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1. Introduction

Equilibrium problem, which was studied Blum and Oettli [1] in 1994, have had a great

impact and influence in the development of several branches of pure and applied sciences,

provides us a natural, novel and unified framework to study a wide class of problems

arising in physics, economics, finance, transportation, network and structural analysis,

elasticity and optimization; see [2-8] and the references therein. Recently, the equilibrium

problem, which covers variational inequality problems, saddle point problem, variational

inclusion problems, zero point problems, have been extended and generalized in many
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directions using novel and innovative techniques; see [9-13] and the references therein. It

is known that the equilibrium problem is equivalent to a fixed point problem of nonlinear

operators. Halpern iterative process (HIP) is an efficient and powerful process to study

fixed points of nonlinear operators. Halpern iterative process generates a sequence {xn}

in the following manner:

xn+1 = αnu+ (1− αn)Txn, ∀n ≥ 0,

where u is a fixed element, T is a nonlinear mapping and {αn} is a control sequence. HIP

was initially introduced in [14]. Halpern showed that the following conditions

(C1) limn→∞ αn = 0;

(C2)
∑∞

n=0 αn =∞,

are necessary in the sense if HIP is strongly convergent for all nonexpansive mappings,

then {xn} must satisfy conditions (C1), and (C2). Due to restriction (C2), HIP is widely

believed to have slow convergence though the rate of convergence has not be determined.

Thus to improve the rate of convergence of HIP, one can not rely only on the process itself;

instead, some additional step of iteration should be taken; see [15-20] and the references

therein.

The purpose of this paper is to study the equilibrium problem in the terminology of

Blum and Oettli [1] and fixed points of a family of nonlinear operators via a monotone

projection algorithm. Strong convergence theorems are established without the aid of

compactness in the framework of reflexive Banach spaces. The paper is organized as

follows. In Section 2, we provide some necessary definitions, properties and lemmas. In

Section 3, the main strong convergence theorems are established in the framework of real

reflexive Banach spaces. In Sections 4, some applications are provided to support our

main results.

2. Preliminaries
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Let E be a real Banach space and let E∗ be the dual space of E. Recall that the

normalized duality mapping J from E to 2E
∗

is defined by

Jx = {x∗ ∈ E∗ : ‖x‖2 = 〈x, x∗〉 = ‖x∗‖2}.

Let BE = {x ∈ E : ‖x‖ = 1} be the unit sphere of E. E is said to be strictly convex if

‖x + y‖ < 2 for all x, y ∈ BE with x 6= y. It is said to be uniformly convex if for any

ε ∈ (0, 2] there exists δ > 0 such that for any x, y ∈ BE,

‖x− y‖ ≥ ε implies ‖x+ y‖ ≤ 2− 2δ.

It is known that a uniformly convex Banach space is reflexive and strictly convex. E is said

to be smooth or is said to have a Gâteaux differentiable norm iff lims→∞ ‖sx+ y‖− s‖x‖

exists for each x, y ∈ BE. E is said to have a uniformly Gâteaux differentiable norm if

for each y ∈ BE, the limit is uniformly obtained ∀x ∈ BE. If the norm of E is uniformly

Gâteaux differentiable, then J is uniformly norm to weak∗ continuous on each bounded

subset of E and single valued. It is also said to be uniformly smooth iff the above limit is

attained uniformly for x, y ∈ BE. It is well known that if E is uniformly smooth, then J

is uniformly norm-to-norm continuous on each bounded subset of E. It is also well known

that if E is uniformly smooth if and only if E∗ is uniformly convex.

From now on, we use→ and ⇀ to denote the strong convergence and weak convergence,

respectively. Recall that E is said to has the KKP if for any sequence {xn} ⊂ E, and

x ∈ E with ‖xn‖ → ‖x‖ and xn ⇀ x, then ‖xn − x‖ → 0 as n → ∞. It is well known

that if E is a uniformly convex Banach spaces, then E has the KKP; see [21] and the

references therein.

