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Abstract 

In this paper we illustrate a new method of visualizing and projecting time series data using 

reservoir computing with clustering algorithms. We show the advantages of using clustering with 

reservoir to visualize data. Then we extend the clustering algorithm and use a fixed latent space to 

preserve the topology in the projection. We illustrate the method using airport and financial time 

series data. 
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1. Introduction 

Identifying structure in high dimensional data spaces is a difficult problem. One method 

frequently used is to project the data onto a low dimensional manifold and allow a human 

investigator to search for structure in this manifold by eye. There are many artificial neural network 

methods e.g., [7, 10, 12, 15, 21, 22] for projecting data onto low dimensional manifolds. In this 

paper, we will review a visualization method based on an artificial neural network which is 

specifically designed to display low dimensional projections of time series data. 

Time series data presents opportunities for projection which other data sets may not have: in a 

typical time series, nearby (in time) samples often have values which are close to one another. We 

will develop a neural network method which captures the dynamical nature of such data but projects 

the data onto a 2 dimensional manifold on which we can view the original time series. We will base 

the visualization property of the neural network on the neuroscale algorithm [23]. Since we wish to 

capture dynamical information we use a network that has a memory of the past - the echo state 

machine. 

It is well known that real biological neural networks have many feedback connections and it is 

recognized that such recurrent nets have information processing powers that feed forward neural 

networks do not have. However while we have efficient algorithms for training feed forward neural 

networks, no efficient algorithms have existed for recurrent neural net- works. Reservoir computing 

is a relatively new type of artificial neural network which attempts to overcome this known 

difficulty in training recurrent neural networks. We will concentrate on a type of reservoir known as 

Echo state networks [6, 13, 18, 19, 25]. 

Data clustering techniques are an important aspect used in many fields such as data mining, 

pattern recognition and pattern classification, data compression, machine learning [5], image 

analysis [26], and bioinformatics. The purpose of clustering is to group data points into clusters in 

which the similar data points are grouped in the same cluster while dissimilar data points are in 

different clusters. The high quality of clustering is to obtain high intra-cluster similarity and low 

inter-cluster similarity. 

The K-means algorithm is one of the most frequently used investigatory algorithms in data 

analysis. The algorithm attempts to locate K prototypes or means throughout a data set in such a 

way that the K prototype in some way best represents the data. It is an iterative algorithm in which 

K means are spread throughout the data and the data samples are allocated to the mean which is 

closest (often in Euclidean norm) to the sample. Then the K means are repositioned as the average 

of data points allocated to each mean. This continues until stable convergence is reached.  The K-

means algorithm is one of the first which a data analyst will use to investigate a new data set 
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because it is algorithmically simple, relatively robust and gives ‘good enough’ answers over a wide 

variety of data sets: it will often not be the single best algorithm on any individual data set but it 

may be close to the optimal over a wide range of data sets. However the algorithm is known to 

suffer from the defect that the means or prototypes found depend on the initial values given to them 

at the start of the simulation: a typical program will converge to a local optimum. There are a 

number of heuristics in the literature which attempt to address this issue but, at heart, the fault lies 

in the performance function on which K-means is based. 

[16] proposed a global K-means algorithm, an incremental approach to clustering that adds one 

cluster prototype at a time through a deterministic global search consisting of N (the data size) 

executions of the K-means; this algorithm can obtain equivalent or better results than the standard 

K-means, but it suffers from high computation cost and at the same time gives no guarantee to find 

the optimum. 

Arthur and Vassilvitskii [1] improved the K-means algorithm by substituting the random 

allocation of the prototypes with a seeding technique. They give experimental results that show the 

advantage of this algorithm in time and accuracy. 

In [2-4] we derive a family of new clustering algorithms that solve the problem of sensitivity to 

initial conditions in the K-means algorithm. 

This paper includes an extension of work discussed in [24]: in that paper, we compared the new 

method with projections from principal component analysis and self-organizing maps of various 

varieties [10-12, 14, 15, 17]. In this paper, we use a different visualization method based on an 

underlying latent space similar to that developed for the generative topographic mapping [7]. 

 

2. Reservoir Clustering Model 

Echo state networks (ESNs) consist of three layers of ’neurons’: an input layer which is 

connected with random and fixed weights to the next layer which forms the reservoir. The neurons 

of the reservoir are connected to other neurons in the reservoir with a fixed, random, sparse matrix 

of weights. Typically only about 10% of the weights in the reservoir are non-zero. The reservoir is 

connected to the output neurons using weights which are trained using error descent.  In this paper, 

we will leave the input to reservoir and the reservoir to reservoir weights fixed in their standard 

form but investigate training the output weights using a clustering algorithm. 

