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1. Introduction
The study of unique common fixed points of mappings satisfying certain contractive conditions

has been at the centre of rigorous research activity. During the sixties, the notion of 2 -metric

space was introduced by Gahler [3] as a generalization of usual notion of metric space (X ,d )

But many other authors proved that there is no relation between these two functions. For instance,
Ha et al. [4] showed that 2 -metric need not be continuous function on its variable, where as the
ordinary metric is. These considerations led by Dhage [2] in 1992 to introduce a new class of

generalized metric spaces called D -metric space as a generalization of ordinary metric spaces
(X,d). However Z. Mustafa and B. Sims [5] have demonstrated that most of the claims
concerning the fundamental topological structure of D -metric space are incorrect. Alternatively,

they have introduced [7] more appropriate notion of generalized metric space which called G -

metric space. They generalized the concept of metric, in which the real number is assigned to
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every triplet of an arbitrary set. Based on the notion of generalized metric spaces, Mustafa et al.
[6-8] obtained some fixed point theorems for mappings satisfying different contractive

conditions.

2. Preliminary Notes

Definition2.1[7]-Let X be nonempty set and letG : X x X x X — R" be a function satisfying
(G1) G(X,y,2)=0if x=y=12

(G2) 0<G(x,x,y) forall X,ye X with x#y

(G3) G(X,X,¥)<G(x,y,z) forall X,y,ze X with z#y
(G4) G(x,¥,2)=G(

X,2,Y)=G(Y,Z,X)+...
(G5 G (X, Y, Z) <G (X, a, a) +G (a, Y, Z) forall x,y,z,ae X (rectangular property)
Then the function G is called a generalized metric space or more specifically a G -Metric on X

and the pair (X,G) is G -Metric space.

Proposition 2.2[7] - Let (X,G) is a G - metric space. Then for any X,Yy,z,a in X , it follows
*G(X,Y,2)<G(X,%,Y)+G(X,x,2)

*G(X,Y,y)<2G(y,x,X)

*G(x,y,2)<G(x,a,2)+G(a,y,z)
e G(x, y,z)S%{G(x, y,a)+G(xa,2)+G(a,y,z)}

*G(x,y,2)<G(x,a,a)+G(y,a,a)+G(z,a,a)
Definition 2.3[7]- Let (X,G)be a G - metric space, and let {X, | be a sequence of points of X . A

point X € X is said to be the limit of the sequence {x,}if imG(X,X,,X,)=0and one says that

272 T 'm

the sequence {X,}is G -convergent to X. Thus, that is X, — 0in G -Metric space(X,G), then

for ¢ > O there exist N eN Such that G(X X, X )<5, for alln,m > N (we mean by N the set of

> 2 'm

natural number).



SOME FIXED POINT THEOREMS FOR G-METRIC SPACES 3

Definition 2.4[7] - Let (X , G) be a G - metric space. Then for a sequence {Xn} in X and a point
X e X, the following are equivalent:

o {Xn} is convergent to X

® G(X,,X,,X) >0 as n—>o0

n>“n>

X ,X)—)O as N — o

e G(x,,X
® G(X,,X,,X)—>0 as n,m—> oo

Definition 2.5[7] - Let (X,G)be a G- metric space. A sequence {Xn} is called G -Cauchy if
given £>0 , there is N e N such that G(Xn,Xm,X|)<8 , for all I,m,n>N . That is
G (Xys Xps X ) > 0asn,m,I — oo

Definition 2.6[7]- In a G - metric space, ( X,G ) ,the following are equivalent.

(1) The sequence {Xn} is G -Cauchy sequence.

(2) For every ¢ > 0, there exist N €N such thatG (Xn, Xy Xm) < ¢, forall nm>N.
Definition 2.7[7]- Let( X ,G)and(X ',G')be two G -metric space, and let f :(X,G)— (X',G')
be a function, then f is said to be G —continuous at a point a e X iff, givene >0, there exists
& >0such that X,y e X;and G(a,x,y)< §impliesG'( f(a), f(x),f (y)) <é&. A function f is
G —continuous at X iffit is G —continuous at all ae X .
Definition2.8[7]- A G -metric space (X , G) is called symmetric G -metric space if
G(X,Y,Y)=G(y.x,x)forall x,ye X.
Proposition 2.9[7]- Every G -metric space (X , G) induces a metric space (X ,dg ) defined by

ds (X%, ¥)=G(X¥,y)+G(Yy,x,x),
Forallx,ye X .

