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1. Introduction

  Male reproduction and its development can be affected by 

exposure to a wide variety of agents including dioxins, poly-

chlorinated biphenyls (PCBs), phyto-estrogens such as iso-flavones, 

heavy metals, chlorination disinfection by-products in water, organic 

solvents, poly-aromatic hydrocarbons, particulate air pollution, and 

caffeine. These toxic chemicals had been suggested to disturb the 

pro-oxidant/antioxidant balance leading to excessive generation of 

free radicals[1]. Also, it has been observed that the oxidative damage 

to testicular cells induced by various pro-oxidants or ROS can cause 

testicular dysfunctions. And as such cause male infertility[2]. Cellular 

oxidative damage becomes apparent when oxidants overwhelm the 

antioxidant defence system in cells. The excess oxidants take part in 

specific and non-specific reactions with nearby cellular components 

such as unsaturated lipids, proteins and DNA, and as such impairing 

normal cellular processes[3, 4]. It can also arise from a high turnover 

of oxidants by cells or due to the low levels of enzymatic and non-

enzymatic antioxidant defence molecules[5, 6]. 

   It is a common practice throughout the world to collect, transport, 

recover and recycle waste auto-batteries on account of their value 

as a major source of lead units. This has led to a collection method 

whereby auto-battery wastes are gathered from their generational 

sources, sorted, and delivered to the secondary smelter for recovery 

of lead and other materials[7-10]. However, the search for the lead as 

raw material has increased its recycling rates in the societies.

   Previous studies in our laboratory have implicated leachate 

sources with cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), 

manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn) [11, 12], 
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and these metals have also been reported to exceed the maximum 

permissible concentration for drinking water[13, 14]. Moreover, high 

levels of Cd, Cr, Fe, Mn, Pb and Ni in leachate have been reported to 

cause in vitro oxidative damage in livers, hearts and kidneys; also as 

evidence of environmental contamination[12]. The possible sub-chronic 

deleterious effects of this effluent/leachate in exposed rats on prostate, 

steroidogenesis and sex hormones have also been reported [15, 16]. 

Likewise, the leachate from small scale industry in Nigeria has been 

reported to activate key enzymes linked to Non-insulin dependent 

diabetes mellitus (NIDDM) [17].

   In Nigeria today, the recycling rate for batteries containing Co, 

Ni, Cr and Cd is generally low. Even, the few common methods of 

waste recovery currently being practiced contradict the approved 

standard recommended by the regulatory agencies[18]. Elewi odo 

municipal battery recycling site, located in ancient city of Ibadan, 

Ibadan North Local Government Area (INLGA) of Oyo State, 

Nigeria. The site is largely set aside for recycling of auto-battery 

wastes. It is sited at the back of a stream of the residential area. 

It covers about 2 acres of land which generates a liquid material. 

The liquid material is known as leachate; discharged from heap of 

auto-battery recycling wastes into the drinking water body, thereby 

polluting the entire environment. Information regarding the effects 

of sub-chronic exposure to leachate (mixture of chemicals) from 

Elewi Odo municipal auto-battery recycling site (EOMABRSL) 

on relevant antioxidant enzymes in the testes is scanty[19]. Also its 

resultant effects on sperm parameters are not fully elucidated. This 

poses a great concern to Nigeria regulatory agencies and the entire 

communities. This study was aimed to evaluate the toxic effect 

of EOMABRS-leachate on both enzymatic and non-enzymatic 

antioxidants and to fully know its resultant effects on sperm index 

using male rats. 

2. Materials and methods

2.1. Sampling site and leachate preparation

  The leachate was obtained from Elewi Odo municipal battery 

recycling site, located at Ibadan North LGA  of Oyo State, Nigeria 

(latitude7⁰25.08’N and 7⁰25.11’N and longitudes 3⁰ 56.45’E and 3⁰ 
56.42’E). A randomized sampling technique was employed to collect 

the first horizon solid soils (0-15 cm deep) from different points 

on the municipal auto-battery recycling site. At least five randomly 

collected samples from each site were pooled to make a single 

representative sample. The sample was air-dried, finely ground with 

a mortar and pestle, and sifted through a 63-μm (pore size) sieve to 

obtain a homogenous mixture.

