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1. Introduction

Integral inequalities play a very important role in the theory of differential equations
and applied mathematics. These inequalities have gained considerable popularity and im-
portance during the past few decades due to their distinguished applications in numerical
quadrature, transform theory, probability, and statistical problems. For details, we refer
to [ 8,9, 10, 11, 12, 14, 16, 18] and the references therein. Moreover, the study of fractional
type inequalities is also of great importance. A detailed account of such fractional integral
inequalities along with their applications can be found in the research contributions by
many author see [ 1, 3, 4, 13, 19]. In the past several years, many author have studied
on fractional integral inequalities using Riemann-Liouville, Hadamard fractional integral
and g—fractional integral, see | 2, 5, 6, 17]. In this paper we present some new fractional
integral inequalities using generalized Riemann-Liouville fractional integral.

2. Preliminaries

Firstly, we give some necessary definitions and mathematical preliminaries of fractional
calculus theory which are used further in this paper.
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Definition 1 A real valued function f(t), t > 0 is said to be in the space C, (0,00), v €
R, if there exists a real number p > v such that f(t) = t? fi(t), where fi (t) € C ([0, o0]).

Definition 2 A function f(t), t > 0 is said to be in the space C",n € R, if f € C,.

Definition 3 The Riemann-Liouville fractional integral operator of order o > 0, for a
continuous function f on |a,b] is defined as
t

JoLF (8] = —/(t—r)a_lf(f)dr, 00 a<t<b (2.1)

Jf@W) = f),
where T (« fe v du.

For the convenience of establishing the results, we give the following properties :

JEIZ (0] = ISP f ()], (2:2)
and
JEIR 0] = JPI[F (). (2.3)

Definition 4 Consider the space L,y (a,b) (k> 0, 1 <p < oo)of those real-valued Le-
besgue measurable functions f on |a,b] for which

1
b P
= ([ 1F @) < oo k20 15p <00 (2.4)

Definition 5 Consider the space X? (a,b) (c € R, 1 < p < 00) of those real-valued Le-
besgue measurable functions f on |a,b] for which

(/ |z¢ f (x —) <oo, ceR, 1<p<oo, (2.5)
and for the case p = 0o

[fllxe = €ss sup [z°f ()], c €R. (2.6)

a<z<b

In particular, when ¢ = % (k>0, 1 <p<oo) the space XP (a,b) coincides with the
L, (a,b) —space and also if we take ¢ = % (1 <p < o0) the space X? (a,b) coincides with
the classical L (a,b) — space.
Definition 6 Let f € Ly;[a,b]. The generalized Riemann-Liouville fractional integral
Jo* of order o > 0 and k > 0 is defined by
ot
f (¢t — Tk+1)a_1 ™ f(r)dr, a >0, a<t<b,
a (2.7)

JEf =1 (@),

For more details on can consult [ 7, 10, 13].

Jakf
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3. Main Results

In this section, we prove some inequalities concerning the generalized Riemann-Liouville
fractional integral.

Theorem 7 Let f,h and g be three positive continuous functions on |a,b|, such that

N
—

h@) L9 4 b (y) 42 > b (2) 19 4 b (y) 19 0y € fat], a<t<b (3.1)

Q

Then the generalized fractional integral inequality

Jot lg OV [f @) h (0] < T [F (O] T8 [ (8) g (1)) (3-2)

holds for all a <t <b, a >0, k> 0.

Proof. Suppose that f,h and g are positive and continuous functions on [a, b] satisfying
the condition (3.1). Then we define

¢ (z,y) ==k (t,x) (f (y) g () h(z) + g (y) b (y) f ()

(3.3)
=g ) h(@) f(z)=h(y)fy)g(z)).
where,
kot p) = (k + 1)1_a ktl kel a—lxk
o t2) = ey (0 ), (34)
It is clear that
¢ (z,y) > 0. (3.5)

Integrating (3.5) with respect to z over (a,t), yields

0< [l ¢(z,y) dx
= Jiek (to) (f W) g (@) h(2) + g () h () f (@)
—g W) h(z) f(z)—h(y) f(y)g(z))de (3.6)
= JeRg (VR (@) f () + TS [ (D] 9 (9) b ()

—JF () fF ()] g (y) = J&F g ] () f(y) -
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Now, multiplying (3.6) by ¢ (t,y), y € (a,t), a < t < b and integrating with respect to
y over (a,t), we can write

0< [1 [Tk (ty) ¢ (x,y) dady
— [P [Pk (ty) ok (t,2) (f (y) g (@) B (2) + g (y) h (y) £ (x)

=g ) h(z) f(z)—h(y) f(y)g(x))dedy

(3.7)
= JR[g (t) h (0)] [L @k () £ () dy + TR [ (0] [L 0k (ty) g (y) e (y) dy
—JER R () f ()] Lk (ty) g (y)dy — TF (g (0)] [2 @k (ty) h(y) £ (y) dy
= 2J3% [g (t) h ()] JF [f (1)) = 2J2F [h(2) £ (1)] JoF [g (1))
This implise that
TR lgh O] JEF [f (0] = T8 [hf ()] J8F [g (1) (3.8)

The proof is completed.
Our the next result is the following theorem, in which we use two fractional positive
parameters.

