The Completion of Factorial Vector of length 4

Selby Jose

Department of Mathematics, Institute of Science, Madam Cama Road, Fort, Mumbai 400-032.
E mail: selbyjose@gmail.com

Manuscript Details

Received : 10.07.2015
Accepted: 21.08.2015
Online Published: 30.08.2015

ISSN: 2322-0015

Editor: Dr. Chavhan Arvind

Cite this article as:

Selby Jose. The completion of Factorial Vector of length 4. Int. Res. J. of Science \& Engineering, 2015; Vol. 3 (4):152-155.

Copyright: © Author(s), This is an open access article under the terms of the Creative Commons Attribution Non-Commercial No Derivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is noncommercial and no modifications or adaptations are made.

ABSTRACT

In this paper, we compute the complection of the unimodular $\operatorname{row}\left(\alpha_{0}, \alpha_{1}, \alpha_{2}^{2}, \omega_{2}^{3}\right)$ if $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{1}\right)$ is unimodular.

Keywords: Unimodular rows, completion of vector. Mathematics Subject Classification 2010: 11E57, 13C10, 15A63

1. INTRODUCTION

Let R be a commutative ring with 1 . For any unimodular row $v=\left(a_{0}, \ldots, a_{r}\right) \in R^{r+1}$ of length $\$ r+1 \$$,
one has the following surjective map.

$$
\begin{aligned}
& R^{r+1} \xrightarrow{\otimes} R \\
& e_{i} \mapsto a_{i-1}
\end{aligned}
$$

Let P_{V} denote its kernel. Then one has a split exactsequence:

$$
0 \rightarrow P_{\mathbb{W}} \rightarrow R^{r+1} \xrightarrow{v} R \rightarrow 0
$$

Thus P_{w} is a projective module of rank r, which is 1-stablyfree, i.e. $P_{w} \oplus R \propto R^{r+1} \cdot P_{W}$ is free if and only if v can be completed to an invertible matrix, i.e. v iscompletable.

In [5], R.G. Swan and J. Towber proved that If P is a projective $R[X]$-module of rank 2 and $X^{2} R[X]^{2} \subseteq P \subseteq R[X]^{2}$, then $P \propto R[X]^{2}$.As a consequence, they concluded that if $(a, b, c) \in U m_{3}(R)$, then $\left(a^{2}, b, c\right)$ can be completed to an invertible matrix.This result was explained and generalized by A.A. Suslin in hisdoctoral thesis [2] in the mid-seventies.There he proves that if $\left(a_{0}, a_{1}, \ldots, a_{r}\right) \in U m_{r+1}(R)$, then the unimodular row $\left(a_{0}, a_{1}, a_{2}^{2}, \ldots, a_{r}^{r}\right)$ can always be completed to an invertible matrix.

2. Preliminaries

In this section we recall a few definitions, state some results and fix some notations which will be used throughout this paper.

Definition 2.1 A row $v=\left(v_{1}, v_{2}, \ldots, v_{r}\right) \in R^{r}$ is said to be unimodular(of length r) if there exists elementsw $w_{1}, w_{2}, \ldots, w_{r}$ in R such that $v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{r} w_{r}=1 . U m_{r}(R)$ will denote the set of all unimodular rows $v \in R^{r}$.

Definition $2.2 A$ rowv $=\left(v_{1}, v_{2}, \ldots, v_{r}\right)$ is said to be completable if there exist an invertible matrix φ such that $e_{1} \varphi=v$.

We now state some examples (from [1]) of completable rows. Consider the coordinate ring of the real n sphere,
$R_{n}=\frac{\mathbb{R}\left[t_{0}, t_{1}, \ldots t_{n}\right]}{\left(t_{0}^{2}+t_{1}^{2}+\ldots+t_{n}^{2}-1\right)}$
Let $a_{0}, a_{1}, \ldots, a_{n}$ be the images of $t_{0}, t_{1}, \ldots, t_{n}$ in R_{n} and let v be the unimodular row $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in U m_{n+1}\left(R_{n}\right)$.