Let C be a nonempty subset of E and let B : C × C → R, where R denotes the set of

real numbers, be a function. Recall the following equilibrium problem in the terminology

of Blum and Oettli [1]. Find x̄ ∈ C such that

B(x̄ y) ≥ 0, ∀y ∈ C. (2.1)
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We use Sol(B) to denote the solution set of equilibrium problem (2.1). Given a mapping

A : C → E∗, let

B(x, y) := 〈Ax, y − x〉, ∀x, y ∈ C.

Then x̄ ∈ Sol(B) iff x̄ is a solution of the following variational inequality. Find x̄ such

that

〈Ax̄ y − x̄〉 ≥ 0, ∀y ∈ C. (2.2)

The following restrictions are essential in this paper.

(R1) B(x, x) = 0,∀x ∈ C;

(R2) B(x, y) +B(y, x) ≤ 0,∀x, y ∈ C;

(R3)

B(x, y) ≥ lim sup
t→0

B(tz + (1− t)x, y),∀x, y, z ∈ C,

where t ∈ (0, 1);

(R4) for each x ∈ C, y 7→ B(x, y) is convex and weakly lower semi-continuous.

Let E be a smooth Banach space. Consider the functional defined by

φ(x, y) = ‖x‖2 + ‖y‖2 − 2〈x, Jy〉, ∀x, y ∈ E.

In a Hilbert space H,
√
φ(x, y) ≡ ‖x − y‖. Let D be a closed convex subset of H.

For any x ∈ H, there exists an unique nearest point in D, denoted by PDx, such that

‖x−PDx‖ ≤ ‖x− y‖, for all y ∈ D. The operator PD is called the metric projection from

H onto D. It is known that PD is firmly nonexpansive. In [22], a new operator Proj

was introduced based on the metric projection in the framework of Banach spaces. Recall

that the generalized projection ProjC : E → C is a map that assigns to an arbitrary

point x ∈ E the minimum point of the functional φ(x, y), that is, ProjCx = x̄, where x̄

is the solution to the minimization problem φ(x̄, x) = min
y∈C

φ(y, x). From the definition of

φ, one has

(‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖y‖+ ‖x‖)2, ∀x, y ∈ E. (2.3)

Let T : C → C be a mapping. Recall that a point p ∈ C is said to be a fixed point of

T iff p = Tp. In this paper, we use Fix(T ) to denote the fixed point set of T. Recall that

a point p in C is said to be an asymptotic fixed point of T iff C contains a sequence {xn}
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which converges weakly to p such that limn→∞ ‖xn − Txn‖ = 0. The set of asymptotic

fixed points of T will be denoted by F̃ ix(T ). Recall that T is said to be closed if for any

sequence {xn} with limn→∞ Txn = y′ and limn→∞ xn = x′, then Tx′ = y′.

Recall that a mapping T is said to be relatively nonexpansive iff

φ(p, Tq) ≤ φ(p, q), ∀q ∈ C, ∀p ∈ F̃ ix(T ) = Fix(T ) 6= ∅.

T is said to be relatively asymptotically nonexpansive iff

φ(p, T nq) ≤ knφ(p, q), ∀q ∈ C, ∀p ∈ F̃ ix(T ) = Fix(T ) 6= ∅,∀n ≥ 1,

where {kn} ⊂ [1,∞) is a sequence such that kn → 1 as n→∞.

T is said to be quasi-φ-nonexpansive iff

φ(p, Tq) ≤ φ(p, q), ∀q ∈ C, ∀p ∈ Fix(T ) 6= ∅.

Recall that a mapping T is said to be asymptotically quasi-φ-nonexpansive iff there

exists a sequence {kn} ⊂ [1,∞) with kn → 1 as n→∞ such that

φ(p, T nq) ≤ knφ(p, q), ∀q ∈ C, ∀p ∈ Fix(T ) 6= ∅,∀n ≥ 1.

Remark 2.1. The class of quasi-φ-nonexpansive mappings and the class of asymptoti-

cally quasi-φ-nonexpansive mappings are more desirable than the class of relatively non-

expansive mappings and the class of relatively asymptotically nonexpansive mappings.

Quasi-φ-nonexpansive mappings and asymptotically quasi-φ-nonexpansive do not require

the restriction Fix(T ) = F̃ ix(T ).