   Leachate (100%) was prepared from homogenous mixture 

according to the procedure of Ferrari et al[20] with little modification 

by adding 100 g of sample to 100 mL of distilled water (w/v) and 

shaken for 48 h at 32 曟. Thereafter, the sample was left to sediment 

for 30 min, and the supernatant was filtered with a 2.5-μm filter 

paper; the filtrate was stored at 4 曟 for further use. The leachate 

from Elewi Odo municipal auto-battery recycling site was designated 

as EOMABRSL. Sample waters were collected from well around the 

site. They were designated as WELL-A and WELL-B. The stream 

water collected near the site was regarded as STREAM; the drinking 

water sample (8 km far from recycling site) was collected and used 

as reference control (designated as CDW).

2.2. Heavy metal analysis

   Nine metals viz copper (Cu), lead (Pb), cadmium (Cd), cobalt (Co), 

chromium (Cr), zinc (Zn), iron (Fe), nickel (Ni) and manganese 

(Mn) were analyzed in the EOMABRSL, well and control water 

sample. Briefly, 100 mL each of EOMABRSL and water sample 

was digested by heating with concentrated HNO3 and the volume 

was reduced to 2-3 mL. This volume was made up to 10 mL with 0.1 

N HNO3 and the concentrations of the metals were estimated using 

atomic absorption spectrophotometer (AAS) [21]. The levels of these 

metals were assessed because of their reported occurrences in both 

solid and liquid wastes in Nigeria[11].  

2.3. Chemicals and reagents

    Epinephrine, Reduced GSH, 5, 5-dithio-bis-2-nitrobenzoic acid, 

hydrogen peroxide and thiobarbituric acid (TBA) were purchased 

from Sigma (St Louis, MO, USA). Except stated otherwise, all other 

chemicals and reagents were of analytical grades and were obtained 

from the British Drug Houses (Poole, Dorset, UK) and the water 

used was glass distilled.

2.4. Experimental protocol

   Thirty adult male wistar rats weighing approximately (128±19.24) g 

obtained from the Department of Physiology, University of Ibadan, 

Nigeria were randomly assigned into 6 groups of 5 animals per 

group. They were housed in a plastic suspended cage placed in a 

well ventilated rat house, provided rat pellets and water ad libitum, 

and subjected to a natural photoperiod of 12 h light and 12 h dark 

cycle. All the animals received humane care according to the criteria 

outlined in the ‘Guide for the Care and Use of Laboratory Animals’ 

prepared by the National Academy of Science and published by the 

National Institute of Health. Ethic regulations have been followed 

in accordance with National and institutional guidelines for the 

protection of animal welfare during experiments[22].

   The rats in group 1 served as control and were administered 1 ml of 

distilled water by gastric intubation. Animals in groups 2–6 received 

1 ml each of 20%, 40%, 60%, 80%, and 100% of EOMABRL, 

respectively, by gastric intubation. The experiment lasted for 60 days 

(sub-chronic exposure). The animals were fasted overnight, weighed 

and sacrificed by decapitation 24 h after the last treatment, testes and 

epididymes were removed and cleared of adhering tissues, washed 

in ice-cold 1.15% potassium chloride and dried with blotting paper. 
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The absolute weights of the rats and relative weight of testes were 

recorded in gram (g). 

2.5. Biochemical assay

   The testes were homogenized in 50 mM Tris–HCl buffer (pH 

7.4) containing 1.15% KCl and the homogenate was centrifuged 

at 10 000 g for 15 min at 4 曟. The supernatant was collected for 

the estimation of catalase (CAT) activity using hydrogen peroxide 

(H2O2) as substrate according to the method of Clairborne[23]. 

Also, H2O2 level was estimated using the method described by 

Clairborne[23]. Superoxide dismutase (SOD) activity was determined 

by measuring the inhibition of autoxidation of epinephrine at pH 

10.2 at (30±1) 曟 according to Misra and Fridovich[24]. Protein 

concentration was determined by the method of Lowry, et al [25].

2.5.1. Reduced glutathione (GSH) assay
   Reduced glutathione (GSH) was determined at 412 nm using the 

method described by Jollow, et al [26].

2.5.2. Lipid peroxidation assay
   Lipid peroxidation was quantified as malondialdehyde (MDA) 

according to the method described by Ohkawa et al, [27] and 

expressed as μmol/mg tissue. 