For $n=1,\left(a_{0}, a_{1}\right) \in U m_{2}\left(R_{1}\right)$ is completable, and its completion is $\left(\begin{array}{cc}a_{0} & a_{1} \\ a_{1} & -a_{0}\end{array}\right)$. Also for $n=3$, $\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \in U m_{4}\left(R_{3}\right)$ is completable, and its completion is

$$
\left(\begin{array}{cccc}
a_{0} & a_{1} & a_{2} & a_{3} \\
a_{1}-a_{0} & a_{3} & -a_{2} \\
a_{2}-a_{3}-a_{0} & a_{1} \\
a_{3} & a_{2} & -a_{1}-a_{0}
\end{array}\right)
$$

3. Completion of $\left(a_{0}, a_{1}, a_{2}^{2}, a_{3}^{3}\right)$

In this section, we give an explicit computation of the completion of the unimodularrow $\left(a_{0}, a_{1}, a_{2}^{2}, a_{3}^{3}\right) \in U m_{4}(R)$.

Let $\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \in U m_{4}(R)$. Consider the matrix,

$$
\begin{aligned}
& \beta_{1}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
-a_{3} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & b_{3}^{\prime} & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-a_{3} & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & b_{3}^{\prime} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
&\left(\begin{array}{ccc}
1 & 0 & 0 \\
-a_{3}^{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-a_{3} & 0 & 1
\end{array}\right) \\
&=\left(\begin{array}{ccc}
a_{3}^{2}\left(2 a_{3}^{2} b_{3}^{2}-4 a_{3} b_{3}+3\right) & -\left(1-a_{3} b_{3}\right)^{2} & -a_{3}\left(1-a_{3} b_{3}\right)^{2} \\
2 a_{3}\left(1-a_{3} b_{3}\right)^{2} & b_{3}\left(2-a_{3} b_{3}\right) & -\left(1-a_{3} b_{3}\right)^{2} \\
\left(1-a_{3} b_{3}\right)^{2} & 0 & b_{3}\left(2-a_{3} b_{3}\right)
\end{array}\right) \\
&=\left(\begin{array}{ccc}
a_{3}^{2}\left(2 a_{3}^{2} b_{3}^{2}-4 a_{3} b_{3}+3\right) & -\left(1-a_{3} b_{3}\right)^{2} & -a_{3}\left(1-a_{3} b_{3}\right)^{2} \\
2 a_{3}\left(1-a_{3} b_{3}\right)^{2} & b_{3}^{s} & -\left(1-a_{3} b_{3}\right)^{2} \\
\left(1-a_{3} b_{3}\right)^{2} & 0 & b_{3}^{\prime}
\end{array}\right)
\end{aligned}
$$

where $b_{3}^{b}=b_{3}\left(2-a_{3} b_{3}\right)$. Consider,

$$
\beta_{2}=\left(\begin{array}{ccc}
-2 a_{3}^{3} & a_{3} & a_{3}^{2} \\
-2 a_{3}^{3} & 1 & a_{3} \\
-a_{3} & 0 & 1
\end{array}\right)
$$

Thus one has,

$$
\begin{aligned}
& a_{3} I_{3} \beta_{1}+\left(1-a_{3} b_{3}\right)^{2} \beta_{2}=\left(\begin{array}{ccc}
a_{3}^{3} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \text { i.e. } a_{3} I_{3} \beta_{1}+\operatorname{det}(\gamma) \beta_{2}=\left(\begin{array}{ccc}
a_{3}^{3} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { where } \gamma=\left(\begin{array}{ccc}
a_{0} & a_{1} & a_{2}^{2} \\
b_{1}^{2} & -\mathrm{b}_{2}-\mathrm{b}_{0} \mathrm{~b}_{1} & -\mathrm{a}_{0}+2 \mathrm{a}_{2} \mathrm{~b}_{1} \\
\mathrm{~b}_{2}-\mathrm{b}_{0} \mathrm{~b}_{1} & \mathrm{~b}_{n}^{2} & -\mathrm{a}_{1}-2 \mathrm{a}_{2} \mathrm{~b}_{0}
\end{array}\right) .
\end{aligned}
$$

Take

$$
\beta=\left(\begin{array}{cc}
\gamma & a_{3} I_{3} \\
-b_{3}^{s} I_{3} & \operatorname{adj}(\gamma)
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \beta_{1}
\end{array}\right)\left(\begin{array}{cc}
1 & \operatorname{adj}(\gamma) \beta_{2} \\
0 & 1
\end{array}\right)
$$