T is said to be a generalized asymptotically quasi-φ-nonexpansive mapping iff there

exist two sequences {kn} ⊂ [1,∞) with kn → 1 and {ξn} ⊂ [0,∞) with ξn → 0 as n→∞

such that

φ(p, T nq) ≤ knφ(p, q) + ξn, ∀q ∈ C, ∀p ∈ F (T ) 6= ∅,∀n ≥ 1.

Remark 2.2. The class of generalized asymptotically quasi-φ-nonexpansive mappings is

a generalization of the class of generalized asymptotically quasi-nonexpansive mappings

in the framework of Banach spaces.

In order to our main results, we also need the following lemmas.
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Lemma 2.3 [1] Let C be a closed convex subset of a smooth, strictly convex and reflexive

Banach space E. Let B : C × C → R be a bifunction with (R1), (R2), (R3) and (R4).

Let r > 0 and x ∈ E. There exists z ∈ C such that rB(z, y) ≥ 〈z − y, Jz − Jx〉, ∀y ∈ C.

Lemma 2.4 [22] Let E be a reflexive, strictly convex, and smooth Banach space and let

C a convex and closed convex subset of E. Let x ∈ E. Then

φ(y, ProjCx) + φ(ProjCx, x) ≤ φ(y, x), ∀y ∈ C.

Lemma 2.5 [22] Let C be a convex closed subset of a smooth Banach space E and let

p ∈ E. Then q = ProjCp if and only if 〈q − y, Jp− Jq〉 ≥ 0, ∀y ∈ C.

Lemma 2.6. [15] Let E be a reflexive, smooth and strictly convex Banach space such that

both E and E∗ have the KKP and let C be a convex and closed subset of E. Let T be a

closed, generalized asymptotically quasi-φ-nonexpansive mapping on C. Then Fix(T ) is

convex and closed.

Lemma 2.7 [9] Let C be a closed convex subset of a smooth, strictly convex and reflexive

Banach space E. Let B be a function with (R1), (R2), (R3) and (R4). Let r > 0 and

x ∈ E. Define a mapping KB,r by

KB,rx = {z ∈ C : rB(z, y) ≥ 〈z − y, Jz − Jx〉, ∀y ∈ C}.

Then the following conclusions hold:

(1) KB,r is a single-valued firmly nonexpansive-type mapping;

(2) KB,r is quasi-φ-nonexpansive and Fix(KB,r) = Sol(B);

(3) φ(q,KB,rx) + φ(KB,rx, x) ≤ φ(q, x), ∀q ∈ Fix(KB,r).

3. Main results

Theorem 3.1. Let E be a reflexive, smooth and strictly convex Banach space such

that both E and E∗ have the KKP and let C be a convex and closed subset of E. Let

Λ be an index set and let Bi be a function with (R1), (R2), (R3) and (R4). Let Ti :
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C → C be a generalized asymptotically quasi-φ-nonexpansive mapping for every i ∈ Λ.

Assume that Ti is closed and uniformly asymptotically regular on C for every i ∈ Λ and

∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi) is nonempty and bounded. Let {xn} be a sequence generated

in the following manner:



x0 ∈ E chosen arbitrarily,

C(1,i) = C,C1 = ∩i∈ΛC(1,i), x1 = ProjC1x0,

Jy(n,i) = α(n,i)Jx1 + (1− α(n,i))JT
n
i xn,

C(n+1,i) = {z ∈ C(n,i) : φ(z, u(n,i))− φ(z, xn) ≤ α(n,i)D + ξn,i},

Cn+1 = ∩i∈ΛC(n+1,i), xn+1 = ProjCn+1x1,

where {u(n,i)} is a sequence in Cn such that r(n,i)Bi(u(n,i), y) ≥ 〈u(n,i)−y, Ju(n,i)−Jy(n,i)〉,

y ∈ Cn, D := sup{φ(w, x1) : p ∈ ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)}, {α(n,i)} is a real sequence

in (0, 1) such that limn→∞ α(n,i) = 0, and {r(n,i)} is a real sequence in [ai,∞), where {ai}

is a positive real number sequence, for every i ∈ Λ. Then the sequence {xn} converges

strongly to Proj∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)x1.

