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INTRODUCTION 

Because of its compactness, and high transmission ratios, planetary gears have a 

great application in modern engineering systems as a replacement for the conventional 

manual transmission complex. Planetary gears have substantial advantages over parallel 

shaft drives, including large torque to weight ratio and high efficiency to transfer power. 

They are widely used for transmissions of automobiles, aircrafts, heavy machinery and 

marine vehicles. In most high precision reduction of an industrial robot, planetary gears are 

used in the first stage of gear reducer. Despite the advantages of planetary gears, noise and 

vibration have been major concerns in their applications. 

Generally, a single stage planetary gear-set consists of a sun gear, a ring gear, a 

carrier, and several planets. Planetary gears possess complicate structure. When modelling 

planetary gears, both the inertia and the supporting condition should be considered for the 

sun gear, the ring gear, the carrier and the planets. For this reason, the dynamic analysis of a 

planetary gear is difficult. Dynamic loads cause damage to the gears, bearings and other 

elements of the transmission. Precise study of the dynamic behaviour of planetary gear is 

often a difficult mathematical problem, because there are no adequate models. 

Dynamic analyses of the planetary gear system have been investigated by many 

researchers. First papers on the dynamic behaviour of gears in use, contain a great 

simplification, such as that all changes have linear character. Experimental studies have 

shown that this approach is not realistic. The dynamic behaviour of gears is influenced by 

many factors that cannot be described by linear relationships. The simplest models are found 

in a number of textbooks used in education in this field. So, the teeth in meshing action can 

be modelled as an oscillatory system [7], etc. This model consists of concentrated masses 

connected with elastic and dump element. Each mass represent one gear. For different 

analysis purposes, there are several modelling choices such as a simple dynamic factor 

model, compliance tooth model, torsion model, and geared rotor dynamic model, [8]. In 

order to obtain better results, it is possible to model the elastic element as a nonlinear spring. 

Natural frequencies and vibration modes are critical parameters that are essential for almost 

all dynamic investigations. Those parameters may be calculated by using the free vibration 
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analysis. The free vibration properties are very useful for further analyses of planetary gear 

dynamics, including eigen-sensitivity to design parameters, natural frequency veering, 

planet mesh phasing, and parametric instabilities from mesh stiffness variations [9]. 

The dynamic characteristics of the planetary model considering nonlinear time-

variable parameters are studied extended it to a three-dimensional model and examined the 

influence of planet phasing on dynamic response [6]. The planet gears in planetary gear 

system are fixed at the carrier, so the motion of planets is considered along with the 

dynamics characteristics of the carrier. In other words, the motion of the planet gears 

depends on a translation and rotation of the carrier as well as the deflection of the planet 

gear bearings. Motion of the carrier is considered with the deflections due to the bearings of 

the planetary gears, because the rigid-body motion of the carrier influences the mesh 

stiffness between the sun, planetary and ring gears. The revolutions of planets due to the 

carrier rotation are analysed using polar coordinates [1]. The equations of motion which 

considered a gyroscopic effect with respect to a rotation are derived also. In recent years, 

many researchers have used that dynamic model to analyse a planetary gear system. 

In the latest research, light fractional order coupling element, is used to describe the 

dynamic behaviour of gears and set of constitutive relationships, so the fractional calculus 

can be successfully applied to obtain results [4]. 

A dynamic model of a planetary gear system in this paper represents a new 

dynamic model of the fractional order dynamics of the planetary gears with four degrees of 

freedom. Based on this model, the equations of motion are derived by using Lagrange’s 

equation. The analytical expressions for the corresponding fractional order modes like one 

frequency eigen vibration modes are obtained. 

Applying the Math CAD time integration method to the derived equations, time 

responses for a planetary gear are calculated. From the computed responses, the dynamic 

characteristics of the planetary gear system are analysed. 

EQUATION OF MOTIONS 

Consider the motions of the sun gear, the ring gear, the carrier and the planets 

gears. It is assumed in this paper that all components of the planetary gear system have the 

planar motion which is described by translations and rotations.  

This model consists of reduced masses of the gear with elastic and damping 

connections [7]. Contact between two teeth is constructed by standard light element with 

constitutive stress – strain state relations which can be expressed by fractional order 

derivatives. In the paper [2] standard light coupling elements of negligible mass in the form 

of axially stressed rod without bending, with the ability to resist deformation under static 

and dynamic conditions is analysed in details.  

 
Figure 1 The model of the planetary gear with viscoelastic fractional order tooth coupling 
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The motion of the sun gear and the ring gear is given by translations that is 

expressed as iy , 2,1i  and rotations that is expressed as i , 2,1i ,(Figure 1). The 

kinetic energy KE of the planetary stage can be written in a form 

21 KKK EEE 
 

 

The kinetic energy for the system is represented by: 
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(1) 

Wherem1 is mass of the sun gear andm2 is mass of ring gear, J1is mass moment of the inertia 

of sun gear, J2 is mass moment of the inertia of ring gear, 1y is velocity of mass center of the 

sun gear and 2y is velocity of ring gears mass center; 1 is angular velocity of the sun gear 

and 2 is angular velocity of the ring gear.  