2.5.3. Sperm analysis
   A small quantity of semen was collected from the caudal epididymis 

using needle and dropped onto the slide for 2 hrs to liquefy. 0.02 mL 

liquefied semen was diluted in 0.38 mL of 5% formol saline solution to 

make 0.4 mL solution (1 in 20 dilutions). Sperm motility was assessed 

by the method described by Zemjanis[28]. Epididymal sperm count or 

number was obtained as described by Pant and Srivastava[29]. Dead 

sperms and total sperm deformity were microscopically determined 

according to the method described by Wells and Awa[30]. Furthermore, 

daily sperm production was estimated according to method explained 

by Joyce, et al [31].The results were expressed as percentage.

2.6. Histopathological examination

   The testes were fixed in Bouin’s fluid for 24 hours, before they 

were cut longitudinally into 2 equal halves and again post-fixed in 

fresh Bouin’s fluid for next 24 hours. The tissues were dehydrated 

in the ascending strengths of alcohol, cleared in xylene. Infiltrated 

and embedded in paraffin wax, the tissue blocks were made, cut into 

5 μm thick sections using rotatory microtome. The sections were 

mounted on albumenized glass slides and stained with eosin and 

hematoxylin. Morphological study of testes was done with the help 

of ocular micrometer scale under light microscope.

2.7. Statistical analysis

   The results of the replicates were pooled and expressed as mean ± 

standard deviation. A one way analysis of variance (ANOVA) was 

used to analyze the results and Duncan multiple test was used for 

the post hoc[32]. Statistical package for Social Science (SPSS) 17.0 

for windows was used for the analysis and the least significance 

difference (LSD) was accepted at P<0.05.

3. Results

3.1. Heavy metal concentration in the leachate and water 
samples [15,16]

   The results of nine heavy metals such as copper (Cu), zinc (Zn), 

Lead (Pb), cadmium (Cd), manganese (Mn), Cobalt (Co), chromium 

(Cr) Iron (Fe) and nickel (Ni), obtained from  EOMABRSL, 

STREAM, WELL-A, WELL-B and CDW (control) are presented in 

Table 1. The heavy metal contents of the EOMABRSL ranged from 

0.006 mg/L (Cadmium) to 7.842 mg/L (Manganese). The heavy 

metal contents of the STREAM around the recycling site ranged 

Table 1 

Concentration of heavy metals detected in EOMABRSL, STREAM, WELL-A, WELL-B  and CDW[16].        

Parameter  EOMABRSL    STREAM WELL-A  WELL-B    CDW WHOLimits NESREA Limits
Cadmium 0.006 0.002 0.002 0.003 BDL 0.003 0.01

 Cobalt 0.049 0.004 0.003 0.002  BDL 0.05                 -
Chromium  0.068 0.011 0.015 0.014 BDL 0.05 0.05

Copper 0.341 0.012   0.010 0.010  BDL   2.00 -
 Iron 2.667  1.076  0.011 0.030  0.050 0.30    0.3

Manganese 7.842      0.223    0.239  0.239  BDL 0.40 -
Nickel   0.050 0.048   0.044 0.049 0.027 0.02  0.05
 Lead 0.015 1.548 0.068  0.306 BDL 0.01 0.01

 Zinc  0.010 0.126  0.053    0.011 0.010  3.00  -

EOMABRSL: Elewi Odo municipal battery recycling site leachate, CDW: Drinking water sample was used as control. All values are in mg/L.The contents of 

heavy metals detected in EOMABRSL, STREAM and WELLS around the site were higher than the drinking water sample (CDW) [14]. BDL- Below detection 

level [15], Least Observable Effective Concentration (LOEC) set by World Health Organisation[58, 62]; Permissible limits set by National Environmental 

Standard and Regulatory Enforcement Agency[59]. Values in the brackets: increase than the permissible limits in drinking water.
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from 0.002 mg/L (Cadmium) to 1.548 mg/L (Lead). The heavy metal 

contents of the WELL-A and WELL-B ranged from 0.002 mg/L 

(Cadmium) to 0.239 mg/L (Manganese) and 0.002 mg/L (Cobalt) 