Note that if (X ,G)is symmetric, then

ds (X, y)=2G(x,y,y)forall x,ye X.
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However, if (X,G) is not symmetric then it holds by the G metric properties that
%G(x, y,y)<dg (X, y)<3G(x,y,y)forx,ye X . AlsoG(x, y,y)z%dG (x,y)forallx,ye X .

Definition 2.10[7]- A G -metric space (X,G)is said to be G —complete if every G- Cauchy
sequence in (X,G)is G —convergent in (X,G).
Proposition 2.11[7]- A G -metric space (X,G)is G —complete iff (X,dg )is a complete metric

space.

Lemma 2.12[7]- Let (X,G) is a G - metric space. If sequence {Xn} in X converges to Xand
{Y,} converges toy, then imG(X,,Y,,Y,)=G(X,Y,Y).

Lemma 2.13[7]- Let (X,G) is a G - metric space and {yn} is a any sequence satisfying
G (Yours Yost> Yo ) SK"G (Y, ¥;» Y, ) where k <1, then {y,} is Cauchy sequence.

Definition 2.14- Let (X,d) be a metric space and f &g are self maps of X .if

lim fx, =lim gx, =t for some t € X then ( f,g)is called semi compatible if lim fgx, = gt holds.
Now we define semi compatibility on G metric space.

Definition 2.15- Let (X ,G)be a G-metric space and f and g be two self maps of X . Then pair
(f.g ) is called semi compatible if whenever {Xn} in X such that { fxn} and {gxn} are G -
convergent to some t € X then limG ( fgx,, gt,gt)=0 .

Theorem 2.16- Let (X ,d ) be a complete metric space and f & gbe a function mapping X into
itself, satisfying the following conditions

(a) d(fx, fy)>ad(fx,gx)+bd(fy,gy)+cd(gx,gy)

Where a,b, ¢ are numbers, satisfya>1,c>1,beR (a+b+c>1).

(b) Pair (f,g)is semi compatible with g is continuous.

Then, f & ghave a unique common fixed point in X .

Proof- Let x,be any point in X .Then there exist point X, € X such that fx = gx,.We define a

sequence fX. ., =0X, =Y,where n=0,1,2... . Now by using (a)
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d( fx,, fx,,,)=ad ( fx,,gx, )+bd (X, 0., )+cd (9., 9x,., )
d (Vo> ¥a) 2 @d (Yois Yo ) +0A (Vs Yo ) +€A (Vs Vo)

I-a a
d Y. )< ——d ,Y,)- Since <1 therefore a+b+c>1.
(yn+l yn) b+C (yn—l y) b+C

Let p= ;):2 thend (Y,.,. Y, )< Pd (Y, Y, ), by similar argument it yields

d (Yoo ¥a) S P (Yor 1) (1)
Now we prove that {y, } is a Cauchy sequence. For some m,n(m> n)we have

d (Yo, Yo ) <A (Vo Yo )+ (Voets Yo )+ -+ 0 (Vois Vi) - Since m>n Jlet m=n+k we have
A (Yns Y ) <A (Vs Your )+ 0 (Yaurs Yoz )+t & (Vauscrs Y ) By (1) this yields

d(Yor V) S P"d (Vo ¥ )+ P (Vo ¥y )+t P (Y0 Y)
< p”(1+ P+p ..+ pk‘l)d(yo,yl)

d(Y,,Yn)<p" 1-p" d(Yyy,)< P d(Yy. )
n>Jm l—p 0> 71 l—p 0° 71

Since p < Itherefore taking limit N — oo .This yields d(,,Y,)—> 0and hence {y,}is a Cauchy
sequence. So it will be convergent at some point Uin X orlim fX, =limgx, =u. Since pair
(f, g) is semi compatible, this yield lim fgx, = gu. Also g is continuous then limggx, =gu .
Now by using (a)

d( fx,, fox,)>ad ( fx,, gx,)+bd ( fox,,ggx, )+cd (gx,, 9gx, ).