Proof. The proof is split into seven steps.

Step 1. Prove that ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi) is closed and convex.

Using Lemmas 2.6 and 2.7, we find that ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi) is closed and convex

so that the generalization projection onto the set is well defined.

Step 2. Prove that Cn is closed and convex.

To show Cn is closed and convex, it suffices to show that, for each fixed but arbitrary

i ∈ Λ, C(n,i) is closed and convex. This can be proved by induction on n. It is obvious

that C(1,i) = C is closed and convex. Assume that C(m,i) is closed and convex for some

m ≥ 1. Let For z1, z2 ∈ C(m+1,i), we see that z1, z2 ∈ C(m,i). It follows that z = tz1 +

(1 − t)z2 ∈ C(m,i), where t ∈ (0, 1). Notice that φ(z1, u(m,i)) ≤ φ(z1, xn) + α(m,i)D + ξn,i

and φ(z2, u(m,i)) ≤ φ(z2, xn) + α(m,i)D + ξn,i. The above inequalities are equivalent to

2〈z1, Jxm − Ju(m,i)〉 ≤ ‖xm‖2 − ‖u(m,i)‖2 + α(m,i)D + ξn,i and 2〈z2, Jxm − Ju(m,i)〉 ≤

‖xm‖2 − ‖u(m,i)‖2 + α(m,i)D + ξn,i. Multiplying t and (1 − t) on the both sides of the
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inequalities above, respectively yields that and

2〈z, Jxm − Ju(m,i)〉 ≤ ‖xm‖2 − ‖u(m,i)‖2 + α(m,i)D + ξn,i.

That is, φ(z, u(m,i)) ≤ φ(z, xn) + α(m,i)D + ξn,i, where z ∈ C(m,i). This finds that C(m+1,i)

is closed and convex. We conclude that C(n,i) is closed and convex. This in turn implies

that Cn = ∩i∈ΛC(n,i) is closed, and convex. This implies that ΠCnx1 is well defined.

Step 3. Prove ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi) ⊂ Cn.

Since limn→∞ k(n,i) = 1, we may assume that k(n,i) ≤ 1 +
α(n,i)

1−α(n,i)
for ∀n ≥ 1. Note that

∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi) ⊂ C1 = C is clear. Suppose that ∩i∈ΛFix(Ti)

⋂
∩i∈ΛSol(Bi)

⊂ C(m,i) for some positive integer m. For any w ∈ ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi) ⊂ C(m,i),

we see that

φ(w, u(m,i))

≤ φ(w, y(m,i))

= φ(w, J−1(α(m,i)Jx1 + (1− α(m,i))JT
m
i xm))

= ‖w‖2 − 2〈w, α(m,i)Jx1 + (1− α(m,i))JT
m
i xm〉

+ ‖α(m,i)Jx1 + (1− α(m,i))JT
m
i xm‖2

≤ ‖w‖2 − 2α(m,i)〈w, Jx1〉 − 2(1− α(m,i))〈w, JTmi xm〉

+ α(m,i)‖x1‖2 + (1− α(m,i))‖Tmi xm‖2

≤ φ(w, xm) + α(m,i)D + ξ(m,i),

(3.1)

where D := sup{φ(w, x1) : w ∈ ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)}. This shows that w ∈

C(m+1,i). This implies that ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Gi) ⊂ C(n,i). Hence, ∩i∈ΛFix(Ti)

⋂
∩i∈ΛSol(Bi) ⊂ ∩i∈ΛC(n,i). This completes the proof that ∩i∈ΛFix(Ti)

⋂
∩i∈ΛSol(Bi) ⊂

Cn.

Step 4. Prove {xn} is bounded

Since xn = ProjCnx1, we find from Lemma 2.5 that 〈xn − z, Jx1 − Jxn〉 ≥ 0, for any

z ∈ Cn. Since ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi) ⊂ Cn, we find that

〈xn − w, Jx1 − Jxn〉 ≥ 0, ∀w ∈ ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi). (3.2)
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Using Lemma 2.4, one sees that

φ(xn, x1) ≤ φ(Proj∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)x1, x1)− φ(Proj∩i∈ΛFix(Ti)

⋂
∩i∈ΛSol(Bi)x1, xn)

≤ φ(Proj∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)x1, x1).