to 0.239 mg/L (Manganese) respectively. And, the heavy metal contents 

of the control drinking water (CDW) ranged from below detection level 

(Chromium, Copper and Manganese) to 0.027 mg/L (Nickel). In addition, 

EOMABRSL: Cd (0.006 mg/L), Cr (0.068 mg/ L), Fe (2.667 mg/L), 

Ni (0.05 mg/L),  Pb (0.015 mg/L) and Mn (7.842 mg/L) were higher 

by 2.00, 1.36, 8.89, 2.50, 1.50 and 19.61-folds respectively (Table 

1) when compared with the acceptable limits set by World Health 

Organisation (WHO). Also, similar trend occurred when compared 

with regulatory limits given by National Environmental Standard 

and Regulatory Enforcement Agency (NESREA). STREAM: Fe 

(1.076 mg/ L), Ni (0.048 mg/L) and Pb (1.548 mg/L) were higher 

than WHO permissible limits by 3.59, 2.40 and 154.8-folds respectively 

(Table 1). WELL A: Ni (0.044 mg/L) and Pb (0.068 mg/ L) exceeded 

the WHO permitted limits in the drinking water by 2.20 and 6.80-

folds respectively. A similar trend was observed in WELL B as Ni 

(0.049 mg/L) and Pb (0.306 mg/L) exceeded WHO permissible 

limits in drinking water by 2.45 and 30.60-folds respectively. So, 

there was a considerable increase in the heavy metal contents of 

WELL A, WELL B and STREAM when compared with National 

Environmental Standard and Regulatory Enforcement Agency 

(NESREA). In contrast, Co, Cu and Zn were lower in all the samples 

when compared with the Least Observable Effective Concentration 

(LOEC) set by WHO and NESREA as shown in Table 1. 

3.2. Absolute and relative testicular weight gain

   The absolute weights of testes are presented in Table 2. The group 

treated with EOMABRSL depicted significant (P<0.05) decrease in 

the absolute weights of testes in a non-dose dependent manner when 

compared with the control group. Similarly, the relative weights 

(organ-to-body weight ratio) of testis are presented in Table 2. The 

group treated with EOMABRSL showed a significant (P<0.05) 

decrease in the relative weights of testis when compared with the 

control group.
Table 2

Effect of EOMABRSL on absolute and relative testicular weight gain of 

treated rats[15].

Groups Dose %    
Body weight 

gain (g) 

Testes weight

 gain (g)   

 Relative weight 

gain (g/b.wt)  
Control 0   206.000 ±19.500a   1.980±0.210a  0. 010 ± 0.001 
Group 1  20 194.000 ±32.100b 1.870±0.400b   0.008± 0.002b

Group 2 40 180.000 ±16.300c   1.880±0.040b 0.009 ±0.001a

Group 3 60 179.000 ±20.200c 1.710±0.060c 0.008±0.000b

Group 4 80   190.000 ±5.300b   1.880±0.230b  1.880±0.230b  
Group 5   100 174.000 ±36.300c    1.660±0.130d   0.007±0.001c

EOMABRSL significantly (P<0.05) decreased body weight, testicular 

and relative weight of treated rats.  n=5; Values with different superscript 

(P<0.05) are significantly different.

3.3. Antioxidant status in the testes

   The antioxidant levels, testicular marker enzymes and markers 

of oxidative stress were evaluated. The activity of SOD in the post-

mitochondrial fraction of rat testes increased significantly (P<0.05) 

by 20.6%, 24.4%, 23.0%, 19.8% and 63.6% respectively compared 

with the control group (Figure 1A). Similarly, CAT activity was 

significantly (P<0.05) elevated by 18.6%, 27.5%, 22.4%, 27.9% 

and 83.1% respectively when compared with the corresponding 

control group (Figure 1B). Administration of EOMABRSL caused a 

significant increase (P<0.05) in the production of hydrogen peroxide 

(H2O2), a testicular marker for reactive oxygen species (Figure 1C). 

Conversely, the reduced glutathione (GSH) levels were significantly 

(P<0.05) depleted in a dose-dependent manner by 21.8%, 27.6%, 

42.8%, 56.1% and 62.6% respectively relative to the control group 

(Figure 1D). The level of testicular total protein was significantly 

(P<0.05) decreased following exposure to EOMABRL (Figure 2A)
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Figures 1. (A-D):  Effect of EOMABRSL on the activity of superoxide 

dismutase (SOD), catalase (CAT) activity, hydrogen peroxide (H2O2) level 

and reduced glutathione (GSH) level in treated rats. 

n=5; values with different superscript (P<0.05) are significantly different.  

