

A Proposed Framework for Use Case based Effort Estimation using

Fuzzy Logic: Building upon the outcomes of a Systematic Literature

Review

Mohammed Wajahat Kamal and Moataz A. Ahmed

Information and Computer Science Department,

King Fahd University of Petroleum and Minerals,

Dhahran 31261, Saudi Arabia

{wajahat, moataz}@kfupm.edu.sa

ABSTRACT

Reliable and accurate software development

effort estimation has always been a daunting

task for project managers. More recently,

the use of Use Cases for software effort

estimation has gained wide popularity.

Researchers from academia as well as

industry have shown interest in the Use Case

based approaches because of the promising

results obtained along with their early

applicability. There has been a number of

approaches proposed in the literature.

However, there is no criteria that could be

used to aid practitioners in selecting

appropriate approaches suitable for their

particular development efforts. In this paper

we present a set of attribute-based criteria to

classify and compare these approaches and

provide such aid to practitioners. The set is

also meant to guide researchers interested in

proposing new use case-based approaches.

The paper conducts a systematic review of a

number of representative Use Case-based

effort estimation approaches against the

criteria. Analysis of the discussion

highlights some open issues for future

research. Addressing some of the issues, we

present and discuss a framework for

developing use case-based effort estimation

models.

KEYWORDS

Effort Estimation, Use Case, Comparison

Criteria, UML and Fuzzy Logic System.

1 INTRODUCTION

Effort is delineated as the amount of

labor required to complete a certain

work. Software effort estimation is the

process of predicting the effort required

to develop a software system based on

incomplete, crude, uncertain or

ambiguous inputs [1], [2]. It deals with

the prediction of the most probable cost

and time to actualize the required

development task. Software effort

estimation spawned some of the first

attempts at rigorous software

measurement, so it is the oldest, most

mature aspect of software metrics.

Researchers have proposed so many

models to be used for effort estimation.

One of the main inputs to any effort

estimation model is the estimated or the

actual software size, e.g., lines of code

(LOC). As such, measuring/estimating

the software size accurately and also as

early as possible is of prime importance

[3], [4]. A good size estimate can lead to

a good effort estimate. This is a

challenging task though, since on one

hand, early effort estimates play a vital

role when bidding for a contract or

determining whether a project is feasible

in terms of a cost-benefit analysis [5],

[6], [7], [8]. On the other hand, however,

early estimates of size, for example

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

953

based on requirements specification, are

the most difficult to obtain, and they are

often the least accurate, because very

little detail is known about the project

and the product at its start [9].

Furthermore, available details are

characterized as being imprecise and

uncertain.

Use cases, as being available

relatively early during the software

development lifecycle, are expected to

offer a good estimate of the size of the

corresponding future system.

Consequently, effort estimation using

use cases has been gaining popularity

and the response to the approach has

been received quite well by the research

community. Some metrics along with

corresponding techniques have been

proposed to estimate effort using use

case information. Majority of them

utilize the basic Use Case Points [10]

size metric as a predictor of effort. In our

bid to carry out a critical survey of the

literature on using use cases for software

development effort prediction, we

discovered that a common ground for

assessing and comparing these

prediction techniques is not available.

Though a few related works are

available, there is no significant

contribution which explicitly offers an

evaluation framework for comparison

and evaluates the proposed Use Case

based metrics on a common platform

[11], [12], [13], [14]. Boehm [15]

presented a set of useful criteria

(attributes) for evaluating the utility of

software cost models. The attributes

targeted model-based estimation

methods. Similarly, Saliu and Ahmed

[16] proposed a set of attributes; theirs

targeted soft computing-based effort

estimation models though. As such, no

criteria were developed to target use

case-based models. The primary goal of

this work is to fill the void caused by the

unavailability of such literature which

can help practitioners in selecting

appropriate metrics for their respective

development efforts and also guide

researchers interested in developing new

metrics in this domain. Accordingly and

based on a comprehensive survey, we

identified some set of attributes to be

used in assessing and comparing various

use case-based approaches for effort

prediction. This set of attributes is

presented in Section 4.

The rest of paper is organized as

follows: Section 2 gives a brief insight

about the paradigms and problems

associated with using Use Cases. A

brief summary of the metrics included in

the study is presented in Section 3.