In this section, we show how to use clustering algorithm with reservoir to visualize temporal data 

set. We use our clustering algorithm Inverse Exponential K-means (IEK), which is more robust to 

the initial parameters than K-means and EM algorithm. It is also provides better results regarding 

convergence to a local optimum. 
 

2.1 . Inverse Exponential K-means Algorithm (IEK) 

To solve the problem of sensitivity in K-means, IEK has the following two objective functions: 
 
 
 

 

which is used for K-means and: 

 

 

 

 

 

The first objective function is important for clustering data, but it has limitation which causes 

dead prototypes and convergence to local optimum. The problem of this function is that each 

prototype responds only to data points that are closest to this prototype, and has not been affected 

by other data points. Thus it is sensitive to the prototypes initialization. 

This limitation has been improved by adding another objective function which gives a 

relationship between all data points and all prototypes. This objective function deals with the 

prototypes that are not detected by the minimum function, and makes them responding to the whole 
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data points not only to their members (closest data points). This makes the algorithm more robust to 

the initial prototypes and avoids the convergence to the local optimum. 

One of the advantages of IEK algorithm is that it has two sets of update rules. This is beneficial 

when all prototypes are far from the data set: such a situation may very well happen when we have 

a high dimensional data set since in that situation most of the volume of the space lies in a thin shell 

far from the centre of the data so that even initializing prototypes to data points will not guarantee 

that the prototypes are close to many samples. We use (1) when mj is the closest to xi and use (2) for 

the other prototypes that are not the closest to xi. 

The objective function (2) deals with all prototypes that are not recognized by minimum function 

in (1). This function at minimum values tries to distribute the prototypes to fit the data and find the 

clusters. 
 

2.1.1.  Optimization and Implementation 

To derive the IEK algorithm, we need to find the partial derivative of (1) with respect to mk and 

the partial derivative of (2) with respect to mj where mk represents the closest prototype to xi, and 

mj represents the other prototypes. 

 

 

 

 

where Vk contains the indices of data points that are closest to mk 

 

 

 

 

 

 

 

 

where Nr is the number of data points that are closest to mk , aik = 1. 

Note that this constitutes only a part of the calculation of mk from only the closest data points, 

however there is another calculation for mk (using the rest of data points).  This is provided from the 

second performance function as mk might not be the closest to some data points xi, i ∈ Vj where Vj 

is the index of data points that are not closest to mk, see (8). Thus mk should be calculated based on 

all the data points, not only the closest points as happens in K-means algorithm. 

The second performance function provides new calculations for the prototypes that are not 

closest to data points, and distributes them in a good way to identify the clusters. 

 

 

 

 

 

 

 

 

where Vd contains the indices of data points that are not closest to mj 
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By assigning the partial derivative to zero and solving for mj we have: 

 

 

 

 

 

 

 

 

 

 

 

 

 

where, 

 

 

 

 

 

 

 

The new locations for all prototypes can be calculated by: 
 
 
 
 
 
 

where Vr contains the indices of data points that are closest to mr, Vj contains the indices of all the 
other points and 
 

 

 

 

 

 

The clustering algorithms provide advantages when we have clusters with different shapes and 

sizes in the dataset. In this type of data, most of recent works will not get good results as it based 

on linear distances e.g., Euclidean distance. In this case, we find clustering idea could help by 

selecting a suitable clustering algorithm which finds clusters with nonlinear shapes e.g., BIRCH 

clustering algorithm which based on density rather than distances in measuring the similarities 

and hence finding the clusters. 

Clustering algorithms help us to discover the groups of data that are similar to each other which 

help in discovering data. However, it does not preserve the topology between clusters, i.e., points 

in cluster i are not important to be close to points in cluster i+1 or i-1. Thus we intend to improve 

some of the clustering algorithms to preserve topology and try to apply them again with reservoir 

to project and visualize the temporal data set. 
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2.2. Simulation 

Main steps: 

∗ Create a reservoir with 300 units. 

∗ Initialize fixed random weights between input data and reservoir. 

∗ Initialize fixed random internal weights for the reservoir units. 

∗ Feed the input data to the reservoir and calculate the reservoir units values. 

∗ Number the prototypes and initialize them in the reservoir units space. 

∗ Cluster the reservoir units using IEK. 

∗ Draw the results in two dimensions, the first dimension represents the number of the prototype 

and the second dimension represents the index of the input data point. It is possible also to 

generate a second dimension, instead of the index of input data, which keeps local distances 

between input data points, by using the prototypes values (300 x 1) as a mapping weight for 

each row of reservoir units (1 x 300). We multiply each reservoir’s row (1 x300) by the 

weights of its closest prototype (300 x 1) to get a new one value. 