One can write the above matrix β in the form

$$
\beta=\left(\begin{array}{cc}
\gamma & \left(\begin{array}{cc}
a_{3}^{3} & 0 \\
0 & I_{2}
\end{array}\right) \\
-b_{3}^{b} & -b_{3}^{b} \\
\operatorname{adj}(\gamma) \beta_{2}+\operatorname{adj}(\gamma) \beta_{1}
\end{array}\right)
$$

Let $K=-b_{3}^{b} \operatorname{adj}(\gamma) \beta_{2}+\operatorname{adj}(\gamma) \beta_{1}$. Then

$$
\begin{aligned}
K_{11}= & 2 a_{1}^{2} a_{3}+a_{2}^{2} b_{2}-a_{0} a_{1}+3 a_{1} a_{3}^{2} b_{2}+a_{2}^{2} b_{0} b_{1}+3 a_{0} a_{3}^{2} b_{0}^{2}+2 a_{2}^{2} a_{3} b_{0}^{2} \\
& +2 a_{1} a_{2} b_{1}+3 a_{1} a_{3}^{2} b_{0} b_{1}+6 a_{2} a_{3}^{2} b_{0} b_{2}+4 a_{1} a_{2} a_{3} b_{0} \\
K_{12}= & -a_{0} b_{0}^{2}-a_{1} b_{2}-a_{1} b_{0} b_{1}-2 a_{2} b_{0} b_{2} \\
K_{13}= & -a_{2}^{2} b_{0}^{2}-a_{1}^{2}-a_{0} a_{3} b_{0}^{2}-2 a_{1} a_{2} b_{0}-a_{1} a_{3} b_{2}-a_{1} a_{3} b_{0} b_{1}-2 a_{2} a_{3} b_{0} b_{2}
\end{aligned}
$$

$$
K_{21}=a_{2}^{2} b_{1}^{2}+a_{0}^{2}-3 a_{0} a_{3}^{2} b_{2}-2 a_{2}^{2} a_{3} b_{2}+3 a_{1} a_{3}^{2} b_{1}^{2}-2 a_{0} a_{1} a_{3}-2 a_{0} a_{2} b_{1}
$$

$$
+3 a_{0} a_{3}^{2} b_{0} b_{1}+2 a_{2}^{2} a_{3} b_{0} b_{1}+6 a_{2} a_{3}^{2} b_{1} b_{2}-4 a_{0} a_{2} a_{3} b_{0}
$$

$K_{22}=-a_{1} b_{1}^{2}+a_{0} b_{2}-a_{0} b_{0} b_{1}-2 a_{2} b_{1} b_{2}$
$K_{23}=a_{2}^{2} b_{2}+a_{0} a_{1}-a_{1} a_{3} b_{1}^{2}-a_{2}^{2} b_{0} b_{1}+2 a_{0} a_{2} b_{0}+a_{0} a_{3} b_{2}-a_{0} a_{3} b_{0} b_{1}-2 a_{2} a_{3} b_{1} b_{2}$
$K_{31}=-a_{1} b_{1}^{2}+3 a_{3}^{2} b_{2}^{2}-a_{0} b_{2}-2 a_{0} a_{3} b_{0}^{2}+2 a_{1} a_{3} b_{2}-a_{0} b_{0} b_{1}-2 a_{1} a_{3} b_{0} b_{1}$
$K_{32}=-b_{2}^{2}$
$K_{33}=a_{0} b_{0}^{2}-a_{3} b_{2}^{2}-a_{1} b_{2}+a_{1} b_{0} b_{1}$
Apply the following elementary row operations on :
$R_{4} \rightarrow R_{4}-K_{12} R_{2}, \quad R_{5} \rightarrow R_{5}-K_{22} R_{2}, \quad R_{6} \rightarrow R_{6}-K_{32} R_{2}, \quad R_{4} \rightarrow R_{4}-K_{13} R_{3}$,
$R_{5} \rightarrow R_{5}-K_{23} R_{3}, \quad R_{6} \rightarrow R_{6}-K_{33} R_{3}$
and remove columns 5 and 6 , rows 2 and 3 , we get a $4 \times 4 \$$ matrix β^{r} where
$\beta_{11}^{\prime}=a_{0}, \quad \beta_{12}^{r}=a_{1}, \quad \beta_{13}^{r}=a_{2}^{2}, \quad \beta_{14}{ }^{\prime}=a_{3}^{3}$
$\beta_{21}^{\prime}=b_{1}^{2}\left(a_{0} b_{0}^{2}+a_{1} b_{2}+a_{1} b_{0} b_{1}+2 a_{2} b_{0} b_{2}\right)+\left(b_{2}-b_{0} b_{1}\right)\left(a_{2}^{2} b_{0}^{2}+a_{1}^{2}+a_{0} a_{3} b_{0}^{2}+\right.$ $\left.2 a_{1} a_{2} b_{0}+a_{1} a_{3} b_{2}+a_{1} a_{3} b_{0} b_{1}+2 a_{2} a_{3} b_{0} b_{2}\right)+b_{3}\left(a_{3} b_{3}-2\right)$

