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ABSTRACT

In this paper, the generalized Riemann-Liouville fractional integral opera-
tor is used to generate some new fractional integral inequalities. By using
the generalized Riemann-Liouville fractional integral operator, we also ge-
nerate new classes of fractional integral inequalities using a family of n;
(n � 1) positive functions.

c
2016 LESI. All rights reserved.

1. Introduction

Integral inequalities play a very important role in the theory of di¤erential equations
and applied mathematics. These inequalities have gained considerable popularity and im-
portance during the past few decades due to their distinguished applications in numerical
quadrature, transform theory, probability, and statistical problems. For details, we refer
to [ 8, 9, 10, 11, 12, 14, 16, 18] and the references therein. Moreover, the study of fractional
type inequalities is also of great importance. A detailed account of such fractional integral
inequalities along with their applications can be found in the research contributions by
many author see [ 1, 3, 4, 13, 19]. In the past several years, many author have studied
on fractional integral inequalities using Riemann-Liouville, Hadamard fractional integral
and q�fractional integral, see [ 2, 5, 6, 17]. In this paper we present some new fractional
integral inequalities using generalized Riemann-Liouville fractional integral.

2. Preliminaries

Firstly, we give some necessary de�nitions and mathematical preliminaries of fractional
calculus theory which are used further in this paper.
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De�nition 1 A real valued function f(t); t � 0 is said to be in the space C� (0;1) ; � 2
R, if there exists a real number p > � such that f(t) = tpf1(t); where f1 (t) 2 C ([0;1[) :
De�nition 2 A function f(t); t > 0 is said to be in the space Cn� ; n 2 R, if f (n) 2 C�.
De�nition 3 The Riemann-Liouville fractional integral operator of order � � 0, for a
continuous function f on [a; b] is de�ned as

J�a [f (t)] =
1

� (�)

tZ
a

(t� �)��1 f (�) d� ; � > 0; a < t � b; (2.1)

J0a [f (t)] = f (t) ;

where � (�) :=
1R
0

e�uu��1du.

For the convenience of establishing the results, we give the following properties :

J�a J
�
a [f (t)] = J

�+�
a [f (t)] ; (2.2)

and

J�a J
�
a [f (t)] = J

�
a J

�
a [f (t)] : (2.3)

De�nition 4 Consider the space Lp;k (a; b) (k � 0; 1 � p <1)of those real-valued Le-
besgue measurable functions f on [a; b] for which

kfkLp;k(a;b) =
�Z b

a

jf (x)jp xkdx
� 1

p

<1; k � 0; 1 � p <1: (2.4)

De�nition 5 Consider the space Xp
c (a; b) (c 2 R; 1 � p <1) of those real-valued Le-

besgue measurable functions f on [a; b] for which

kfkXp
c (a;b)

=

�Z b

a

jxcf (x)jp dx
x

� 1
p

<1; c 2 R; 1 � p <1; (2.5)

and for the case p =1
kfkX1

c
= ess sup

a�x�b
[xcf (x)] ; c 2 R: (2.6)

In particular, when c = k+1
p
(k � 0; 1 � p <1) the space Xp

c (a; b) coincides with the
Lp;k (a; b)�space and also if we take c = 1

p
(1 � p <1) the space Xp

c (a; b) coincides with
the classical Lp (a; b)�space.
De�nition 6 Let f 2 L1;k [a; b] : The generalized Riemann-Liouville fractional integral
J�;ka of order � � 0 and k � 0 is de�ned by

J�;ka f (t) = (k+1)1��

�(�)

tR
a

�
tk+1 � � k+1

���1
� kf (�) d� ; � > 0; a < t � b;

J0;ka [f (t)] = f (t) ;

(2.7)

For more details on can consult [ 7, 10, 13].
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3. Main Results

In this section, we prove some inequalities concerning the generalized Riemann-Liouville
fractional integral.

Theorem 7 Let f; h and g be three positive continuous functions on [a; b], such that

h (x) f(y)
g(y)

+ h (y) f(x)
g(x)

� h (x) f(x)
g(x)

+ h (y) f(y)
g(y)
; x; y 2 [a; t] ; a < t � b : (3.1)

Then the generalized fractional integral inequality

J�;ka [g (t)] J�;ka [f (t)h (t)] � J�;ka [f (t)] J�;ka [h (t) g (t)] ; (3.2)

holds for all a < t � b; � > 0; k � 0:

Proof. Suppose that f; h and g are positive and continuous functions on [a; b] satisfying
the condition (3:1) : Then we de�ne

� (x; y) := 'k� (t; x) (f (y) g (x)h (x) + g (y)h (y) f (x)

�g (y)h (x) f (x)� h (y) f (y) g (x)) :
(3.3)

where,

'k� (t; x) :=
(k + 1)1��

� (�)

�
tk+1 � xk+1

���1
xk; (3.4)

It is clear that

� (x; y) � 0: (3.5)

