are said to be R-weak commuting of type (Ag) if there
exists a real number R > 0 such that G(gfx, ffx, ffx) ≤ RG(fx, gx, gx) for
all x ∈ X

Definition 2.15 ([1]) Let f and g are two self mappings of G−metric space
(X,G). Then maps f and g satisfy the E.A. property if there exists a sequence
{xn} in X such that limnfxn = limngxn = t for some t ∈ X.

Definition 2.16 ([20]) Two self mappings f and g on a G−metric space (X,G)
are called conditionally commuting if they commute on nonempty subset of
the set of coincidence points whenever the set of their coincidence points is
nonempty.

Pant, Bisht and Arora [19] introduced a notion of weak reciprocal continuity as
follows:

Definition 2.17 Two self mappings f and g of G−metric space (X,G) will
be called weakly reciprocally continuous if limnfgxn = ft or limngfxn = gt,
whenever {xn} is a sequence in X such that limnfxn = limngxn = t for some
t ∈ X.

Further Saluja et al. [23] introduced a notion weak semi compatibility as follows:

Definition 2.18 Two self mappings f and g of a G−metric space (X,G) will
be called weak semi compatible mappings if limnfgxn = gt or limngfxn = ft,
whenever {xn} is a sequence in X such that limnfxn = limngxn = t for some
t ∈ X.

3 Main Results

Theorem 3.1 Let f and g be two weak semi compatible, R-weak commuting
type of Af self mappings, of complete symmetric G-metric space (X,G) satis-
fying the following conditions:

(a) f(X) ⊆ g(X),
(b) G(gx, gy, gz) ≥ hG(fx, fy, fz) for every x, y, z ∈ X and h > 1,
(c) f and g are either f - compatible of type (E) or g- compatible of type (E).
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If f and g are conditionally commuting, then f and g have a common fixed
point in X.

Proof- Let x0 be any point in X. Since f(X) ⊆ g(X), there exist a point x1

in X such that fx0 = gx1. Similarly we can have a sequence {xn} in X such
that fxn = gxn+1. Let yn = fxn = gxn+1. Now we shall show that {yn} is a
Cauchy sequence in X.

For proving this take (b) with x = xn, y = xn+1, z = xn+1.
G(gxn, gxn+1, gxn+1) ≥ hG(fxn, fxn+1, fxn+1)
G(yn, yn+1, yn+1) ≤ 1

hG(yn−1, yn, yn). ....(1)
Similarly we have,
G(yn−1, yn, yn) ≤ 1

hG(yn−2, yn−1, yn−1).
This yields with (1),
G(yn, yn+1, yn+1) ≤ 1

h2G(yn−2, yn−1, yn−1).
By continuing this process we have
G(yn, yn+1, yn+1) ≤ 1

hnG(y0, y1, y1).
Let 1

h = k then we have
G(yn, yn+1, yn+1) ≤ knG(y0, y1, y1)....(2)
Now for all n,m ∈ N(set of natural number) and n < m we have from G(5)
G(yn, ym, ym) ≤ G(yn, yn+1, yn+1) +G(yn+1, ym, ym)
≤ G(yn, yn+1, yn+1) +G(yn+1, yn+2, yn+2) + ...+G(ym, ym, ym).
This yields with (2)
G(yn, ym, ym) ≤ knG(yo, y1, y1) + ...+ km−1G(y0, y1, y1).
Let m = n+ p, we have
G(yn, yn+p, yn+p) ≤ knG(yo, y1, y1) + ...+ kn+p−1G(y0, y1, y1)
≤ knG(y0, y1, y1)(1 + k + ....) = knG(y0, y1, y1)

1
(1−k) .

Now limiting n → ∞, yields G(yn, ym, ym) → 0. Thus {yn} is a Cauchy
sequence. Since (X,G) is complete. Then there exist a point t ∈ X such that
limnyn = t or limnfxn = limngxn+1 = t.