This implies that {φ(xn, x1)} is bounded. Hence, {xn} is also bounded. Since the space

is reflexive, we may assume that xn ⇀ x̄.

Step 5. Prove x̄ ∈ ∩i∈ΛFix(Ti).

Since Cn is closed and convex, we find that x̄ ∈ Cn. This implies from xn = ProjCnx1

that φ(xn, x1) ≤ φ(x̄, x1). On the other hand, we see from the weakly lower semicontinuity

of the norm that

φ(x̄, x1) = ‖x̄‖2 − 2〈x̄, Jx1〉+ ‖x1‖2

≤ lim inf
n→∞

(‖xn‖2 − 2〈xn, Jx1〉+ ‖x1‖2)

= lim inf
n→∞

φ(xn, x1)

≤ lim sup
n→∞

φ(xn, x1)

≤ φ(x̄, x1),

which implies that limn→∞ φ(xn, x1) = φ(x̄, x1). Hence, we have limn→∞ ‖xn‖ = ‖x̄‖.

Since E has the KKP one has xn → x̄ as n → ∞. Since xn = ProjCnx1, and xn+1 =

ProjCn+1x1 ∈ Cn+1 ⊂ Cn, one sees φ(xn, x1) ≤ φ(xn+1, x1). This shows that {φ(xn, x1)} is

nondecreasing. Since it is also bounded, one sees that limn→∞ φ(xn, x1) exists. It follows

that φ(xn+1, xn) + φ(xn, x1) ≤ φ(xn+1, x1). This implies that

lim
n→∞

φ(xn+1, xn) = 0. (3.3)

Since φ(xn+1, y(n,i)) ≤ φ(xn+1, xn) + α(n,i)D + ξ(n,i), Hence, we have

lim
n→∞

φ(xn+1, y(n,i)) = 0. (3.4)

It follows that limn→∞(‖xn+1‖ − ‖y(n,i)‖) = 0. This implies that limn→∞ ‖y(n,i)‖ = ‖x̄‖.

On the other hand, we have

lim
n→∞

‖Jy(n,i)‖ = lim
n→∞

‖y(n,i)‖ = ‖x̄‖ = ‖Jx̄‖. (3.5)
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This implies that {Jy(n,i)} is bounded. Since both E and E∗ are reflexive, we may assume

that Jy(n,i) ⇀ y(∗,i) ∈ E∗. Since E is reflexive, we see J(E) = E∗. This shows that

there exists an element yi ∈ E such that Jyi = y(∗,i). It follows that φ(xn+1, y(n,i)) =

‖xn+1‖2 − 2〈xn+1, Jy(n,i)〉+ ‖Jy(n,i)‖2. Therefore, one has

0 ≥ ‖x̄‖2 − 2〈x̄, y(∗,i)〉+ ‖y(∗,i)‖2 = ‖x̄‖2 − 2〈x̄, Jyi〉+ ‖yi‖2 = φ(x̄, yi) ≥ 0.

That is, x̄ = yi, which in turn implies that y(∗,i) = Jx̄. It follows that Jy(n,i) ⇀

Jx̄ ∈ E∗. Since E∗ has the KKP, we obtain from (3.5) that limn→∞ Jy(n,i) = Jx̄. S-

ince limn→∞ α(n,i) = 0 for every i ∈ Λ, one has limn→∞ ‖Jy(n,i) − JT ni xn‖ = 0. Note

that

‖Jx̄− JT ni xn‖ ≤ ‖Jy(n,i) − Jx̄‖+ ‖Jy(n,i) − JT ni xn‖,

one has JT ni xn → Jx̄ as n → ∞, for every i ∈ λ. Since J−1 is demi-continuous, we

have T ni xn ⇀ x̄, for every i ∈ Λ. Since |‖T ni xn‖ − ‖x̄‖| ≤ ‖J(T ni xn) − Jx̄‖, one has

‖T ni xn‖ → ‖x̄‖, as n → ∞, for every i ∈ Λ. Since E has the Kadec-Klee property, one

obtains limn→∞ ‖T ni xn − x̄‖ = 0. On the other hand, we have

‖T n+1
i xn − x̄‖ ≤ ‖T n+1

i xn − T ni xn‖+ ‖T ni xn − x̄‖.