Integrating (3:5) with respect to x over (a; t), yields

0 �
R t
a
� (x; y) dx

=
R t
a
'k� (t; x) (f (y) g (x)h (x) + g (y)h (y) f (x)

�g (y)h (x) f (x)� h (y) f (y) g (x)) dx

= J�;ka [g (t)h (t)] f (y) + J�;ka [f (t)] g (y)h (y)

�J�;ka [h (t) f (t)] g (y)� J�;ka [g (t)]h (y) f (y) :

(3.6)
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Now, multiplying (3:6) by 'k� (t; y) ; y 2 (a; t); a < t � b and integrating with respect to
y over (a; t), we can write

0 �
R t
a

R t
a
'k� (t; y)� (x; y) dxdy

=
R t
a

R t
a
'k� (t; y)'

k
� (t; x) (f (y) g (x)h (x) + g (y)h (y) f (x)

�g (y)h (x) f (x)� h (y) f (y) g (x)) dxdy

= J�;ka [g (t)h (t)]
R t
a
'k� (t; y) f (y) dy + J

�;k
a [f (t)]

R t
a
'k� (t; y) g (y)h (y) dy

�J�;ka [h (t) f (t)]
R t
a
'k� (t; y) g (y) dy � J�;ka [g (t)]

R t
a
'k� (t; y)h (y) f (y) dy

= 2J�;ka [g (t)h (t)] J�;ka [f (t)]� 2J�;ka [h (t) f (t)] J�;ka [g (t)]

(3.7)

This implise that

J�;ka [gh (t)] J�;ka [f (t)] � J�;ka [hf (t)] J�;ka [g (t)] (3.8)

The proof is completed.
Our the next result is the following theorem, in which we use two fractional positive

parameters.

Theorem 8 Let f; h and g be three positive continuous functions on [a; b]. Then, the
following generalized fractional inequality

J�;ka [h (t) f (t)] J�;ka [g (t)]� J�;ka [g (t)] J�;ka [h (t) f (t)] (3.9)

� J�;ka [g (t)h (t)] J�;ka [f (t)] + J�;ka [f (t)] J�;ka [g (t)h (t)] ;

is valid for all a < t � b; � > 0; � > 0; k � 0:
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Proof. Multiplying both sides of (3:5) by the quantity 'k� (t; y) ; y 2 (a; t); a < t � b;
then integrating the resulting inequality with respect to y over (a; t) we get

0 �
Z t

a

Z t

a

'k� (t; y)� (x; y) dxdy (3.10)

=

Z t

a

Z t

a

'k� (t; y)'
k
� (t; x) (f (y) g (x)h (x) + g (y)h (y) f (x)

�g (y)h (x) f (x)� h (y) f (y) g (x)) dxdy

= J�;ka [g (t)h (t)]

Z t

a

'k� (t; y) f (y) dy + J
�;k
a [f (t)]

Z t

a

'k� (t; y) g (y)h (y) dy

�J�;ka [h (t) f (t)]

Z t

a

'k� (t; y) g (y) dy � J�;ka [g (t)]

Z t

a

'k� (t; y)h (y) f (y) dy

= J�;ka [g (t)h (t)] J�;ka [f (t)] + J�;ka [f (t)] J�;ka [g (t)h (t)]

�J�;ka [h (t) f (t)] J�;ka [g (t)]� J�;ka [g (t)] J�;ka [h (t) f (t)] :

This implies that

J�;ka [gh (t)] J�;ka [f (t)] + J�;ka [f (t)] J�;ka [gh (t)] (3.11)

� J�;ka [hf (t)] J�;ka [g (t)]� J�;ka [g (t)] J�;ka [hf (t)] :

Theorem 8 is thus proved.

Remark 9 Applying Theorem 8 for � = �; we obtain Theorem 7.

Now, we shall propose a new generalization of integral inequalities using a family of n
positive functions de�ned on [a:b]:

Theorem 10 Let f; h and gi; i = 1; :::; n be positive and continuous functions on [a; b]:Then,
the following fractional inequality

J�;ka [
Qn
i=1 gi (t)] J

�;k
a

h
h (t) f (t)

Qn
i6=q gi (t)

i
� J�;ka

h
f (t)

Qn
i6=q gi (t)

i
J�;ka [h (t)

Qn
i=1 gi (t)] ;

(3.12)

is valid for any a < t � b; � > 0; k � 0:

Proof. Suppose that f; h and gi; i = 1; :::; n are positive continuous functions on [a; b];
then we can write

h (x)
f (y)

gq (y)
+ h (y)

f (x)

gq (x)
� h (x) f (x)

gq (x)
+ h (y)

f (y)

gq (y)
; (3.13)
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for any �xed q 2 f1; :::; ng and for any x; y 2 [a; t] ; a < t � b:
Denote

�q (x; y) :=

'k� (t; x)
�
f (y)

Qn
i6=q gi (y)h (x)