$$
\begin{aligned}
& \beta_{22}^{s}=b_{0}^{2}\left(a_{2}^{2} b_{0}^{2}+a_{1}^{2}+a_{0} a_{3} b_{0}^{2}+2 a_{1} a_{2} b_{0}+a_{1} a_{3} b_{2}+a_{1} a_{3} b_{0} b_{1}+2 a_{2} a_{3} b_{0} b_{2}\right) \\
& -\left(b_{2}+b_{0} b_{1}\right)\left(a_{0} b_{0}^{2}+a_{1} b_{2}+a_{1} b_{0} b_{1}+2 a_{2} b_{0} b_{2}\right) \\
& \beta_{23}^{s}=-\left(a_{0}-2 a_{2} b_{1}\right)\left(a_{0} b_{0}^{2}+a_{1} b_{2}+a_{1} b_{0} b_{1}+2 a_{2} b_{0} b_{2}\right)-\left(a_{1}+2 a_{2} b_{0}\right)\left(\mathrm{a}_{2}^{2} \mathrm{~b}_{0}^{2}+\mathrm{a}_{1}^{2}\right. \\
& \left.+a_{0} a_{3} b_{0}^{2}+2 a_{1} a_{2} b_{0}+a_{1} a_{3} b_{2}+a_{1} a_{3} b_{0} b_{1}+2 a_{2} a_{3} b_{0} b_{2}\right) \\
& \beta_{24}^{\prime}=2 a_{1}^{2} a_{3}+a_{2}^{2} b_{2}-a_{0} a_{1}+3 a_{1} a_{3}^{2} b_{2}+a_{2}^{2} b_{0} b_{1}+3 a_{0} a_{3}^{2} b_{0}^{2}+2 a_{2}^{2} a_{3} b_{0}^{2} \\
& +2 a_{1} a_{2} b_{1}+3 a_{1} a_{3}^{2} b_{0} b_{1}+6 a_{2} a_{3}^{2} b_{0} b_{2}+4 a_{1} a_{2} a_{3} b_{0} \\
& \beta_{31}^{v}=b_{1}^{2}\left(a_{1} b_{1}^{2}-a_{0} b_{2}+a_{0} b_{0} b_{1}+2 a_{2} b_{1} b_{2}\right)-\left(b_{2}-b_{0} b_{1}\right)\left(a_{2}^{2} b_{2}+a_{0} a_{1}\right. \\
& \left.-a_{1} a_{3} b_{1}^{2}-a_{2}^{2} b_{0} b_{1}+2 a_{0} a_{2} b_{0}+a_{0} a_{3} b_{2}-a_{0} a_{3} b_{0} b_{1}-2 a_{2} a_{3} b_{1} b_{2}\right) \\
& \beta_{32}^{s}=-\left(b_{2}+b_{0} b_{1}\right)\left(a_{1} b_{1}^{2}-a_{0} b_{2}+a_{0} b_{0} b_{1}+2 a_{2} b_{1} b_{2}\right)-b_{0}^{2}\left(a_{2}^{2} b_{2}+a_{0} a_{1}-a_{1} a_{3} b_{1}^{2}\right. \\
& \left.-a_{2}^{2} b_{0} b_{1}+2 a_{0} a_{2} b_{0}+a_{0} a_{3} b_{2}-a_{0} a_{3} b_{0} b_{1}-2 a_{2} a_{3} b_{1} b_{2}\right)+b_{3}\left(a_{3} b_{3}-2\right) \\
& \beta_{33}^{s}=\left(a_{1}+2 a_{2} b_{0}\right)\left(a_{2}^{2} b_{2}+a_{0} a_{1}-a_{1} a_{3} b_{1}^{2}-a_{2}^{2} b_{0} b_{1}+2 a_{0} a_{2} b_{0}+a_{0} a_{3} b_{2}\right. \\