Now limitingn — <o, d(u,gu)>ad (u,u)+bd (gu,gu)+cd (u,gu).

Since € >1, this yields gu =u. Again by using (a)

d(fu, fx,)>ad( fu,gu)+bd(fx,,0x,)+cd(gu,gx,) . Now limiting n—c , we have
d(fu,u)>ad(fu,u)+bd(u,u)+cd(u,u) . Since a>1 this yields fu=u . Therefore u is
common fixed point of f &g . Let V is another fixed point of f & g . Then by using (a),
d( fu, fv)>ad( fu,gu)+bd ( fv,gv)+cd(gu,gv).

Since ¢ > 1this yields U=V, and hence uniqueness proved.
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Corollary 2.17- Let (X,d)be a complete metric space and f be a function mapping from X
into itself, satisfying the following conditions

(a) d(fx, fy)>ad(fx,x)+bd(fy,y)+cd(x,y)

Where a,b, ¢ are numbers, satisfya>1,c>1,beR (a+b+c>1).

Then, f has a unique fixed point in X.

Corollary 2.18- Let (X,d ) be a complete metric space and f & gbe a function mapping from
X into itself, satisfying the following conditions

(a) d(fx, fy)>ad(fx,gx)+bd (fy,gy)+cmin[d(fy,gx),d(fx gy).d(gx ay)]

Where a,b, ¢ are numbers, satisfya>1,beR(a+b>1) & c>1.

(b) Pair (f,g)is semi compatible with g is continuous.

Then, f & ghave unique common fixed point in X .

3. Main Results-

Theorem 3.1-Let (X ,G)be a complete G -metric space and f,g: X — X are mapping satisfies

the following conditions

(a) G(fx, fy, fy)>aG( fx,gx,gx)+bG ( fy, gy, gy)+cG (gx, gy, gy)
Or
(b) G(fx, fx, fy) > aG( fx, fx, gx)+bG ( fy, fy,gy)+cG(gx, gx,gy)

Forallx,ye X, where a>1,c>1&beR (a+b+c>1)
If f(x)cg(x)and pair (f,g)is semi compatible, also g is continuous, then f & g have

unique common fixed point in X .

Proof- Suppose that f & g satisfy the condition (a) and (b). If (X,G)is symmetric, then by

adding these, we have
a b C
ds (fx, W)sze (fx, gx)+5dG (fy, gy)+5dG (9x,9y)

a b C
e (P 9%) +=de (T, 9y) + 2 ds (9%, 9Y)
dg (fx, fy)>ad; ( fx, gx)+bd; (fy,gy)+cdg (9x, gy)
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In this inequality sincea+b+c>1 & X,y € X, the existence and uniqueness of common fixed
point follows from theorem (2.16). However If (X , G) is

Non-symmetric then by definition of metric d; on X and proposition (2.9),
ds (fx, fy)=G(fx, fy, fy)+G( fx, fx, fy)

a b C
dg (fx, fy)> EdG (fx, gx)+§dG (fy, gy)+§dG (gx,qy)

a b C
546 (. 9x) +2dg (T, 9y) + 3 (9. 9Y)
2a 2b 2c .
dg (fx, fy)> ?dG (fx, gx)+?dG (fy, gy)+?dG (gx,gy), for all X,y e X, here the expansive

factor % + 23—b + 2 %(a +b+c) need not be less than 1 .Therefore metric dg gives no

information. But the existence of fixed point can be proved by using the properties of G -metric
space.