In view of the uniformly asymptotic regularity of Ti, one has limn→∞ ‖T n+1
i xn − x̄‖ = 0,

that is, TiT
n
i xn − x̄ → 0 as n → ∞. Since every Ti is closed, we find that Tix̄ = x̄ for

every i ∈ Λ.

Step 6. Prove x̄ ∈ ∩i∈ΛSol(Bi).

Since xn+1 = ΠCn+1x1 ∈ Cn+1, we find that φ(xn+1, u(n,i)) ≤ φ(xn+1, xn)+α(n,i)D+ξ(n,i).

It follows from (3.3) that

lim
n→∞

φ(xn+1, u(n,i)) = 0. (3.6)

Hence, we have limn→∞(‖xn+1‖ − ‖u(n,i)‖) = 0. This implies that limn→∞ ‖u(n,i)‖ = ‖x̄‖.

On the other hand, we have

lim
n→∞

‖Ju(n,i)‖ = lim
n→∞

‖u(n,i)‖ = ‖x̄‖ = ‖Jx̄‖. (3.7)

This implies that {Ju(n,i)} is bounded. Since both E and E∗ are reflexive, we may

assume that Ju(n,i) ⇀ u(∗,i) ∈ E∗. Since E is reflexive, we see J(E) = E∗. This shows
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that there exists an element ui ∈ E such that Jui = u(∗,i). It follows that φ(xn+1, u(n,i)) =

‖xn+1‖2 − 2〈xn+1, Ju(n,i)〉+ ‖Ju(n,i)‖2. Therefore, one has

0 ≥ ‖x̄‖2 − 2〈x̄, u(∗,i)〉+ ‖u(∗,i)‖2 = ‖x̄‖2 − 2〈x̄, Jui〉+ ‖ui‖2 = φ(x̄, ui) ≥ 0.

That is, x̄ = ui, which in turn implies that u(∗,i) = Jx̄. It follows that Ju(n,i) ⇀ Jx̄ ∈ E∗.

Since E∗ has the KKP, we obtain from (3.6) that limn→∞ Ju(n,i) = Jx̄. Hence, we have

limn→∞ ‖Ju(n,i) − Jy(n,i)‖ = 0. Since 〈y − u(n,i), Ju(n,i) − Jy(n,i)〉 + r(n,i)Bi(u(n,i), y) ≥ 0,

∀y ∈ Cn, we see that

‖y − u(n,i)‖‖Ju(n,i) − Jy(n,i)‖ ≥ r(n,i)Bi(y, u(n,i)), ∀y ∈ Cn.

In view of (R4), one has Bi(y, x̄) ≤ 0. For 0 < ti < 1, define y(t,i) = tiy + (1 − ti)x̄. It

follows that y(t,i) ∈ C, which yields that Bi(y(t,i), x̄) ≤ 0. It follows from the (R1) and

(R4) that

0 = Bi(y(t,i), y(t,i)) ≤ tiBi(y(t,i), y) + (1− ti)Bi(y(t,i), x̄) ≤ tiBi(y(t,i), y).

That is, Bi(y(t,i), y) ≥ 0. Letting ti ↓ 0, we obtain from (R3) that Bi(x̄, y) ≥ 0, ∀y ∈ C.

This implies that x̄ ∈ Sol(Bi) for every i ∈ Λ. This shows that x̄ ∈ ∩i∈ΛSol(Bi).

Step 7. Prove x̄ = Proj∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)x1.

Letting n→∞ in (3.2), we see that

〈x̄− w, Jx1 − Jx̄〉 ≥ 0, ∀w ∈ ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi).

In view of Lemma 2.5, we find that that x̄ = Proj∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)x1. This completes

the proof.