3.4. Marker of oxidative damage

   The levels of MDA (malondialdehyde), maker of lipid 

peroxidation, in testes increased significantly (P<0.05) in rats 

exposed to EOMABRSL by 105%, 82%, 71%, 132% and 168% 

respectively compared to the control group (Figure 2B).
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testicular lipid peroxidation (MDA) in treated rats.  

n=5; Values with different superscript (P<0.05) are significantly different.  

3.5. Sperm function

   Data on the sperm count, sperm motility and live/dead count 

b
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are presented in Figures 3 (A-C), Administration of EOMABRSL 

significantly (P<0.05) decreased sperm count (Figure 3A) and 

sperm motility (Figure 3B) by 25%, 26%, 32%, 26%, 27% and 

25%, 23%, 21%, 14%, 18% respectively, when compared with 

the corresponding control group. Conversely, percentage dead 

spermatozoa was significantly (P<0.05) elevated following 

exposure to EOMABRSL by 111%, 46%, 46%, 349% and 349% 

respectively, when compared with the corresponding control group 

(Figure 3C). Similarly, there was significant (P<0.05) increase in the 

total spermatozoa abnormalities/deformities in the EOMABRSL-

treated rats (Figure 3D) by 18.14%, 23.99%, 24.50%, 37.61% 

and 41.31% respectively when relative to the control group. 

Conversely, the treatment of EOMABRSL significantly (P<0.05) 

induced low daily sperm production as presented in Figure 3E  

by 34%, 38%, 37%, 35% and 34% respectively when compared 

with the control group. Additionally, animals that were exposed 

to EOMABRSL caused considerable significant abnormalities in 

sperm functions as depicted in table 3. The major abnormalities 

consisted of headless tails, bent tails, folded tail, curved mid-piece, 

amorphous head and bent mid-piece (Table 3). Amorphous head 

and headless tails occurred less frequently in the treated animals, 

while bent tails, folded tail, curved mid piece and bent mid piece 

constituted the major abnormalities in the treated animal (Table 3). 
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Figures 3. (A-E):  Effect of EOMABRSL on epididymal sperm count, sperm 

motility, dead sperm, total sperm deformity and daily sperm production in rat 

treated. 

n=5; Values with different superscript (P<0.05) are significantly different.  

Table 3
Some morphology characteristics of spermatozoa in rats exposed to EOMABRSL (%). 

Dose (%) AmorphousHead   Headless tail  Headless tail  Folded tail Curvedmid piece  Bent mid piece
0 0.74±0.01a 0.98±0.03a 1.72±0.03a 1.93±0.30a 1.80±0.14a 1.84±0.13a

 20 1.33±0.13b 1.24±0.02b  2.36±0.13b 2.57±0.13b 2.48±0.27b  2.42±0.14b

40 1.49±0.01c  1.34±0.17c 2.30±0.24b 2.47±0.03c 2.68±0.17c 2.45±0.02b 
60 1.47±0.02c 1.34±0.15c 2.42±0.24c   2.57±0.13b 2.55±0.17b 2.42±0.16b

80 1.48±0.03c 1.38±0.18c 2.49±0.02d    2.89±0.13d  2.73±0.22c 2.89±0.18c

100 1.38±0.18b  1.38±0.18c  3.03±0.34e 2.80±0.18d  2.60±0.27b  3.15±0.34d

Values represent Mean ± Standard deviation; n=5; Values with different superscript (P<0.05) are significantly different.  

3.6. Germinal epithelial cells and sperm damage

  In the control group, there was normal arrangement of tubules 

with intact interstitium (Figure 4 A). Also, large number of 

seminiferous tubules with regular and intact basement membrane 

was observed in control animals. The germ cells were arranged 

regularly. The line of cells was present from spermatogonia 

to spermatid. The spermatids attached normally to the sertoli 

cells. And the lumen contained the spermatozoa without 

slough. In the testes of animals treated with 20% EOMABRSL 

(Figure 4 B), testes showed shrinkage of seminiferous tubules. 

The interstitial space was degenerated coupled with necrosis. 