Sun gear is supported with bearing which is modelled as linear springc1, but the 

meshes of sun gear-planet gear and ring gear-planet gear are described by standard light 

fractional element with stiffness c01 and c02 . Thus the potential energies of the bearings are: 
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(2) 

The potential energy due to gear mesh between the sun gear and the planet gear is 
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(3) 

The potential energy due to gear mesh between the ring gear and the planet gear is 

 22222
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(4) 

The equations of motion for the planetary gear are derived from Lagrange’s 

equation given by 
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(5) 

Where qj are generalized coordinates (for the given system generalized coordinates are: 

121 ,, yy and 2 ). 

Light standard creep constraint element between sun gear and planet gear is 

strained for
1122121  bb rryyx  and light standard creep constraint element between 

planet gear and ring gear is strained for
2222 bryx  . 

So, due to the constitutive stress-strain relation of the standard light fractional order 

coupling elements the restitution forces as a function of elongation of elements are 

           111222
/

11122211
/

11
*
1   bbbb ryryDcryrycxDcxcQ   (6) 
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Substitution equations (6) into equation (l) the Lagrange equations of motion can 

be expressed as:  
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(7) 

The matrix form of equations is well known as:  
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with matrixM as diagonal inertia matrix in a form: 
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and the matrix C  as stiffness matrix that is in a form: 

 

 
   





























2
22122121121

2212102111

21111
2
1111

21111101

bbbbb

bb

bbbbb

bb

rccrccrrcrc

rcccccrcc

rrcrcrcrc

rccrccc

C

 

(10) 

MODAL ANALYSIS 

Eigenvalue problem  

The proposed solutions are in the form: 

       tAq cos
 

(11) 

and it can be written as:  

   0 qMC 
 (12) 
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The matrix on the left side is singular in aim to obtain non-trivial solutions. It 

follows that the determinant of the matrix mast be equal to 0, so: 
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(13) 

Solving this determinant four eigen circular frequencies 4,3,2,1,  jjj  , can 

be obtained. 

The solution of basic linear differential equation is: 

     sss tCtq   cosR
 

(14) 

whereR  is modal matrix defined by the corresponding cofactors and 

 ,cos ssss tC   4,3,2,1s  are main coordinates of the linear system. The system 

of the fractional differential equations (7) can be transformed in the form [2]: 
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Using the approach presented in [2] the solution of the basis system (7) can be 

expressed in the following form: 
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(16) 

Where   ss 00   and   ss 00    are initial values of main coordinates defined 

by initial conditions. 

Computation observation 

Eigen solutions of a sample system with four degrees of freedom are evaluated 

numerically to expose the modal properties.  

 

Figure 2 The initial position of planet gear  
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For the Sun base radius rb1=24 mm, Planet base radius rb2=16 mm, Radial bearing 

stiffnesses  c01 = 0.5x10
9
 N/m and c02 = 0.5x10

9
 N/m, Stiffness of teeth c1 = 2.91x10

8
 N/m 

and c2= 1.81x10
8
 N/m, Mass m1= 0.3 kg, m2= 0.3 kg, Rotational inertia, J1=10x10

-3
 and 

J2=100x10
-6

 kgm
2
 some So,  

  

Figure 3 Translational (a) and angular (b) displacement modes (215,564 Hz) mesh of sun-

gear planet gear defined in [8]  

For one planetary gear, eigen fractional modes are obtained and visualization is 

presented on Figure 3 by using MathCAD .  

  

Figure 4 First main coordinates defined by initial conditions;   ss 00   and   ss 00     

The first main coordinate is decreasing and increasing for changing of parameter
. 

DYNAMIC RESPONSE ANALYSIS  

The mechanical systems presented in this paper contain several simplifications. 

The planetary gear system is modelled as a mass-less shaft, bearings are assumed to be 

linear as linear elastic springs and the gears are assumed to be rigid. 

However, the results in paper [4] and paper [5] indicate that the models with these 

simplifications acceptably predict the system characteristics. 
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Dynamic responses of the planetary gear system are computed from equation (16), 

using the Math CAD software. 

Based on equation (18), the first normal mode corresponds to both masses moving 

in the opposite direction while angular displacements are in the same direction. 

The numerical simulations indicate that the first, second and third fourth eigen 

frequencies are different from zero but the fourth eigen frequency is equal to zero for the 

presented values. Also, one can see 4-5 peaks of first main coordinate presented on Figure 4. 

The first main coordinate is decreasing and increasing unbalance for an increase of 

parameter  (Figure 4a). According to Figure 4b one can see that the first main coordinate 

is changing with increasing of parameter  . Parameters and  are parameters that define 

the derivation of fractional order differential operator [3]. 

CONCLUSIONS 

The dynamic characteristics of planetary gear system are analysed considering the 

motion of carrier which influences the translation and rotation motions of the planetary 

gears. The equations of motion for the planetary gear system are derived by applying the 

Lagrange equation. Based upon the derived equations, the time responses are computed 

using the Math CAD. The dynamic behaviours of the planetary gear system are investigated 

with the time responses computed from the equations of motion. In addition, the motions of 

the components are also studied when they are in a steady state. The new model of the 

fractional order dynamic planetary gear here presented can be applied to study the real 

behaviour of the planetary gear. With this simple model, it is possible to research the 

nonlinear dynamics of the planetary gear and nonlinear phenomena in free and forced 

dynamics. The model is suitable to explain source of vibrations and big noise, as well as no 

stability in planetary gear. 

In this paper a new method is used for the obtaining of the eigen values and for 

analysis results by MATCAD software. 
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