Remark 3.2. Theorem 3.1 improve the corresponding results in [9,11,15,18-20] from

a finite family of nonlinear mappings to an uncountable infinitely family of nonlinear

mapping. And the algorithm is more efficient since u(n,i) is searched monotonicially in Cn

instead of always in C. Theorem 3.1 does not require that the framework of the space

is both uniformly convex and uniformly smooth, which is a standard assumption in most

of related work. The typical example of the space in Theorem 3.1 is a reflexive, strictly

convex and smooth Musielak-Orlicz space; see [19] and the references therein.
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From Theorem 3.1, we also have the following result.

Corollary 3.3. Let E be a reflexive, smooth and strictly convex Banach space such that

both E and E∗ have the KKP and let C be a convex and closed subset of E. Let Λ be

an index set and let Bi be a function with (R1), (R2), (R3) and (R4). Assume that

∩i∈ΛSol(Bi) is nonempty. Let {xn} be a sequence generated in the following manner:



x0 ∈ E chosen arbitrarily,

C(1,i) = C,C1 = ∩i∈ΛC(1,i), x1 = ProjC1x0,

C(n+1,i) = {z ∈ C(n,i) : φ(z, u(n,i))− φ(z, xn) ≤ 0},

Cn+1 = ∩i∈ΛC(n+1,i), xn+1 = ProjCn+1x1,

where {u(n,i)} is a sequence in Cn such that r(n,i)Bi(u(n,i), y) ≥ 〈u(n,i) − y, Ju(n,i) − Jxn〉,

y ∈ Cn, {α(n,i)} is a real sequence in (0, 1) such that limn→∞ α(n,i) = 0, and {r(n,i)} is a

real sequence in [ai,∞), where {ai} is a positive real number sequence, for every i ∈ Λ.

Then the sequence {xn} converges strongly to Proj∩i∈ΛSol(Bi)x1.

4. Applications

First, we give some deduced results in the framework of Hilbert spaces.

Theorem 4.1. Let E be a Hilbert space and let C be a convex and closed subset of E.

Let Λ be an index set and let Bi be a function with (R1), (R2), (R3) and (R4). Let

Ti : C → C be a generalized asymptotically quasi-nonexpansive mapping for every i ∈ Λ.

Assume that Ti is closed and uniformly asymptotically regular on C for every i ∈ Λ and

∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi) is nonempty and bounded. Let {xn} be a sequence generated
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in the following manner:



x0 ∈ E chosen arbitrarily,

C(1,i) = C,C1 = ∩i∈ΛC(1,i), x1 = PC1x0,

y(n,i) = α(n,i)x1 + (1− α(n,i))T
n
i xn,

C(n+1,i) = {z ∈ C(n,i) : ‖u(n,i) − z‖2 − ‖z − xn‖2 ≤ α(n,i)D + ξn,i},

Cn+1 = ∩i∈ΛC(n+1,i), xn+1 = PCn+1x1,

where {u(n,i)} is a sequence in Cn such that r(n,i)Bi(u(n,i), y) ≥ 〈u(n,i) − y, u(n,i) − y(n,i)〉,

y ∈ Cn, D := sup{‖w−x1‖2 : p ∈ ∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)}, {α(n,i)} is a real sequence

in (0, 1) such that limn→∞ α(n,i) = 0, and {r(n,i)} is a real sequence in [ai,∞), where {ai}

is a positive real number sequence, for every i ∈ Λ. Then the sequence {xn} converges

strongly to P∩i∈ΛFix(Ti)
⋂
∩i∈ΛSol(Bi)x1.

Proof. In the framework of Hilbert spaces, one has
√
φ(x, y) = ‖x − y‖, ∀x, y ∈

E. The generalized projection is reduced to the metric projection and the general-

ized asymptotically-φ-nonexpansive mapping is reduced to the generalized asymptotically

quasi-nonexpansive mapping. Using Theorem 3.1, we find the desired conclusion imme-

diately.

Corollary 4.2. Let E be a Hilbert space and let C be a convex and closed subset of E.