Experiment 1: 

In this experiment, we have used 3D artificial data set consisting of 140 data points and contain 6 

clusters as shown in Figure 1 top. We have fed the reservoir (300 units) with this data set. Then we 

have applied our clustering algorithm IEK to cluster reservoir units (140 x 300) into groups. Finally 

we have plotted the results in 2D as shown in Figure 1 bottom. In Figure 1 bottom left, the first axis 

represents the index of the data point and the other axis represents the number of the winning 

prototype. The winning prototype is the closest prototype to the input data point. As shown in 

Figure1 bottom left, we can see that all groups of data in the input dataset have been projected 

through reservoir successfully into 2D space. However, the clustering algorithm does not preserve 

topology between clusters. Investigating this limitation is one of our targets in future work. We can 

provide a type of keeping local distances within clusters in the low space by mapping the reservoir 

weights 300 values into only one value. We have used the prototype weights for this mapping and 

used the resulted values instead of the index of the point axis. 

 

 

Figure 1. Top: Artificial Data Set consisting of 6 Clusters. Bottom: Projection of the 
3D Artificial Data Set using Reservoir-IEK 
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As shown in Figure 1 bottom right, we can see that the 3D groups of data have been projected 

successfully into 2D space and local distances within clusters have been presented. 

Table 1. The Euclidean Distances between Prototypes in the Reservoir Space. Rows 
and Columns represent Clusters’ Prototypes 

 Center of 

Red *’s 

Center of 

Blue o’s 

Center of 

triangles 

Center of 

squares 

Center of 

cyan .’s 

Center of 

black o’s 

Center of red *’s 0 3.8799 5.6583 1.9600 4.1400 1.9112 

Center of blue o’s  0 1.9684 2.0463 1.6247 3.1829 

Center of triangles   0 3.1829 1.8800 5.1427 

Center of squares    0 2.2937 2.1675 

Center of cyan .’s     0 4.1575 

Center of black o’s      0 
 

 

 

Figure 2. Projection of IE data (1000 samples - January) using the Reservoir-IEK 

Also, we can notice a part of preserving the topology when we look to this figure horizon- tally. 

For example, the black o’s and red *’s are closest to each other in the output space. From Table 1, 

which shows the Euclidean distances between the prototypes in the reservoir space, we can see that 

they have the same relationship in the reservoir space. Also, in Table 1 we can see that the 

prototype of green triangles is the farthest from red *’s (or black o’s) and this has been reflected in 

the output space as shown in Figure 1 bottom right. 

Experiment 2: 

The book “Irrational Exuberance” [20] uses a stock market dataset which represents the closing 

price each month of the S & P Composite to illustrate its thesis and the author has made this dataset 

available to all. We have used this closing price, the dividend, earnings, consumer price index and 

the long term interest rate to form a 5 dimensional data set. 

In this experiment, we have fed the reservoir (300 units) with the first 1000 data points of the 

temporal financial data set IE. Then we have clustered the reservoir units (1000 x 300) using IEK 

into several groups (10 in this example). Finally we have drawn the results in Figure 2. The 

numbers in the figure represent the years from 1871 so that for example 1901 is year 30 on the 

diagram. In Figure 2 left, we used for dimensions the number of the prototype and the index of the 

input data (or reservoir), while in Figure 2 right, we replaced the index of the input data by the value 

generated after mapping 300 units to one value using prototype’s weights (300). 

As shown in Figure 2 left, we can see an interesting projection; consecutive years have been 

projected close to each other. From Figure 2 left we can notice the following: 

• At column 2 (prototype number 2), years 14-22 are grouped together. Also we see years 7, 28, 

and 29 joined this group. At this stage we do not know if the years 7, 28 and 29 are noise or have 
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the same characteristics of the years 14-22. In future work, we need to use different methods for 

visualizing this data set, and investigate and compare the results. 

• At column 3, years 77-83 are grouped together.  Also years 58 and 59 joined this group. 

• At column 4, years 23-27 are grouped together. Also year 8 joined this group. 

• At column 6, years 48-54 are grouped together. Also year 72. 

• At column 7, years 61-71 except 62 and 66 are grouped together. 

 

 

Figure 3. Projection of Airline1 Data Set using the Reservoir-IEK 

• At column 8, years 0-4 are grouped together. 

• At column 9, years 35-45 except 37 are grouped together. 

From Figure 2 right, which shows a part of preserving topology, we can notice the following: 

• Years at column 4, 23-27, are farthest from the years at column 3, 77-83. 