Basement membranes of the tubules were ruptured. Arrangement 

of germinal epithelium was distorted. The lumen contained 

slough with dead spermatozoa.  For animals exposed to 40% 

EOMABRSL (Figure 4 C), there was cellular lesions and 

degeneration of spermatids with dark ‘’ring-like’’. Also, nuclear 

chromatins clumping were seen in the epithelium and present 

free in the luminal of the tubules. Furthermore, severe damage 

was done to multinucleated giant cells of the seminiferous 

tubules (as shown in figure 4 D). Also, there was considerable 

loss of germ cells. Additionally, the damaged spermatids 

were inter-mixed with matured spermatozoa. Following 80% 

EOMABRSL exposure (as shown in figure 4 E), severe lesions 

had occurred which include loss of spermatids. Spermatocytes 

and Spermatogonia were brutally injured. Lastly, massive loss of 

germ cells (necrospermia) in 100% exposed animals (Figure 4 F). 

Seminiferous tubules and sertoli cells were devoid of germ cells. 
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Figure 4. (A-F): Microscopic findings of eosin and hematoxylin 5 毺m thick 
stained section of rat testes.
(L= lumen, ST= Spermatids, SC= Spermatocyte, SG= Spermatogonia, S= 
Sperm. LG= Leydig cell, CY=Cytoplasm, IS= Interstitial space, BM=Basement 
membrane).

4. Discussion

    The exposed animals showed psychomotor behavioural symptoms 

in the course of the experiment. This includes body weakness, loss 

of body hair, pus or discharge from the eyes and light weight. This 

suggests that EOMABRSL exposure could have some lethal effects 

in mammals. Also, the loss in absolute and relative testicular weight 

further validates its toxicity. Similarly, the considerable drop of 

relative testicular weight in experimental rat suggests testis toxicity 

[33]. This may consequently results to low sperm count[34]. It has been 

established that the weight of testes is largely dependent on the mass 

of the differentiated spermatogonia[19, 35]. However, the reduction in 

the relative weight of the testes may be traced to the depleted number 

of germ cells. This may be linked to inhibition of spermatogenesis 

and steroidogenic enzyme activity[36, 15]. Also, the observed weight 

loss of relative testicular organ may be linked to drastic reduction of 

sex/serum hormones in circulations[16]. This observation is in line 

with the finding of Schrade[37]. It also supported the reports of Gupta 

et al, [38] which stated that administration of pro-oxidants to wistar 

rats by oral route caused significant testicular weight loss. Hence, 

the significant weight loss in testes of EOMABRSL-treated rats 

speculates its reproductive toxicity.

    SOD generally dismutases the superoxide anion radicals into H2O2. 

This is degraded by CAT and GSH peroxidase using reduced GSH. 

Antioxidant enzymes CAT, peroxidases and SOD protect against 

tissue damage by inhibiting superoxide anions[39]. Reactive oxygen 

metabolites had been considered cytotoxic because of their ability 

to induce lipid peroxidation in membrane tissues[40]. As observed 

in the present study, EOMABRSL significantly overwhelmed the 

defence capacity of the testicular antioxidant enzymes of the treated 

rats. This further suggests that EOMABRSL could cause impairment 

to male testes through induction of oxidative stress after sub-chronic 

exposure. The increased activity of SOD may be linked to the high 

level of superoxide anions (02-) induced by EOMABRSL. Similarly, 

high activity of CAT suggests the precipitation of reacting oxygen 

species, H2O2 in the testicular tissue. This may leads to production of 

hydroxyl radical (OH•), causing damages to proteins; bio-membrane 

and DNA molecule of the testis. In the same vein, increase in the 

activity of CAT could also be linked to its induction to counter the 

effect of oxidative stress. The present investigation is consistent with 

earlier report of Guangke et al [41] and Farombi et al [11].

   The GSH plays a crucial role in protecting the cells from oxidative 

damage[42]. In our study, testicular GSH content was considerably 

depleted after EOMABRSL administration. This decline in GSH 

content under the present experimental model suggests unbalanced 

glutathione system. This is by causing oxidative stress under the 

influence of ROS generated from EOMABRSL in the testes. 

Consequently brings about the diminution of sperm counts[43].  

   Lipid peroxidation (LPO) has been associated with testicular 

toxicity and carcinogenicity[15]. Increased lipid peroxidation as 

observed in the present finding potentiates H202 and 02- to produce 

OH- in the presence of transition metals. However, OH- diffuses 

freely across biological membranes to initiate lipid damage[44]. 

The observation corroborates the earlier work which reported that 

elevated lipid peroxidation directly results from free radical-mediated 

toxicity[45-47]. Therefore, the mechanism by which EOMABRSL 

exerts its oxidative stress in male germinal cells may be related to its 

ability to increase lipid peroxidation. More so, the decrease in total 

protein content may be attributed to the direct inhibitory effect of 

EOMABRSL on protein synthesis[48].