Case 1- f and g are f -compatible of type (E).
Since f and g are weak semi compatible mappings, this yields either limnfgxn =

gt or limngfxn = ft.
First we take limngfxn = ft.
Since f and g are f compatible of type (E), this yields
limnG(fgxn, gt, gt) = 0 and limnG(ffxn, gt, gt) = 0.
Now by (b),
G(gfxn, gt, gt) ≥ hG(ffxn, ft, ft).
Now limiting n → ∞ yields G(ft, gt, gt) ≥ hG(gt, ft, ft). Since (X,G) is

symmetric, this yields G(ft, gt, gt) ≥ hG(ft, gt, gt). Since h > 1 yields ft = gt.
Since f and g are conditionally commuting this yields fgt = gft or fgt = gft =
fft = ggt. Now by (b), G(ggt, gt, gt) ≥ hG(fgt, ft, ft) implies G(fgt, gt, gt) ≥
hG(fgt, gt, gt). Since h > 1 yields fgt = gt or fgt = ggt = gt. Hence gt is
common fixed point of f and g.

Now we take limnfgxn = gt.
Since f and g are f compatible of type (E), this yields
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limnG(fgxn, gt, gt) = 0 and limnG(ffxn, gt, gt) = 0.
Since f and g are R-weak commuting type of Af , yields
G(fgxn, ggxn, ggxn) ≤ RG(fxn, gxn, gxn). Limiting n → ∞ yields
G(limnfgxn, limnggxn, limnggxn) ≤ RG(t, t, t).
This implies limnggxn = gt. Now by (b)
G(ggxn, gt, gt) ≥ hG(fgxn, ft, ft).
Again limiting n → ∞ yields G(gt, gt, gt) ≥ hG(gt, ft, ft). Since h > 1

yields ft = gt. Now by same above working it can be easily get that gt is
common fixed point of f and g.

Case 2- f and g are g compatible of type (E).
Since f and g are weak semi compatible mappings, this yields either limnfgxn =

gt or limngfxn = ft.
First we take limngfxn = ft.
Since f and g are g compatible of type (E), this yields
limnG(gfxn, ft, ft) = 0 and limnG(ggxn, ft, ft) = 0.
Since f and g are R-weak commuting type of Af , yields
G(fgxn, ggxn, ggxn) ≤ RG(fxn, gxn, gxn). Limiting n → ∞ yields
G(limnfgxn, limnggxn, limnggxn) ≤ RG(t, t, t).
This implies limnfgxn = ft. Now by (b)
G(ggxn, gxn, gxn) ≥ hG(fgxn, fxn, fxn).
Again limiting n → ∞ yields G(ft, t, t) ≥ hG(ft, t, t). Since h > 1 yields

ft = t. Since f(x) ⊆ g(X), then there exist a point u ∈ X such that ft = gu.
Now by (b), by taking x = u and y = xn, we easily get fu = t = gu. This shows
that gu is common fixed point of f and g.

Similarly, we easily prove that gt is common fixed point of f and g if we take
limnfgxn = gt.

Example 3.1 Let (X,G) be a G-metric space where X = [1, 7] and G(x, y, z) =|
x− y | + | y − z | + | z − x |. For all x, y, x ∈ X define f, g : X → X by

fx = x+5
2 if x > 5,

fx = 1 if 1 ≤ x ≤ 5
and
gx = x for all x.
When we take sequence xn = 5 + ϵn where ϵn = 1

n ,, n > 1 and also as
n → ∞, ϵn → 0,

limnfxn = limnf(5 + ϵn) = 5 and limngxn = limng(5 + ϵn) = 5.
Therefore limnfxn = limngxn = 5(say t).
Now limnfgxn = limnfg(5 + ϵn) = 5 = g(5) also limngfxn = limngf(5 +

ϵn) = 5 ̸= f(5). Therefore f and g are weak semi-compatible. Also, f and g are
f compatible of type (E) and R- weakly commuting of type (Af ).

Also, f and g satisfies condition (b) for h = 6
5 . Thus, f and g satisfies all

conditions of above theorem and x = 1 is a common fixed point of f and g.

Theorem 3.2 Let f and g be two weak semi compatible self mappings of G
-metric space (X,G) satisfying the following conditions:
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(a) f(X) ⊆ g(X),
(b) G(gx, gy, gz) ≥ hG(fx, fy, fz) for all x, y, z ∈ X and h > 1
(c) f and g are either compatible or f -compatible or g -compatible.
If f and g satisfy E.A. property, then f and g have a common fixed point in

X.