• Years at columns 1, 2 and 4 are closest to each other, thus we can combine them into a bigger 

group that includes the consequent years 5-30. 

• Years at columns 5 and 9 can be combined together into one group of years 31-45, years at 

column 8 (0-4) are either noises or they having the same characteristics of the years 31-45. 

• Years at columns 6, 7 and 10 can be combined into one bigger group that contains the 

consequent years 46-76 except 58 and 59. 

Experiment 3: 

In this experiment, we use another real data set, airline1 dataset. This data set consists of 51 

samples, representing the years from 1949 to 1999 (numbers 1-51 on diagram). Each sample has 12 

dimensions representing the number of passengers every month January- December. Figure 3 shows 

the projection of this dataset using reservoir-IEK clustering. 

We can see an interesting projection of airline data set in Figures 3. As shown in Figure 3, we 

have 5 groups, the points in first group (1-17) are closer to each other’s than the points in the second 

group (18-29). The points in the second group are closer to each other than the points in the third 

group (30-38). Also, if we notice the distances between groups, we can see that the first group is 

closer to the second group than the second group to the third, in other words, the distance between 

the first two groups is less than the distance between the last two. 

 

3. Topology Preserving Mapping 

In this section, we show how to improve the results in the previous section by providing a type of 

topology preserving mapping in the projection. We use IEK with the Generative Topographic 

Mapping (GTM) [7-9] to preserve the topology. 
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GTM was developed by Bishop as a probabilistic version of the SOM, in order to overcome 

some of the problems of this map, especially the lack of an objective function. It is a mixture of 

experts’ model which treats the data as having been generated by a set of latent points. The GTM 

can be described as a non-linear latent variable model that defines a mapping from the latent space 

to the data space, generating a probability density within the latter. 

We have recently used this idea of a latent space [2-4] but with an objective function which is not 

a probabilistic function and thus is not optimized using the Expectation- Maximization algorithm 

(EM). Instead, we have developed the Inverse Exponential K- means algorithm (IEK) as the 

learning process. IEK is more robust to the initial parameters than K-means and the EM algorithm. 

It is also provides better results regarding convergence to a local optimum. 

By adding a latent space model to the IEK algorithm we have created the Inverse- Exponential 

K-means Topology-preserving Mapping (IEKToM) which we illustrate on the financial data used 

above. 

The basis of our model is K latent points, t1, t2, • • • , tK , which are going to generate the K 

prototypes, mk. To allow local and non-linear modeling, we map those latent points through a set of 

M basis functions, f1(), f2(), • • • , fM (). This gives us a matrix Φ where φkj = fj (tk). Thus each row of 

Φ is the response of the basis functions to one latent point, or alternatively we may state that each 

column of Φ is the response of one of the basis functions to the set of latent points. One of the 

functions, fj (), acts as a bias term and is set to one for every input. Typically the others are 

gaussians centered in the latent space. The output of these functions are then mapped by a set of 

weights, W, into data space. W is M × D, where D is the dimensionality of the data space, and is the 

sole parameter which we change during training. We will use wi to represent the i
th
 column of W 

and Φj to represent the row vector of the mapping of the j
th
 latent point. Thus each basis point is 

mapped to a point in data space, mj = (Φj W )
T
. 

We may update W either in batch mode or with online learning. In IEKToM we used the Inverse 

Exponential K-means algorithm to create a new topology preserving algorithm. 

Each data point is visualized as residing at the prototype on the map which would win the 

competition for that data point. However we can do rather better by defining the responsibility that 

the j
th
 prototype has for the i

th
 data point as 

 

 

 

We then project points taking into account these responsiblities: let yij be the projection of the i
th
 

data point onto the j
th
 dimension of the latent space; then 

 

 

 

where tkj is the j
th
 coordinate of the k

th
 latent point. When we use these algorithms for visualization 

purposes, it is these y-values (which are typically two dimensional coordinates) which we use. Note 

that this method represents each data point xi by a value yi where yi is a weighted sum of the 

coordinates of the original latent points. An alternative (which is typically used the SOM) is to find 

the latent point with greatest responsibility for the data point and allocate its yi value at this latent 

point. 
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3.1. Simulation 

Experiment 1: 

In this experiment we have fed the reservoir (300 units) with the IE temporal dataset. 
 

 
 

 

 

Figure 4. Projection of IE Data (1000 samples - January) using the Reservoir-IEKToM 

Then we have projected the reservoir (1000 x 300) onto two-dimensional latent space using 

IEKToM. Figure 4 shows the result of the projection. In Figure 4 bottom, we can see an interesting 

projection; consecutive years have been projected close to each other, e.g., 0-4, 14-29 and 30-45. 