Section 4 presents the comparison

framework and definitions of the

attributes. Section 5 consists of the

comparison tables and the actual

comparison of the available Use case

metrics. Section 6 is the analysis of the

comparison findings. The fuzzy logic

based framework for effort estimation

has been discussed in section 7. Section

8 concludes the paper and presents plans

for future work.

2 USE CASE BASED EFFORT

ESTIMATION

The history of using use cases for effort

estimation started with the development

of the Unified Modeling Language

(UML) by Jim Rumbaugh, Grady

Booch, and Ivar Jacobson of Rational

Software Corporation in mid-nineties

[17]. Sometime later, UML was

incorporated into the Rational Unified

Process RUP by Rational Software.

Meanwhile, Gustav Karner also of

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

954

Rational Software Corporation

developed an estimating technique to

predict the effort required based on Use

Cases, much the same way as Function

Points. Karner‟s technique is known as

Use Case Point Method [10] and is

incorporated into RUP. It is the basic

estimating technique for predicting effort

based on use cases.

Use cases are used to capture and

describe the functional requirements of a

software system. Use Case Models

define the functional scope of the

system. The Use Case model is relevant

and valuable for early size measurement

and estimating effort as it employs use

cases as input. According to a survey

conducted by Neil and Laplante [18],

50% of the software projects have their

requirements presented as Use Cases.

Based on these facts, the approach to

estimate effort using Use Cases has

gained popularity and subsequently the

basic technique proposed by Karner,

UCP has gained more recognition. The

idea is more or less same as the Function

Points developed by Albrecht [19].

Based on UCP, many techniques have

been proposed since then, like Use Case

Size Points [20], Extended Use Case

Points [21], UCP modified [22],

Adapted Use Case Points [23],

Transactions [24] and Paths [24] to

mention a few. A more detailed

description of the aforementioned

techniques will be presented in the later

sections.

Along with the advantages of using

these methods, several issues and

concerns about these approaches have

also been raised. Few of the problems

are as follows; varying complexities in

the use case models, adjusting the

technical complexity factors and

experience factors, classification of use

cases and the overall construction of the

UCP method. Additionally, there are few

problems associated with using Use

Cases as well [25], [26]. First, there is no

standardized style of writing a Use Case.

The variations in the style and formality

of writing a Use Case brings about many

issues like how to measure the size of

the Use Case, and how to classify the

Use Case. Second, an important issue

with Use cases is the assessment of

complexity of the Use Case. In a typical

CRUD (Create, Replace, Update,

Delete), is it correct to consider the Use

Case (UC) as one UC with four

scenarios or one UC with one scenario,

as all the other scenarios are so similar.

Third, a Use Case represents an

external actor‟s view. In case the system

has states, it becomes necessary to

define another model to represent this

behavior which is quite complex.

Fourth, granularity of Use Cases is

another big issue. What is the optimum

length and what are the details that

should be mentioned while describing a

Use Case. Fifth, most of the researchers

complain about the non-consideration of

non-functional requirements in the Use

Case models.

This raises the question that, are Use

Cases a good choice to depend on for

estimating effort? The answer lies with

the proper evaluation and investigation

of these approaches. Many proposed

approaches have addressed these issues

satisfactorily and many of them have

ameliorated many problems as well. We

discuss these approaches and compare

them for analysis in the following

sections.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

955

3 USE CASE BASED METRICS

In this section, we present a summary

discussion of the effort estimation

techniques we have selected for

comparison. The summary has been

presented to help the reader understand

the basic idea of each effort estimation

technique. The metrics to be compared

are as follows:

 Use Case Points (UCP) [10]

 Transactions [24]

 Paths [24]

 Extended Use Case Points (EUCP)

[21]

 UCPm [22]

 Adapted Use Case Points (AUCP)

[23]

 Use Case Size Points (USP) [20]

 Fuzzy Use Case Size Points (FUSP)

[20]

 Simplified Use Case Points (SUCP)

[27]

 Industrial use of Use Case Points

(IUCP) [3]

Use Case Points: The basic technique

proposed by Gustav Karner [10] for

estimating effort based on Use Cases.

The method assigns quantitative weights

to actors based on actor classification as

simple, average and complex. The sum

of all the weighted actors in the system

gives the Unadjusted Actor Weight

UAW. Similarly, Use Cases are

classified according to their complexity

and are assigned quantitative weights.

