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Abstract 
In this paper we investigated the effect of tunneling magnetoresistance in one-dimensional 

three-terminal mesoscopic ring in the presence of the magnetic flux and the Rashba spin-orbit 
interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI). We calculated the current 
flow in this structure based on the Landauer-Buttiker formalism and a generalized Green’s function 
technique for parallel and antiparallel spin orientations in ferromagnetic electrodes. Calculations 
show that the tunneling magnetoresistance increases with the strength of the magnetization. 
The required conditions for reach the maximum values of the tunneling magnetoresistance are also 
calculated. 

Keywords: tunneling magnetoresistance, three-terminal mesoscopic ring, 
magnetoresistance, Rashba, Dresselhaus. 
 

Introduction 
The magnetic properties of nanoscale magnets and manipulation of electron spin degree of 

freedom have been the focus of intensive research in the past few decades for both fundamental 
physics and attractive potential applications [1, 2]. During the rapid development of 
nanotechnology, much attention has been paid on the spin injection and the tunneling 
magnetoresistance (TMR) effect in tunnel junctions made of semiconductor spacers, sandwiched 
between ferromagnetic leads [3]. The magnetoresistance exhibits a strong dependence on the 
relative magnetization directions in these layers and on their spin polarizations [4–8]. Its new 
characteristics, for example, anomalies of the TMR caused by the intra-dot Coulomb repulsion 
energy, were analyzed in the subsequent theoretical work based on the non-equilibrium Green’s 
function method [9]. Also, numerous investigations relate to the transmissions, conductances, and 
traversal times [10–12]. Spintronics devices based on the TMR effect in magnetic multi-layers, 
such as magnetic field sensor and magnetic hard disk read heads have been used as commercial 
products, and have greatly influenced the current electronic industry. Some successful attempts 
have been already made in this direction, based on the use of ferromagnetic metal or combined 
magnetic and non-magnetic semiconductor contacts [13]. In such devices based on the spin 
polarization of the current inject from the ferromagnetic leads which can be effectively tuned by the 
magnetic flux and the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit 
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interaction (DSOI). The component of two types of SOIs, the Rashba [14] and the Dresselhaus [15], 
is a novel and crucial tool in modulating the electron transports and spin precessions in some 
typical materials [16–20]. Therefore, the SOIs play a very important role in the electron transport 
of Spintronic devices, such as spin field effect transistor (SFET). Meanwhile, the constitution of the 
magnetic tunnel junction (MTJ) also has significant effects in controlling the spin electron 
transport [21]. The TMR has the expectation of realizing the applications of novel tunneling-based 
Spintronic devices, such as hard disk drives, magnetic field sensors, and magneto-resistive random 
access memory, the magnetic properties of nanoscale magnets have been the focus of intensive 
research in the past few decades both experimentally and theoretically [22–25]. The TMR effect 
was first observed by M. Julliere [26] in 1975, where was measured the change in electrical 
resistance on switching the relative alignment of the Fe and Co magnetic moments from parallel to 
antiparallel in Fe/Ge–O/Co MTJ structure. In such a system, both of the RSOI and DSOI exist 
simultaneously and behave like in-plane momentum-dependent effective magnetic fields. In fact, 
these fields add spin-dependent geometric phases to the electron wave function in semiconductor 
quantum rings. The Aharonov-Bohm [27] (AB) effect and its relativistic counterpart, the Aharonov-
Casher (AC) [28] effect, are just two of these quantum interference phenomena that may appear 
simultaneously. The Aharonov-Bohm (AB) phase represents the geometric phase acquired by the 
orbital wave function of the charged particle encircling a magnetic flux line. This phase is 
experimentally well established and manifests itself through oscillations in the resistance of 
mesoscopic rings as a function of an external magnetic field. The spin part of the particle’s wave-
function can acquire an additional geometric phase in the systems with strong spin-orbit 
interactions [29, 30]. Spin sensitive quantum interferences under the influence of the AB and AC 
effects make the quantum rings to have a practical significance for designing nano-electromagnetic 
spin devices, such as spin switches [31, 32], detectors [33], spin transistors [34], filters [35], and 
scalable devices for quantum information processing. Generally, the tunneling probability of the 
electron flowing through the mesoscopic rings depends on few factors: (i) the relative orientations 
of the electrode magnetizations, which can be changed from the parallel (P) to anti-parallel (AP) by 
applying an external magnetic field; (ii) the RSOI and DSOI strength; (iii) the effects of relative 
positions of the drain electrodes in quantum ring; (iv) the coupling strength between the leads to the 
ring; (v) Fermi energy of transmission electrons; (vi) the semiconductor size (number of sites in the 
ring) [36–39]. In this paper, by solving the related equations, we aim to show the effects, such as 
SOIs combination, magnetic flux, and the required conditions for reach the maximum values of the 
tunneling magnetoresistance. In our opinion, the current flow in a quantum ring exists a possibility 
of making real progress in using the parallel and antiparallel spin orientations in ferromagnetic 
electrodes in special value of the magnetic flux and the Rashba spin-orbit interaction (RSOI) and 
the Dresselhaus spin-orbit interaction (DSOI). The relative orientation of the magnetization of 
ferromagnetic electrodes and SOIs can affect dramatically electron transport across a tunneling 
barrier connecting them. Therefore, this makes the TMR properties to be strongly affected by the 
spin accumulation and magnetoresistance. The paper is organized as follows. The model systems 
are introduced and related basic formulations are shown in Section II. Details of the calculation 
procedure affected by the magnetization, the SOIs combination, and strength of both RSOI and 
DSOI are described and analyzed thoroughly in Section III. In Section IV the corresponding 
conclusions are presented. 