From Figure 4 bottom, we can notice the following: 

• Information about this dataset shown in Figure 2 right has been reflected with this projection using 

IEKToM, e.g., years 23-27 are the farthest from year 76-83. 

• Figure 4 bottom shows more information about data than that in 2 right. It shows local distances 

between data points. 

• Some groups of years can be combined into bigger group, e.g., we can combine years 0-45 in one 

big group. 

• It is possible to divide the whole years into 3 big groups 0-45, 46-75 and 76-83. 

• Years 55-60 are the closest to years 76-83. 
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• Years 48-54 at column 6 in Figure 2 right, are close to years 60s and 70s at columns 7 and 10, and 

far from years 23-27 at column 4. This has been shown with more information in Figure 4 bottom. 

In this figure we see the relative distances between data points. 

Experiment 2: 

In this experiment, we use another version of airline dataset, airline2. In this dataset we have 612 

data samples with one dimension representing the number of passengers from January 1949 to 

December 1999. For this data set we make a reservoir 50 units for each data sample to keep the 

history of time in this temporal dataset. Then we have projected the reservoir units (612 x 50) into 2 

dimensional latent space using IEKToM as shown in Figures 5, 6 and 7. To clarify the results, we 

have drawn the results for each month in a separated figure, after training the whole dataset in the 

same time. 

We have shown in the figures the projections of every month (reservoir space - 50 units) among 

51 years (1949-1999). We have an interesting visualization and we can get lots of information about 

this airline dataset. For example we can notice the following: We have shown in the figures the 

projections of every month (reservoir space - 50 units) among 51 years (1949-1999). We have an 

interesting visualization and we can get lots of information about this airline dataset. For example 

we can notice the following: 

• There is a progress in all months and the number of passengers is increasing continuously 

every year. 

• The increasing number of passengers in early years is relatively small comparable to the latter 

years. For example, if we look to Figure 5 second row, we can notice that the distance between 

year number 0 and number 25 is shorter than the distance between year number 25 and 50. 

This means that the rate of increasing number of passengers currently is higher than that rate in 

the past. 

• The point that has the highest value, exists in Figure 6 bottom row, it represents August in 1999 

(50). This means that the highest number of passengers recorded is in August, 1999. Also, we 

can see that July month is always closer to August month in all years. So from the figures we 

can rate August as the first month regarding passengers’ numbers and July as the second. In the 

other side, from Figure 5 top and second row, we can see that January and February have the 

smallest values and thus they have the minimum numbers of passengers every year. From 

Figure 7 bottom, we can also see the number of passengers in December is lower than those in 

the other months (except January and February). 

• Most years have the same structure regarding number of passengers. For example, for every 

year we can notice that August and July hold the maximum number of passengers among other 

months while January and February hold the minimum number of passengers. We have shown 

this structure in Figure 8 by showing the projection of every month in 1999. 

• If we combine all figures together, we get Figure 9 
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Figure 5. Projection of Airline2 Data using the Reservoir-IEKToM. Top Figures to 
Bottom Projections of January to April respectively 
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Figure 6. Projection of Airline2 Data using the Reservoir-IEKToM. Top Figures to 
Bottom Projections of May to August respectively 
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Figure 7. Projection of Airline2 Data using the Reservoir-IEKToM. Top Figures to 
Bottom are Projections of September to December respectively 
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Figure 8. Months only in last year, Projection of Airline2 Data using the Reservoir- 
IEKToM 

 
 
 

 

Figure 9. All months together (51 years), Projection of Airline2 Data using the 
Reservoir-IEKToM 

 

4. Conclusion and Future Work 

In this paper we have shown how the clustering algorithm can be used with reservoir to project 

and visualize temporal dataset. The clustering algorithms provide an advantage when we have 

groups of data with different and none linear shapes. The clustering can help in separating the non-

linear interfering shapes from each other, e.g., BIRCH which depends on density in clustering data.  

Another advantage of using clustering algorithm is that its speed comparable to other visualizing 

algorithms. However, the clustering algorithms have limitation in preserving the topology between 
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data points. Thus we have used IEK clustering algorithm with GTM structure to preserve the 

topology. Although IEKToM projection has an advantage of preserving the topology, it has 

limitation in consuming time in processing. Thus in future work we need to investigate this 

limitation and gain the speed of clustering in topology preserving mapping. We need to investigate 

and improve our clustering algorithms to be used for topology preserving mapping. Also, we need 

to test real dataset that contains non-linear shapes and show the advantages of using clustering with 

reservoir to project and visualize time series data. 
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