The sum of all the Use Cases in the

system gives the Unadjusted Use Case

Weight UUCW. The sum of UAW and

UUCW gives the Unadjusted Use Case

Points UUCP. Then, a number of

technical complexity factors and

experience factors are weighted and are

multiplied to the UUCP to yield Use

Case Points UCP. Finally, the obtained

Use Case Points are multiplied by the

Productivity Factor PF to give the final

Effort Estimate. Critics claim Karner‟s

method to be decent with the exception

of the non-flexibility in adjusting the

Productivity Factor which was later

proved to be a major variable affecting

the estimation process.

Transactions: A metric proposed by

Gabriela Robiolo et al [24] for

estimating size of software based on the

size of Use Cases. It depends on the

textual description of a Use Case. A

Transaction is defined by a stimulus by

the Actor and response by the system.

The sum of all the stimuli is the number

of Transactions in a particular Use Case.

Summing up the transactions for all the

use cases in the entire system, the

number of Transactions is calculated. In

order to estimate the final effort, the

Historical Mean Productivity technique

was used by the authors [24]. Three

major objectives using this metric and

the following metric „Paths‟ were

highlighted by the method which are

simplifying the counting method, to

obtain different units of measurement

that individually may capture a single

key aspect of software applications and

reducing the estimation error.

Paths: Another metric proposed by

[24] which pursues similar objectives as

the „Transaction‟ metric. It is based on

the concept of Cyclomatic complexity

which identifies binary and multiple

decisions in code. The same idea has

been applied in terms of textual

descriptions of Use Cases. The method

is as follows; obtaining the complexity

of each transaction. For obtaining the

complexity of each transaction, first

count the number of binary decisions,

then identify the multiple decisions by

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

956

counting the different pathways and

subtract one from the number obtained.

In the final step, for computing the

complexity of each uses case, sum up the

complexity value for each transaction.

Extended Use Case Points: The

EUCP method proposed by Wang et al

[21] contains three parts; first, refining

the Use Case classification with fuzzy

set theory. Second, using a learning

Bayesian Belief Network BBN for

getting the Unadjusted Use Case Points

UUCP probability distribution. Third,

using a BBN for generating the effort

probability distribution which is derived

from UCP. The contribution of this

approach is a probabilistic cost

estimation model obtained by integrating

fuzzy set theory and Bayesian belief

networks with the generic UCP method.

UCPm: A slight modification of the

Use Case Points method proposed by

Sergey Diev [22]. The method stresses

more on defining Actors and Use Cases

comprehensively. The slight change

from the basic UCP method is the

calculation of the size of the software

product. The „UUCP‟ obtained is

multiplied with the technical complexity

factor „TCF‟ to give the size of the

software product. To this,

environmental factor „EF‟, base system

complexity factor „BSC‟ and pre-defined

number of person-hours per use case

point „R‟ are multiplied. Finally,

supplementary effort factor is added to

yield the final effort estimate of the

software product. The supplementary

effort may include activities like writing

configuration management scripts or

performing regression testing.

Adapted Use Case Points: The basic

objective of this method proposed by

Mohagheghi et al [23] is to develop a

technique which fits the incremental

model of software development and in

situations where requirements

specifications are frequently changed.

The method follows the structure of the

UCP method but with major differences.

All actors are assumed to be average

without differences in classification. All

the Use Cases are assumed to be

complex and then later on they are

decomposed to smaller use cases and

classified as simple or average. The

method includes the extended use cases

as well and counts them as base use

cases. Exceptional flows are also

counted as average use cases. The

method has very promising results and

the major contributions are the

adaptation of the UCP method for

incremental development and identifying

the impact of effort distribution profile

on effort estimation results.

Use Case Size Points: Proposed by

Braz and Vergilio [20]. The metric

focuses on the internal structures of the

Use Cases in depth and hence better

captures the functionality. The primary

factors considered in this metric are the

Actors classification, pre-condition

classification and post-condition

classification, main scenarios, alternate

scenarios, exception classification and

the Adjustment Factor. The sum of all

these factors gives the Unadjusted Use

Case Size Points UUSP which is

subsequently multiplied by the

difference of the technical complexity

factor and the experience factor. The

results are compared with Function

Points and UCP metrics.

Fuzzy Use Case Size Points: Another

metric proposed by Braz and Vergilio

[20]. The primary factors considered in

this metric are the Actors classification,

pre-condition classification and post-

condition classification, main scenarios,

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

957

alternate scenarios, exception

classification and the Adjustment Factor.