 
Model and formulations 
We considered a mesoscopic ring with three leads and mapped onto a one-dimensional 

virtual lattice with a symmetric geometry of leads, i.e.  (  is an angle between 
leads). The right leads act as a source (s) that is ferromagnetic materials in all stages of the 
calculation and the two left leads act as drains (d1 and d2), which we consider them being in two 
states of ferromagnetism material and antiferromagnetism material. In the tight-binding model, an 
electron can jump from one site to the nearst neighbor sites with a hopping energy matrix [t].  
The total Hamilton, , with regard to the transport of coherent electron jumps between the nearest 
neighbor sites can be written as:  

                                                                                                                   (1)  
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where, H – is the Hamiltonian of isolated ring and Hp, with  – is the Hamiltonian 
due to the coupling between the ring and the source lead, up drain lead, and down drain lead, 
respectively. Therefore, the total Hamilton is the sum of the contrib form of the ring, , and  with 

. In this paper, we consider a source consists of the ferromagnetism materials and two 
drains electrods are in two state ferromagnetism and antiferromagnetism. In the absence of the 
electron-electron and electron-phonon interaction, , can be written as follows: 

 
here,  – is a matrix  which is given by [40–41] 

                                        (3) 
In, ,  – periodic boundary condition is imposed by 3N + 1 = 1 and values of 

atomic sites (3N) on the ring are equal to 100. The Peierls phase factor  with  
describes the influence of the magnetic field in terms of the magnetic flux, , threaded by the ring, 
and  is the flux quantum and  is Anderson-like on site disorder energy strength. The 

and  are RSOI and DSOI strength, respectively, and  is the  identity matrix in the spin 
space. Here, t – is intensity jumps between nearest neighbor sites that in this paper, we put it equal to 
one. The Hamiltonian due to the coupling between the ring and the source lead and  output leads 
can be written as: 

                                                              (4) 

In the two component operator, , – is the creation operator (annihilates) 
of an electron on the site i with spin-state. We consider that the linear transport regime conductance 
G of the interferometer can be obtained using the Landauer conductance formula [42]:  

                                                                                                                    (5) 
where,  – is the transmission probability of an electron across, it can be expressed in 

terms of Green’s function and its coupling to the side-attached electrons by [43]:  
                                                                                                        (6) 

Here, G – is Green’s function and the coupling of the source and drains described by  and 

: 
 ;                                                                                 (7) 

The coherent transport is then calculated using the Landauer’s formula and the retarded 
Green’s function of the ring is computed as: 

                                                                                               (8) 
where E+ – is complex energy for one way to incorporate the boundary into the equation and 

self-energy pΣ describes the effect of the leads on the conductor of pΣ with p=s, d1, d2 and it 

calculated by 
†

p p p pt g tΣ ,where 0 0pt t σ= −  and k0 satisfies the relation , hence the 
conductance of the ring finally obtains as the Landauer equation (M is the intensity of 
magnetization). Therfore, the tunneling magnetic resistance (TMR) is calculated as follows: 

                                                                                                  (9) 

where and  – are the conductivity in the ferromagnetic state (P) and in the 
antiferromagnetic state (AP), respectively.   