Proof. Since f and g satisfy E.A. property, then there exist a sequence
{xn} in X such that limnfxn = limngxn = t ... (3) for some t ∈ X.

f and g are compatible. Since f and g are weak semi compatible mappings,
this yields either limfgxn = gt or limngfxn = ft.

First we take limngfxn = ft.
Since f and g are compatible, this yields
limnG(fgxn, gfxn, gfxn) = 0 or limnG(gfxn, fgxn, fgxn) = 0.
By (b), we easily get limnffxn = ft. Now by (b),
G(gfxn, gxn, gxn) ≥ hG(ffxn, fxn, fxn).
Now limiting n → ∞ yields G(ft, t, t) ≥ hG(ft, t, t). Since h > 1 yields

ft = t. By (a), there exist a point u ∈ X such that ft = gu. Now by (b),
G(gu, gxn, gxn) ≥ hG(fu, fxn, fxn). This gives, fu = t = gu. Hence gu is
common fixed point of f and g.

Similarly, if f is g- absorbing or g is f - absorbing, the f and g have common
fixed point in X.

Now, we give example to support validity of above theorem:

Example 3.2 Let (X,G) be a G-metric space where X = [1, 7] and G(x, y, z) =|
x− y | + | y − z | + | z − x |. For all x, y, x ∈ X define f, g : X → X by

fx = x+5
2 if x > 5,

fx = 1 if 1 ≤ x ≤ 5
and
gx = x for all x.
Same as done in Example 3.1, it is easy to observe that pair (f, g) satisfy all

the condition of above theorem except condition (c) and x = 1 is common fixed
point of f and g.

Theorem 3.3 Let f and g be two weak semi compatible, R-weak commuting
type of Af self mappings of G-metric space satisfying the following conditions:

(a) f(X) ⊆ g(X),
(b) G(gx, gy, gz) ≥ hG(fx, fy, fz) for all x, y, z ∈ X and h > 1
(c) f is g -absorbing or g is f -absorbing.
If f and g satisfy E.A. property, then f and g have a common fixed point in

X.

Proof. Since f and g satisfy E.A. property, then there exist a sequence {xn}
in X such that limnfxn = limngxn = t ... (6) for some t ∈ X.

Let f is g - absorbing. Since f and g are weak semi compatible mappings,
this yields either limfgxn = gt or limngfxn = ft.

First we take limngfxn = ft.
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Since f is g absorbing, this gives, G(gfxn, gxn, gxn) ≤ RG(fxn, gxn, gxn).
This gives, ft = t. By (a), we get, ft = gu.

Now by (b),
G(gu, gxn, gxn) ≥ hG(fu, fxn, fxn).
Now limiting n → ∞ yields G(t, t, t) ≥ hG(fu, t, t). Since h > 1 yields

fu = t = gu. R Weak commuting of type (Af ) gives, fgu = ggu.
Now, f is g absorbing yielding gfu = gu and hence fu is common fixed

point of f and g.
Similarly, if g is f absorbing, then f and g have common fixed point in X.
Now, we give example to support validity of above theorem:

Example 3.3 Let (X,G) be a G-metric space where X = [1, 7] and G(x, y, z) =|
x− y | + | y − z | + | z − x |. For all x, y, x ∈ X define f, g : X → X by

fx = x+5
2 if x > 5,

fx = 1 if 1 ≤ x ≤ 5
and
gx = x for all x.
It is easy to observe that pair (f, g) satisfy all the condition of above theorem

except condition (c) as done in Example 3.1 and x = 1 is common fixed point
of f and g.

Acknowledgement

The authors would like to thank referee for giving their valuable suggestions to
improve this paper.

References

[1] Aamri, M. and Moutawakil, D. El., Some new common fixed point theorems
under strict contractive conditions, J. Math. Anal. Appl., 270(1)(2002),
181-188.

[2] Abbas, M., Khan, S.H. and Nazir, T., Common fixed points of R-weakly
commuting maps in generalized metric spaces, Fixed point theory and ap-
plications, 2011, 2011:41.

[3] Al-Thagafi, M.A. and Shahjad, N., Generalized I-nonexpansive self maps
and invariant approximations, Acta Mathematica Sinica, 24(5) (2008),
867-876.

[4] Dhage, B.C., Generalized metric space and mapping with fixed point, Bull.
Calcutta Math. Soc., 84(4)(1992), 329-336.
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