Let x,be an arbitrary point in X . We define the sequence fx,,, = gx, =Y,,n=0,1,2..and then
condition (a) implies that,

G(fx,, X, I, ) = aG (X, 9%,, 9X, ) +bG ( X,.,, 9%, 0%,y ) +CG(9X,, OX,,ps 0%y )

G (Yot Yos Ya) 238G (Yot Yos Yo ) DG (Vs Yoo Yot ) G (Yo Yors Vo)

a 1-a
G(YsYours Yo ) S——G (Y, 5 Y,» Y, ) » Since <lora+b+c>1 . Let gq=—— then
(Yo Yot Vo) - (Yot> Vs V) . 1=

G (Yo Yaurs Yor) GG (Yais Vs ¥y ) -Continuing in same argument we will have
G (Yo Yaurs Y1) Q"G (Yo, ¥,0 ¥, ) - By lemma (2.13), {y,}is a G—Cauchy sequence, then by
completeness of (X, G), there exist U e X such that {y, }is G -convergent tou.
Consequently lim fx, =u & limgx, =u. Since pair ( f,g ) is semi compatible then
limG( fgx,,qu, gu) =0= lim fgx, = gu.Also g is continuous thenlim ggx, = gu .
Now by using (a),
G( fox,., fx,, fx,) > aG( fgx,, ggx,, ggx, )+ bG ( fx,, 9x,, gx, ) +CcG( 9gx,, 9X,, gX, )
Now limiting n — coyields G(gu,u,u)>aG(gu,gu,gu)+bG(u,u,u)+cG(gu,u,u)

Since ¢ > 1this yields gu = u . Again by using (a)
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G( fu, fx,, fx,) > aG( fu,gu, gu)+bG( fx,, 9x,, 9x, ) +cG(gu, gx,, 9x, ).
Now limiting N — oo yields G( fu,u,u)>aG( fu,u,u)+bG(u,u,u)+cG(u,u,u). Sincea>1,
yields fu =u. This shows that U is common fixed point of f and g.
Uniqueness-Let vbe another fixed point of f & g then by (a),
G( fu, fv, fv) > aG( fu,gu, gu)+bG( fv,gv, gv)+cG(gu,gv,gv)
G(u,v,v)=aG(u,u,u)+bG(v,v,v)+cG(u,v,v).Since ¢ >1this yields u=v
If f & gsatisfy condition (b) then the argument is similar to the above. However to show that
sequence {Y, } is G —Cauchy. By using (b),
G(fx,, fx,, fx,,, ) =aG(fx,, fx,, 9%, ) +bG ( fx.,,, fX.,;, 0%, ) +CG(9X,, 9%, 9X,., )
G (Vo> Yors Yo ) 2 8G (Yois Yoots Yo ) # DG (Vs Vs Vot )+ CG (Vas Vas Vi)

1-a . 1-a 1-a
G(Yrs Y Yo ) S——G(Y, 5 Yiis Yy ) - Since <1.Let——=q, then
(Yns Yo Yoot S 5 G (Yo Yoo o) e L

G (Yn» Yas Y1) SAG (Yot Yours ¥a ) - Continuing in same argument we have

G (Vo Yoo Yoet ) <0"G (Y5 Yo» ¥y ) - By lemma (2.13) {y, } is G Cauchy sequence.

Corollary3.2- Let (X ,G) be a complete G -metric space and f,g:X — X be a mapping
satisfies the following condition,

(a) G(fmx, fmy, fmy)ZaG(fmx,gmx,gmx)+bG(f”‘y,gmy,gmy)+cG(gmx,gmy,gmy)

Or

(b) G(F™x, ™%, f"y)>aG(f"x, f"x,g"x)+bG(f"y, f"y,g"y)+cG(g"x.g"x.g"y)
Forallx,ye X, where a>1,c>1&beR (a+b+c>1)

If f(X)g g(X) and pair (f,g) is semi compatible, also ¢ is continuous, then f & g have
unique common fixed point in X .

Proof- From the previous theorem we see that f™ & g™ have unique fixed point (sayu ), that is
f"(u)=u & g"(u)=u. But f (u)=f ( fm (u)): fm ( f (u)), therefore f (u) is another fixed
point of f™. And by uniqueness f (u) =U. By similar argument that ¢ (u) =U.Therefore Uis

unique common fixed point of f & ¢ .
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If we take g is an identity map in theorem (3.1) we get following corollary
Corollary 3.3- Let (X ,G)be a complete G -metric space and f : X — X be a mapping satisfies

the following condition

(a) G( fx, fy, fy)>aG( fx,x,x)+bG( fy,y,y)+cG(X,Y,Y)
Or
(b) G(fx, fx, fy)>aG( fx, fx,x)+bG (fy, fy,y)+cG(x,x,y)

Forallx,y e X ,where a>1,c>1&beR (a+b+c>1)

Then f has unique fixed point in X .
Proof- This will follow theorem (3.1) and can be proved with the help of corollary (2.17).