   The abnormalities of sperm parameters observed in the study 

may be linked to the division and differentiation of immature 

spermatogonia into mature elongated spermatid within the testis. 

This supports the earlier work that a decrease in epididymal sperm 

count and increase in sperm deformities have been associated with 

immature differentiation of spermatocytes[49, 50]. Also, low daily sperm 

production in the sub-chronic exposed rats may not be unconnected 

to the sertoli cells that have been harmfully distorted [51]. In addition, 
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the observed infertile semen might be linked to its contamination 

with leukocytes; mainly neutrophils and macrophages. However, 

EOMABRSL is suspected as apoptotic and mutagenic agent to 

spermatozoa because Neutrophil-derived HOCl was recently 

reported to induce apoptosis in human spermatozoa[52]. Besides, 

necrotic damage of leydig and sertoli cells of the interstitial cells as 

revealed from the study may again lead to deformed spermatids and 

folded sperms. This could lead to motionless spermatozoa without 

flagella (amorphous head) in the lumen. 

   Hypothalamic hypophysis axis responsible for the development 

of spermatogenesis had been considered to be highly susceptible 

to lead and cadmium intoxication[53]. However, the direct injury 

on germ cells could be linked to the stable metabolites and other 

organic pollutants/species in the EOMABRS leachate. Cd had been 

implicated in prostate cancer[54, 55]. Pb, Fe and Mn were known to 

reduce sperm count and sperm motility[56]. Cr and Ni were identified 

as agents of enlarged intracellular spaces and dramatic loss of 

gametes in treated rats[57]. The spermatotoxic effect of this study may 

be attributed to high doses of Cd, Cr, Pb, Mn, Fe and Ni in EOMABRS 

leachate when compared with No Observable Effective Limit (NOEL) 

set by World Health Organisation[58] and National Environmental 

Standard and Regulatory Enforcement Agency[59]. The levels of 

inorganic elements in EOMABRSL were higher than STREAM, 

WELL-A, WELL-B and CDW. Their high levels may be because soil 

can easily form ligands with metals or it has high capacity to retain 

heavy metals than inorganic solvents[14, 16]. The bio-metal effects 

could be linked to individual, synergistic, antagonistic, competitive 

or collective interaction of the metals with normal body biochemical 

processes. When these metals are ingested, they are converted into 

their stable oxidation states (Fe2+, Pb2+, Cd2+ etc). They consequently 

combine with the body’s bio-molecules of the testes to form strong and 

stable chemical bonds, thus, mutilating their structures, hampering their 

functions to induce sperm toxicity [11, 12, 16]. Additionally, low doses 

of Co, Zn and Cu relative to WHO and NASREA limits as observed 

from the study could cause depletion of testicular antioxidant protein; 

GSH. The deficiencies of these trace elements had been implicated in 

decreased sex hormones and low testicular glutathione[60]. Therefore, 

interactions of heavy metals viz Cd, Cr, Mn, Pb, Fe, and Ni with 

other organic environmental pollutants in leachate from a small scale 

industry (battery recycling site) might suggest some certain health 

risk to testes and other related environmental problems. Also, this 

suggests that EOMABRSL would increase sperm abnormalities. 

This work supported the previous investigation which stated that 

increase in lipid peroxidation products had been associated with 

abnormalities in sperm morphology[61].

   Humans and animals are exposed to combined toxicants from the 

environment. Also, quest for industrial development of recycling 

products to boost economy in Nigeria is raising a serious burden 

of heavy metals and several organic pollutants to the environment. 

This might pose some threats to the reproductive health. However, 

administration of EOMABRSL had significant effects on both 

absolute and relative testicular weight. Formation of sperm 

abnormalities was increased. Antioxidant enzymes including 

superoxide dismutase and catalase were significantly altered in the 

testes resulting into increased lipid peroxidation. A reduced response 

on glutathione level in the testes was also observed. The mechanism 

of toxicity is not unlinked to individual, synergistic, antagonistic, 

competitive or collective interaction of the metals with normal 

testicular biochemical processes.  Taken together, we conclude that 

the possible mechanism by which interactions of heavy metals with 

other organic environmental pollutants in leachate at the investigated 

doses elicits sperm damage in rats could be through induction of 

oxidative stress and damage to germinal epithelial cells.
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