 
Results and discussion 
In linear response, the tunnel magnetoresistance is defined as a relative change in the 

conductance of the system when the magnetizations of the two ferromagnetic layers switch 
between parallel (P) and antiparallel (AP) configurations, hence: . Conductance itself 

is simply calculated as a derivative of the current with respect to magnetization intensity (M) 
where,  and , respectively, the conductivity in the ferromagnetic state (P) and 
antiferromagnetic state (AP), where:  and  (the arrows denote the 
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orientations of magnetization of the electrodes). It should be also mentioned that our calculations 
are based on the assumptions of coherent and elastic transport, for which the current conservation 
rule is fulfilled at each sites of rings. In all figures in this paper, we compare to the effect SOIs and 
magnetization intensity with values of TMR. Here, Spin-orbit coupling strengths can be written 
[44] as  and , where  is the strength of the RSOI,  is the strength of the DSOI, 
and  is the lattice spacing constant. The Dresselhaus spin-orbit interaction (DSOI) induced by 
bulk inversion asymmetry (like zinc-blend structure) and usually is fixed for a given material. 
However, the Rashba spin-orbit interaction (RSOI) is induced by the structure inversion 
asymmetry. The strength of the RSOI can be tuned by external gate voltages by tuning the electric 
field in the z-direction. For example, we consider the parameters corresponding to the etched 
InGaAs/GaAs materials [45]:  and . This value is obtained from the 
bulk Dresselhaus constant (βb) as , where  is the height of the structure in the 
growth direction and  for GaAs [46]. Also, we consider all energies are measured in 
the units of the hopping energy between neighboring (t=1) and  as the lattice constant and 
number of sites in the ring  and the radius of the ring is . 

Fig. 1 shows the tunneling magnetoresistance (TMR) functions of the electron Fermi energy 
for various values of magnetization. Calculations show that TMR increases with the increasing 
strength of the magnetization. In the absence of SOIs and small quantities of magnetization, there 
is no difference between conductivity in the ferromagnetic state (P) and antiferromagnetic state 
(AP). This condition is shown in the first diagram, in which this width the valuse of TMR goes to 
zero and has its minimum value relative to other values of magnetization. But, by the first to the 
last diagram with increasing the strength magnetization (M), the amplitudes of conductivity in the 
ferromagnetic state (P) and antiferromagnetic state (AP) are increased and their degeneration is 
increasing. Indeed, when the outgoing interface layer is parallel to the magnetic field strength is 
low, and when the antiparallel to the magnetic field strength is increased. The origin of this 
difference is in energy bands of magnetic nanoparticles. Although, with increasing the strength 
magnetization (M), the TMR is increasing but the TMR strength is not in high values (TMR=1) in 
absence of SOIs and magnetic flux. Therefore, for achieving a perfect system with maximum TMR 
strength, we should consider effects of RSOI and DSOI in the presence of magnetic flux. To see the 
relationship between the TMR and the size of the SOIs, we first calculated the TMR of three-
terminal mesoscopic ring with the presence of both DSOI and RSOI. However, verifying this 
conclusion needs a spacious search in {tR, tD,E, ϕ} parameter space; we searched the specific values 
of RSOI and DSOI strengths, for which our system acts with maximum values of TMR. 