Let Λ be an index set and let Bi be a function with (R1), (R2), (R3) and (R4). Assume

that ∩i∈ΛSol(Bi) is nonempty. Let {xn} be a sequence generated in the following manner:

x0 ∈ E chosen arbitrarily,

C(1,i) = C,C1 = ∩i∈ΛC(1,i), x1 = PC1x0,

C(n+1,i) = {z ∈ C(n,i) : ‖u(n,i) − z‖2 − ‖z − xn‖2 ≤ α(n,i)D + ξn,i},

Cn+1 = ∩i∈ΛC(n+1,i), xn+1 = PCn+1x1,

where {u(n,i)} is a sequence in Cn such that r(n,i)Bi(u(n,i), y) ≥ 〈u(n,i) − y, u(n,i) − xn〉,

y ∈ Cn, {α(n,i)} is a real sequence in (0, 1) such that limn→∞ α(n,i) = 0, and {r(n,i)} is a
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real sequence in [ai,∞), where {ai} is a positive real number sequence, for every i ∈ Λ.

Then the sequence {xn} converges strongly to P∩i∈ΛSol(Bi)x1.

Let A : C → E∗ be a single valued monotone operator which is continuous along each

line segment in C with respect to the weak∗ topology of E∗ (hemicontinuous). Recall the

the following variational inequality. Finding a point x ∈ C such that 〈x − y, Ax〉 ≤ 0,

∀y ∈ C. The symbol Nc(x) stand for the normal cone for C at a point x ∈ C; that is,

Nc(x) = {x∗ ∈ E∗ : 〈x− y, x∗〉 ≥ 0, ∀y ∈ C}. From now on, we use V I(C,A) to denote

the solution set of the variational inequality.

Theorem 4.3. Let E be a reflexive, smooth and strictly convex Banach space such

that both E and E∗ have the KKP and let C be a convex and closed subset of E. Let

Λ be an index set and let Ai : C → E∗ be a single valued, monotone and hemicon-

tinuous operator. Let Bi be a function with (R1), (R2), (R3) and (R4). Assume that

∩i∈ΛV I(C,Ai)
⋂
∩i∈ΛSol(Bi) is not empty. Let {xn} be a sequence generated in the fol-

lowing process. d



x0 ∈ E chosen arbitrarily,

C1,i = C, x1 = ProjC1:=∩i∈∆C(1,i)
x0,

z(n,i) = V I(C,Ai + 1
ri

(J − Jxn)),

Jy(n,i) = (1− α(n,i))Jzn,i + α(n,i)Jx1, n ≥ 1,

C(n+1,i) = {w ∈ C(n,i) : φ(w, xn) ≥ φ(w, un,i)},

Cn+1 = ∩i∈ΛC(n+1,i), xn+1 = ProjCn+1x0, ∀n ≥ 1,

where {u(n,i)} is a sequence in Cn such that r(n,i)Bi(u(n,i), y) ≥ 〈u(n,i)−y, Ju(n,i)−Jy(n,i)〉,

y ∈ Cn, {α(n,i)} is a real sequence in (0, 1) such that limn→∞ α(n,i) = 0, and {r(n,i)} is a

real sequence in [ai,∞), where {ai} is a positive real number sequence, for every i ∈ Λ.

Then the sequence {xn} converges strongly to Proj∩i∈ΛV I(C,Ai)
⋂
∩i∈ΛSol(Bi)x1.
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Proof. First, we define a new operator Mi by

Mix =


Aix+Nc(x), x ∈ C,

∅, x /∈ C.

Hence, Mi is maximal monotone and M−1
i (0) = V I(C,Ai) [9], where M−1

i (0) stands for

the zero point set of M . For each ri > 0, and x ∈ E, we see that there exists an unique

xri in the domain of Mi such that Jx ∈ Jxri + riMi(xri), where xri = (J + riMi)
−1Jx.

Notice that zn,i = V I(C, 1
ri

(J − Jxn) + Ai), which is equivalent to 〈zn,i − y, riAizn,i +

(Jzn,i − Jxn)〉 ≤ 0, ∀y ∈ C, that is, 1
ri

(
Jxn − Jzn,i

)
∈ Nc(zn,i) + Aizn,i. This implies

that zn,i = (J + riMi)
−1Jxn. From [23], we find that (J + riMi)

−1J is closed quasi-

φ-nonexpansive with Fix((J + riMi)
−1J) = M−1

i (0). Using Theorem 3.1, we find the

desired conclusion immediately.
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