The sum of all these factors gives the

Unadjusted Use Case Size Points UUSP

which is subsequently multiplied by the

difference of the technical complexity

factor and the experience factor. The

difference between USP and FUSP is in

the use of the concept of Fuzzification

and Defuzzification. This creates

gradual classifications that better deal

with uncertainty. Also, it reduces the

human influence on the classification of

the Use Case elements. The results

obtained using this metric are slightly

better than the Use Case Size Points

metric.

Simplified Use Case Points: The main

aim of this method proposed by M.

Ochodek et al [27] is to simplify the

UCP method and the process of Effort

Estimation in general. This is not a

completely defined metric. The approach

used for realizing the objective is the

cross validation procedure, which

compares different variants of UCP with

and without certain factors. Factor

Analysis was also performed to

investigate the possibility of reducing

the adjustment factors. The results from

this study include recommending a

metric based on rejection of actor

weights and rejection of 9 Technical

Complexity Factors and 6 Experience

Factors.

Industrial Use Case Points: The

IUCP method proposed by Edward

Caroll [3] is not a defined metric but an

amalgamation of different industrial

practices used in association with the

UCP method to increase the accuracy

and reliability of the estimation

procedure. The main contribution of this

method is the inclusion of the Risk

Factor and additional effort for activities

other than the development of the

software product. Also, in depth

analysis of few factors like Performance

Analysis, Deliverable Analysis,

Schedule Analysis, Defect Analysis,

Causal Analysis and Quantitative

Management Analysis is mentioned.

The importance of using a Process

Improvement Cycle is also highlighted.

4 COMPARISON CRITERIA

To compare the proposed metrics, we

developed a criterion set consisting of

ten attributes, which were chosen

carefully to accommodate all the pros

and cons of using those metrics.

Unfortunately, there is no literature

survey available in the specific domain

of effort estimation based on Use Cases.

As such, there are no previous

evaluation attributes available.

Nevertheless, few attributes have been

borrowed from Saliu‟s and Ahmed‟s

[16] work as well as Irfan‟s [25] work

which was aimed at evaluating various

size metrics. The qualified evaluation

attributes and their descriptions are as

follows:

Accuracy: The degree of precision or

correctness obtained in estimating the

effort with reference to a particular

approach is termed as Accuracy. It is

basically obtained by comparing the

effort estimated with the actual effort

and checking for deviations. A higher

accuracy of an approach validates the

efficiency of that approach. Better

accuracy implies better reliability [25].

It should be noted that comparing

estimation accuracy of various

approaches is not easy pertaining to

reasons such as different datasets,

different definitions of similar terms and

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

958

different goals of estimation accuracy

[28].

Ease of Use: This attribute implies

simplicity of use. How easy it is to use a

particular technique/approach? A fact

that should be understood is that, the

effort required in estimating effort for

software development should be

minimal. What is the use of a technique

which itself requires a lot of time and

effort? [26]. Preferably, the approach

used should be simple enough to be

implemented in a reasonable time frame

as Bente Anda [11] states that the UCP

method requires little technical insight

and effort and hence makes it easy to use

in early stages.

Use Case detail considerations: The

level of detail considered in evaluating a

particular Use Case before using it in the

estimation process is important for

various reasons. Issues like the

granularity of Use Cases, number of

scenarios in a Use Case, inclusion of

Extended Use Cases with the Base Use

Cases, classification of Use Cases as

simple and complex are commonly

debated among various researchers for

the Use Case based estimation methods

[14], [22], [23]. This is a valuable

attribute for comparing the different

approaches related to Use Case based

methods.

Factor Inclusion: The effort

estimation calculated using the basic

UCP method considers various

Experience factors and Technical

Complexity factors [10]. The variety of

other Use Case based approaches we

have considered, discard few of these

factors and consider them unrequired for

the estimation process, whereas few of

the approaches consider some additional

factors [23], [27]. The attribute will help

in analyzing the approaches and

contribute in specifying the optimal

factors to be considered in the estimation

process.

Adaptability: The capability of the

model or method to adjust according to

new environments and fit the

incremental style of development

practices is termed as Adaptability of the

model. “Incremental or evolutionary

development approaches have become

dominant. Requirements are changed in

successive releases, working

environments are shifted and this has

been accepted as a core factor in

software development” [23]. A method

or a model should be adaptive to these

changes and if it is otherwise, then the

model will have limited usability value.