& \left.-a_{0} a_{3} b_{0} b_{1}-2 a_{2} a_{3} b_{1} b_{2}\right)-\left(a_{0}-2 a_{2} b_{1}\right)\left(a_{1} b_{1}^{2}-a_{0} b_{2}+a_{0} b_{0} b_{1}+2 a_{2} b_{1} b_{2}\right) \\
& \beta_{34}^{s}=a_{2}^{2} b_{1}^{2}+a_{0}^{2}-3 a_{0} a_{3}^{2} b_{2}-2 a_{2}^{2} a_{3} b_{2}+3 a_{1} a_{3}^{2} b_{1}^{2}-2 a_{0} a_{1} a_{3}-2 a_{0} a_{2} b_{1} \\
& +3 a_{0} a_{3}^{2} b_{0} b_{1}+2 a_{2}^{2} a_{3} b_{0} b_{1}+6 a_{2} a_{3}^{2} b_{1} b_{2}-4 a_{0} a_{2} a_{3} b_{0} \\
& \beta_{41}^{b}=b_{1}^{2} b_{2}^{2}-\left(b_{2}-b_{0} b_{1}\right)\left(a_{0} b_{0}^{2}-a_{3} b_{2}^{2}-a_{1} b_{2}+a_{1} b_{0} b_{1}\right) \\
& \beta_{42}^{s}=-b_{2}^{2}\left(b_{2}+b_{0} b_{1}\right)-b_{0}^{2}\left(a_{0} b_{0}^{2}-a_{3} b_{2}^{2}-a_{1} b_{2}+a_{1} b_{0} b_{1}\right) \\
& \beta_{43}^{f}=-b_{2}^{2}\left(a_{0}-2 a_{2} b_{1}\right)+b_{3}\left(a_{3} b_{3}-2\right)+\left(a_{1}+2 a_{2} b_{0}\right)\left(a_{0} b_{0}^{2}-a_{3} b_{2}^{2}-a_{1} b_{2}+a_{1} b_{0} b_{1}\right) \\
& \beta_{44}^{b}=-a_{1} b_{1}^{2}+3 a_{3}^{2} b_{2}^{2}-a_{0} b_{2}-2 a_{0} a_{3} b_{0}^{2}+2 a_{1} a_{3} b_{2}-a_{0} b_{0} b_{1}-2 a_{1} a_{3} b_{0} b_{1} \\
& \operatorname{det}\left(\beta^{\prime}\right)=\left(\left(a_{0} b_{0}+a_{1} b_{1}+a_{2} b_{2}\right)^{2}+a_{3} b_{3}^{\prime}\right)^{3}=1 .
\end{aligned}
$$

Thus β^{f} is the completion of $\left(a_{0}, a_{1}, a_{2}^{2}, a_{3}^{3}\right)$.

REFERENCES

1. Lam TY. Serre's Conjecture, Lecture Notes in Mathematics, 635, Springer Verlag, New York (1978)
2. Suslin AA. On Stably Free Modules, Math. USSR Sbornik, 1977; 31:479-491.
3. Suslin AA and Vaserstein LN. Serre's problem on Projective Modules over Polynomial Rings and Algebraic K-theory, Math. USSRIzvestija, 1976; 10: 937-1001.
4. Swan RG and Towber J. A class of projective modules which are nearly free, Journal of Algebra, 1975; 36: 427-434.
5. Suslin AA. On the structure of the Special Linear Group over Polynomial rings, Math. USSR Izvestija, 1977; 11 :221-238.
(C) 2015| Published by IRJSE