Qn
i=1 gi (x) + h (y)

Qn
i=1 gi (y) f (x)

Qn
i6=q gi (x)

�
Qn
i=1 gi (y)h (x) f (x)

Qn
i6=q gi (x)� h (y) f (y)

Qn
i6=q gi (y)

Qn
i=1 gi (x)

�
;

(3.14)

for all x; y 2 [a; t] ; a < t � b and for any �xed integer q 2 f1; :::; ng :
We have

�q (x; y) � 0: (3.15)

Now, integrating (3:15) with respect to x over (a; t), we obtain

0 �
R t
a
�q (x; y) dx

= f (y)
Qn
i6=q gi (y) J

�;k
a [h (t)

Qn
i=1 gi (t)]

+h (y)
Qn
i=1 gi (y) J

�;k
a

h
f (t)

Qn
i6=q gi (t)

i
�
Qn
i=1 gi (y) J

�;k
a

h
h (t) f (t)

Qn
i6=q gi (t)

i
�h (y) f (y)

Qn
i6=q gi (y) J

�;k
a [

Qn
i=1 gi (t)] :

(3.16)

Next, multiplying both sides of (3:16) by 'k� (t; y) ; y 2 (a; t) ; integrating the resulting
inequality with respect to y from a to t, we can write

0 �
R t
a

R t
a
'k� (t; y)�q (x; y) dxdy

= J�;ka

h
f (t)

Qn
i6=q gi (t)

i
J�;ka [h (t)

Qn
i=1 gi (t)]

+J�;ka [h (t)
Qn
i=1 gi (t)] J

�;k
a

h
f (t)

Qn
i6=q gi (t)

i
�J�;ka [

Qn
i=1 gi (t)] J

�;k
a

h
h (t) f (t)

Qn
i6=q gi (t)

i
�J�;ka

h
h (t) f (t)

Qn
i6=q gi (t)

i
J�;ka [

Qn
i=1 gi (t)] :

(3.17)

and consequently, we have

0 � 2J�;ka

"
f (t)

nY
i6=q

gi (t)

#
J�;ka

"
h (t)

nY
i=1

gi (t)

#
(3.18)

�2J�;ka

"
nY
i=1

gi (t)

#
J�;ka

"
h (t) f (t)

nY
i6=q

gi (t)

#
:
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The proof is completed.
Using two fractional parameters, we obtain the following generalization of Theorem 10.

Theorem 11 Let f; h and gi; i = 1; :::; n be positive continuous functions on [a; b]: Then,
for any �xed q 2 f1; :::; ng and for all a < t � b; � > 0; � > 0; k � 0; we have

J�;ka [
Qn
i=1 gi (t)] J

�;k
a

h
h (t) f (t)

Qn
i6=q gi (t)

i
+J�;ka [

Qn
i=1 gi (t)] J

�;k
a

h
h (t) f (t)

Qn
i6=q gi (t)

i
� J�;ka

h
f (t)

Qn
i6=q gi (t)

i
J�;ka [h (t)

Qn
i=1 gi (t)]

+J�;ka

h
f (t)

Qn
i6=q gi (t)

i
J�;ka [h (t)

Qn
i=1 gi (t)] :

(3.19)

Proof. Multiplying both sides of (3:16) by 'k� (t; y) ; y 2 (a; t) ; and integrating with
respect to y from a to t, we obtain

0 �
Z t

a

Z t

a

'k� (t; y)�q (x; y) dxdy (3.20)

=

Z t

a

Z t

a

'k� (t; y) f (y)
nY
i6=q

gi (y)'
k
� (t; x)h (x)

nY
i=1

gi (x) dxdy

+

Z t

a

Z t

a

'k� (t; y)h (y)
nY
i=1

gi (y)'
k
�;� (t; x) f (x)

nY
i6=q

gi (x) dxdy

�
Z t

a

Z t

a

'k� (t; y)
nY
i=1

gi (y)'
k
� (t; x)h (x) f (x)

nY
i6=q

gi (x) dxdy

�
Z t

a

Z t

a

'k� (t; y)h (y) f (y)
nY
i6=q

gi (y)'
k
� (t; x)

nY
i=1

gi (x) dxdy:

It follows that

0 � J�;ka
h
f (t)

Qn
i6=q gi (t)

i
J�;ka [h (t)

Qn
i=1 gi (t)]

+J�;ka

h
f (t)

Qn
i6=q gi (t)

i
J�;ka [h (t)

Qn
i=1 gi (t)]

�J�;ka [
Qn
i=1 gi (t)] J

�;k
a

h
h (t) f (t)

Qn
i6=q gi (t)

i
�J�;ka [

Qn
i=1 gi (t)] J

�;k
a

h
h (t) f (t)

Qn
i6=q gi (t)

i
:

(3.21)

This completes the proof.

Remark 12 If we take � = �; in Theorem 11, we obtain Theorem 10.
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