Corollary3.4- Let (X,G)be a complete G -metric space and f : X — X be a mapping satisfies
the following condition

(a) G(fmx, fmy, fmy)ZaG(fmx,x,x)+bG(f'“y,y,y)+cG(x,y,y)

Or

(b) G(f™x, f"x, f"y)>aG(f"x, f"x,x)+bG(f"y, "y, y)+cG(x.X,y)

Forallx,ye X , where a>1,c>1&beR (a+b+c>1)

Then f ™ has unique fixed point in X .

Proof- From the previous corollary we see that f™ has unique fixed point (say u ), that is
f"(u)=u. But f (u)=f(f"(u))=f"(f(u)), therefore f (u) is another fixed point of f™ .
But by uniqueness f (u)=u.

Theorem 3.5-Let (X ,G)be a complete G -metric space and f,g: X — X are mapping satisfies

the following conditions

(a) G(fx, fy, fy)>aG( fx,gx, gx) +bG( fy, gy. gy)

+cmin| G( fy,gx,9x),G( fx,9y,9y),G (g, 9y, gy) |
Or

(b) G( fx, fx, fy) = aG( fx, fx, gx)+bG  fy, fy, gy)
+cmin[ G (fy, fy,9x),G (fx, x, gy).G (% 9%, ay) ]

Forallx,y e X , where a>1,beR(a+b>1) & ¢>2
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If f(X)g g(x) and pair (f,g) is semi compatible, also g is continuous, then f & g have

unique common fixed point in X .

Proof- Suppose that f & g satisfy the condition (a) and (b). If (X,G)is symmetric, then by

adding these, we have
a b c .
de ( f, fy) >0 (f, gx)+5dG (fy, gy)+5mm[dG (fy.0x).dg (. 0y).ds (9%, 0y) ]

a b c .
+5de (fx, gx)+5dG (fy, gy)-i-EmlIll:dG (fy.9x).d (fx,0y).ds (9%, )]
dg ( fx, fy) > adg ( x, 9x)+bd, ( fy,gy)+cmin| dg (fy,gx).dq (X, gy).ds (9%, gy)]
In this inequality since a+b+c>1& x,y € X, the existence and uniqueness of common fixed

point follows from corollary (2.18). However If (X ,G)is non-symmetric then by definition of

metric d; on X and proposition (2.9),

ds (fx, fy)=G( fx, fy, fy)+G( fx, fx, fy)

| o

b .
de (fx, fy) = =dg (fx, gx) +§dG (fy,gy) +§m1n [ds (fy,0x),dg (%, 0y),dg (9%, 9y) |

b c .
+=dg ( X, gx) +§dG (fy, gy)+§mm[dG (fy,9x).ds (%, 9y).ds (0%, 0Y) |

o WL

a 2b 2c .
de ( f, gx)+?dG (fy, gy)+?mm[dG (fy,9x).dq (fx,9y).dg (g%, gy) ] For all

dG(fx,fy)z?

X,y € X, here the expansive factor 2a + 23—b+% = %(a +b+ C)need not be less than 1.Therefore

metric dg gives no information. But the existence of fixed point can be proved by using the

properties of G -metric space.

Let x,be an arbitrary point in X . We define the sequence fX,,, = gx, =Y,,n=0,1,2..and then

condition (a) implies that,

G( fx,, fx

n+12

X, ) = aG (X, 9%,, 9%, ) +bG (X ,,, 9X..;, 90X, )

+cmin| G(X,,,,9%,,9%,),G( X, 0%,.., 0%, ), G (9%,, 0%,... 9%, ) |
G (Yo1s Yns Y ) 2 @G (Yois Yo Yo ) + DG (Vs Yot Vi)
+cmin| G ( Yy, Y Ya)2G (Yot Yours Yaer )-G (Yoo Yot Your )|
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G(yn,yn+l,yn+1)£1_TaG(yn_l,yn,yn) , Since 1_Ta<10r a+b>1 . Let q:I_Ta then

G (Yns Yost> Your ) SAG (Voys Y ¥, ) -Continuing in same argument we will have

G(Yns Yost> Yo ) <0"G (Yo, Y1, ¥, ) - By lemma (2.13), {y,}is a G —Cauchy sequence, then by
completeness of (X ,G), there exist U € X such that {yn} is G -convergent toU.