Theorem 8 Let f,h and g be three positive continuous functions on |a,b|. Then, the
following generalized fractional inequality

Je [ () £ @) T2 g (0] = T2 [g (O T [0 (8) f (1)) (3.9)

15 valid for alla <t <b,a>0, >0, k>0.
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Proof. Multiplying both sides of (3.5) by the quantity ¢} (t,y), y € (a,t), a <t < b,
then integrating the resulting inequality with respect to y over (a,t) we get

0 < /t/tsOZ(t,y)cb(%y)dxdy (3.10)

= [ [ Stndtatws@n@+smn @

2
—g W) h(x) f(z)—h(y) f(y)g(x))dedy
= s lnwl [ "o (4y) £ () dy + O [F (0] / o (4y) 9 (4) b (y) dy

I O £ 0] [ g Wy — I o) [ b £ )y
I [ (0 A () JEE L (O] + I [ (0] 5 g () b (8)

= TR R (@) fF OV g (O] = T g O J2F (R (2) f (1)) -
This implies that
JaF lgh O IZ8 [f (O + Tt [f (0 I [gh ()] (3.11)

> TR IRf O T g (0] = T g (01T [ f ()]

Theorem 8 is thus proved.
Remark 9 Applying Theorem 8 for o = (3, we obtain Theorem 7.

Now, we shall propose a new generalization of integral inequalities using a family of n
positive functions defined on [a.b].

Theorem 10 Let f, h and g;,1 = 1, ...,n be positive and continuous functions on |a, b|. Then,
the following fractional inequality

JeH Ty g (0 (1 (0) £ (8) T 06 (1)
(3.12)

< TR [ F 0TIy 00 (0] T2 [ () T, 91 (1),
18 valid for any a <t <b, a >0, k> 0.

Proof. Suppose that f,h and ¢;, i = 1,...,n are positive continuous functions on [a, b],
then we can write
/() /() /() /()
h(y) > h(z) +h(y) ) (3.13)
9q (x) 94 ()
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for any fixed ¢ € {1,...,n} and for any z,y € [a,t], a <t <.
Denote

g (,y) =
o) (F ) T 9 ) h @) T g6 (@) + b ) Ty 00 0) f (@) Ty 06 (0) (3.14)

~TTy g ) h (@) f (@) Tz 91 (@) = b () £ ) T 9 D T 6 ()

for all z,y € [a,t], a <t < b and for any fixed integer ¢ € {1,...,n}.
We have

g (z,y) = 0. (3.15)

Now, integrating (3.15) with respect to x over (a,t), we obtain

0< [ ¢, (x,y)da
= W) [Ty 9 () J& [0 () [Ty 9: (1)
b () T 06 () T2 | (O T, 91 (1) (3.16)
~ T 0s () T2 (R0 1 () TTs, 91 (0]
—h(y) f () [Tieq 9 () J&* [Ty 9 (1)) -

Next, multiplying both sides of (3.16) by ¢F (t,y), v € (a,t), integrating the resulting
inequality with respect to y from a to ¢, we can write

0< [1 [k (t,y) &, (v, y) dzdy
= L (0TI 90 (0] T [ () T 05 ()
I (0TI g (0] 2 [ £ (0TI, 9: (0] (3.17)
— 2 (TTy 0s O] T2 [ (8) £ () TT, 9: ()]

T [ £ () Ty 00 (8] T Ty 92 (1))

and consequently, we have

0 < J"‘k[ ng ]J“[ )ﬁgi(t)] (3.18)

i#£q

273 [H g <t>] i [h oHone <t>] .

i#q
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The proof is completed.
Using two fractional parameters, we obtain the following generalization of Theorem 10.

Theorem 11 Let f, h and g;, i = 1,...,n be positive continuous functions on [a,b]. Then,
for any fized q € {1,...,n} and for alla <t <b, a >0, >0, k> 0, we have

JeH (T g (0] 2% 1 (0) £ (0TI, 9: ()]
F I Ty 96 (O] T2 [0 (2) (0 TT, 95 ()]
(3.19)
< TR F (0TI 00 (0] J2% 10 () T 01 ()
F T (0 Ty 96 (0] J2* [ () Ty 91 (1),

Proof. Multiplying both sides of (3.16) by go’g (t,y), y € (a,t), and integrating with
respect to y from a to ¢, we obtain

0 < //@’E(t,y)d)q(x,y)dfcdy (3.20)

N //% by f Hgl(y)SOZ(t>37)h($)Hgi($)da:dy

1#q 1=1

/ / 2 () h ng<y>so‘;,a<t,x>f<x>r[gi<x>dxczy
[ [ e Lo ek @) f @] Lo o) dedy
/ / b (ty) b f(y)Hgi () ¢k (té@Hgi (z) dzdy.

It follows that

0 < I [ (O Ty 01 (0] J2% 0 (0TI, g: (8)

FIEE 1 (0 Ty 06 ()] T2 (0 (0TI, 91 (1)
(3.21)
T2 (T 95 O] T2 B (8) £ () T 96 ()]
— TP TTiy gi (O] T2 [ (8) £ () iy 06 ()]
This completes the proof.

Remark 12 If we take o = 3, in Theorem 11, we obtain Theorem 10.
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