 

TM
R

 

 
 Fermi energy 
 Fig. 1: TMR versus the Fermi energy for various values of M in 

absence of SOIs and magnetic flux 
 

In Fig. 2 is shown the contour map of TMR plotted in tD−tR plane for strongly Fermi energy 
with E=0.252 for various values of magnetization (M). Also, the values of the magnetic flux have 
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been tuned to be equal to 0.42. As we see in Fig. 2, by increasing magnetization peaks of the tunnel 
magnetoresistance shift to large values and that the system under consideration has a sharp peak 
of TMR only when the difference between tR and tD is small. Note, that the maximums and 
minimums of TMR occur at same specific values of (tR, tD) and these specific values are (tR=0.32; 
tD=0.33) for all panels. In such points 0.33 for all panels. In such points TMR=0.08; 0.3; 0.7; 0.99 
for weakly magnetization to strongly magnetization M=0.1; 0.3; 0.7; 1.1 respectively. This behavior 
is obeyed also for other values of AB magnetic flux (is not shown). Therefore, for a fixed AB flux, 
there are specific values of both tR and tD with small differences for which our system looks 
perfectly TMR for one spin channel while totally opaque for the other spin channel and the 
magnetization strength has a significant role on the tunnel magnetoresistance in all configuration. 
So far, we have studied TMR for E=0.225 with different values of tR and tD. Now we seek other 
values of E (still with same values of magnetic flux) with values of tR and tD, that we calculated on 
Fig. 2, lead to TMR=1. 

  
 

 

 

 

Fig. 2: (Color online) contour plot of tunnel magnetoresistance in tD− tR plane for various values of 
M in E=0.225 and . The right panels show a close up of the middle panels in the area inside 

the black rectangular, where the tunnel magnetoresistance has maximum values. 
 
Fig. 3 shows the TMR current as function of the electron Fermi energy for fixed non-vanishing 

values of SOIs and AB flux (tR=tD=0.32; ) and various values of magnetization strength. In the 
presence of SOIs, the degeneracy between the conductivity in the ferromagnetic state (P) and 
antiferromagnetic state (AP) with increasing magnetization is removed, and there is a modulation in 
the difference between in the ferromagnetic state (P) and antiferromagnetic state (AP) conductance. 
Note, that the Rashba constant can be tuned by changing the perpendicular electric field. As we see in 
Fig. 3, the maximum of TMR with TMR=1 occurs at Fermi energy E=0.252.  

It seems that the presence of both SOIs and the magnetic flux is necessary in order to a 
symmetric three-terminal clean AB ring acts a perfect system with high TMR, but the presence of both 
RSOI and DSOI is not necessary for this system. However, verifying this conclusion needs a spacious 
search in all parameters. We search the specific values of E and tR for which the perfect system 
conditions are established. Fig. 4 shows a contour plot of TMR as a function of both the electron energy 
and the DSOI strength for tD=0 (upper panels) and tD=0.1 (lower panels). In the upper panels we have 
compared the contour maps of TMR for  (left panel) and  (middle panel). The similar 
comparison has been done in the lower panels. In the left panel there is no TMR=1, while in middle 
panels we observed TMR=1 at specific values of (E, tR) and some periodic values. These special values 
are (E=0.04; tR=0.18) and (E=0.24; tR=0.19) for upper panel and lower middle panel. The right panels 
in Fig. 4 show a close up of the middle panels in the area inside the black rectangular, and show that 
TMR reaches unity at these specific values. 
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Fig. 3: The tunneling magnetoresistance in terms of the Fermi energy for various values of 

magnetization. Here, the specific values of tR=tD=0.32 and  are chosen in order to get 
maximum values of TMR at zero conductance energies. 

 

 

   

Fig. 4: (Color online) contour plot of TMR in E–tR plane for tD=0 (upper panels) and tD=0.1 (lower 
panels). The right panels show a close up of the middle panels in the area inside the black 

rectangular, where the TMR values are equal to 1. 
 
Summary and conclusion 
In summary, we studied the influence of the Rashba and Dresselhaus spin-orbit interaction 

on the tunneling magnetoresistance in a clean AB ring symmetrically coupled to the one input and 
two output leads. Our analysis is focused on the effect of both of the RSOI and DSOI 
simultaneously, which is the case in practice. Indeed, in a clean AB ring coupled symmetric to 
reservoirs, the presence of only one type of SOIs is necessary to reach the TMR values equal to 1. 
We think that such a system can act as a perfect system of TMR with unit efficiency only in the 
presence of RSOI and the magnetic flux. By appropriate tuning of RSOI strength by external gate 
voltage with respect to DSOI strength [47–50], our system serves as a perfect system of tunneling 
magnetoresistance at a fixed AB magnetic flux. 
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