Consequently lim fx, =u & lim gx, =U. Since pair ( f, g)is semi compatible then

limG ( fgx,,gu,gu)=0=> lim fgx, = gu.Also g is continuous thenlim ggx, = gu.
Now by using (a),

G( fox,, fx,, fx,)>aG( fgx,, ggx,, ggx, ) +bG( fx,, 9x,, gx, )

+cmin| G( fx,,9gx,, 99x, ),G ( fox,, 9x,, 9%, ), G (9gx,, ox,, ox, ) |

Now limiting N — cowe get,
G(gu,u,u)zaG(gu,gu,gu)+bG(u,u,u)+Cmin[G(u,gu,gu),G(gu,u,u),G(gu,u,u)]
By proposition (2.2) it can be easily obtained that
G(gu,u,u)2cmin[%G(gu,u,u),G(gu,u,u),G(gu,u,u)}

G(gu,u,u)> CZG (gu,u,u). Since ¢ > 2 this yields gu = u. Again by using (a)

G( fu, fx,, fx,)>aG( fu,gu, gu)+bG( fx,, gx,, 9x,)

+Cmin[G(fxn,gu,gu),G(fu,gxn,gxn),G(gu,gxn,gxn)]

Now limiting n — o

G(fu,u,u)>aG( fu,u,u)+bG(u,u,u)+cmin| G(u,u,u),G( fu,u,u),G(u,u,u)]
G(fu,u,u)>aG( fu,u,u). Since a>1, this yields fu=u. Therefore Uis common fixed point of

fand g.

Uniqueness can be easily proved for this theorem.

If f & gsatisfy condition (b) then the argument is similar to the above theorem. However to
show that sequence {yn} is G -Cauchy. By using (b),

G( fx,, fx,, fx,.,)=aG( fx,, fx,,gx,)+bG (.., ..., 0X,,, )
+C min [G ( an+l 4 an+1 4 an )7 G ( fXn > fxn > an+l ) > G (gxn 4 an 4 an+l ):I
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G (Yaut> Youts Ya) 2 8G (Vors Yours Yo )+ DG (Vo Yos Yot )
+cmin| G (Vs Vs Y )»G (Yot Yars Yot )»G (Yoo Yoo Vo ) |

G(yn,yn,yn+l)§1_—aG(yn_1,yn_l,yn) , Since 1_Ta<10r a+b>1 . Let = then

l1-a
b b

G (Vn» Yas Y1) SAG(Yoi»> Yors ¥y ) - Continuing in same argument we will have

G(Yns Yo Va1 ) <0G (Yo, ¥o» ¥, ) - By lemma (2.13), {y, } is a G —Cauchy sequence.

Corollary3.6- Let (X,G)be a complete G -metric space and f,g:X — X be a mapping

satisfies the following condition,

G(f"x, f"y, f"y)=aG(f"x,g"x,g"x)+bG(f"y,g"y.g"y)
+Cmin[G(f”‘y,g’“x,g”‘x),G(fmx,g”‘y,g’“y),G(gmx,gmy,gmy)]

Or

G(fmx,f”‘x,fmy)zaG(fmx,fmx,gmx)+bG(f’“y,f”‘y,gmy)
+Cmin[G(f’“y,f”‘y,g”‘x),G(fmx,fmx,gmy),G(gmx,gmx,g’“y)}

Forallx,y e X , where a>1,beR(a+b>1) & ¢>2

If f(x)cg(x)and pair (,g)is semi compatible, also g is continuous, then f & g have

unique common fixed point in X .

Proof- We use the same argument as in corollary (3.2).
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