Handling Imprecision and

Uncertainty: Quite a common aspect in

all the software development practices is

to take account of the imprecisions and

uncertainty associated with the

processes. We know that there is a

reasonable imprecision in estimating the

size of software and a lot of uncertainty

in predicting various factors associated

with developing software [29]. A model

which considers these factors is better

than a model which doesn‟t.

Sensitivity: The receptiveness or

responsiveness to an input stimulus is

called sensitivity. In terms of software

development, a model in which the

change in estimated effort with respect

to a small change in the input values is

large or significant is termed as a

sensitive model. In Effort Estimation, it

is desirable to have low sensitivity

models.

Transparency: The visibility of the

underlying effort prediction model is

termed as transparency. It is desirable to

have transparent models as it would

provide the experts the ability to

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

959

incorporate their opinions based on their

knowledge and experience. Empirical

research studies have shown prediction

models coupled with expert opinions to

be better than the prediction systems or

the expert alone.

Appropriate use of Productivity

Factor: The conversion of estimated

points based on Use Cases to Effort

requires the multiplication of a factor

called productivity factor whose units

are person-hours. Initially, Karner [10]

proposed a productivity factor value of

20 person-hours, which later turned out

to be variable for different projects. An

appropriate use of the productivity factor

results in close to accurate estimations

and reduces the deviations. This is a

valuable attribute to distinguish between

the available approaches.

Artifacts Considered: This attribute

reflects the artifacts that are considered

in the implementation of a particular

technique or metric. Effort Estimation

using Use Cases considers all the

functional requirements in a satisfactory

way, but a major complaint against the

use of this method is that the non-

functional requirements are not

considered extensively. But, if the

artifacts pertaining to non-functional

requirements like estimating for reports,

schedule spreadsheets, staffing concerns

are considered [3], then the method

could have a valid defense. The use of

artifacts considered by different models

is helpful in comparing them.

Empirical Validations: The

evaluation and validation of a metric or a

model in general is essential. If the

model is validated, then the validation

criteria and the dataset on which it is

validated are considered. Datasets from

the industry are considered more reliable

than student datasets or datasets from

open sources [25]. The empirical

validation of a model adds to its

credibility as well.

5 COMPARISON BETWEEN THE

METRICS

This section presents the actual

comparison and evaluation of the

qualified metrics. It is worth noting here

that we used subjective ratings in

evaluating the different approaches.

Future work will investigate applying

more quantitative objective ratings. A

point worth mentioning here is that, all

the afore-mentioned metrics have been

validated by using real time projects of

large companies. The comparisons have

been presented in tabulated form for

sake of simplicity and ease of

understanding. All the tables are

followed by a short discussion which

summarizes the tabulated information

and provides recommendations for the

use of certain metrics with respect to the

attributes.

1 Accuracy

Metric Comments

UCP[10] Relatively good accuracy and

promising results. More accurate

than expert estimates in few

cases and almost equally accurate

in some other cases.

Transactions[24] Good accuracy, close to UCP,

lower variability of prediction

error, high correlation with actual

effort.

Paths[24] Better accuracy than Transactions

and UCP, lower deviation from

actual effort, high correlation

with actual effort.

EUCP[21] Better accuracy than UCP as they

use Fuzzification and a Bayesian

Belief Network to train the

system.

UCPm[22] Relatively good accuracy, less

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

960

calculations required in the

method.

AUCP[23] Very good accuracy, effort

calculated using AUCP for

release 1 and release 2 were 21%

and 17% lower than actual Effort.

USP[20] Competent accuracy compared to

others, but lower error rates.

FUSP[20] Competent accuracy results with

lower error rates, a fuzzified form

of USP with minor changes in

results.

SUCP[27] Slight improvement in accuracy.

Discarding TCF and EF doesn‟t

cause a negative effect in

predicting effort.

IUCP[3] Perhaps the most efficient and

accurate results. Using the

process improvement loop, the

deviation in prediction has been

cut down to 9%, which is a very

significant contribution.

Discussion: Even after evaluating all metrics

based on their respective results, terming a

certain metric better than others is not justified

because of many reasons such as different data

sets used, differences in the nature of the

software projects, environmental and expertise

differences, etc. Nevertheless, it is

recommendable to use metrics which use

machine learning techniques like FUSP.

Additionally, the use of industrial practices in the

estimation process improves the accuracy of the

method. Hence, the use of IUCP is also

recommendable.

2 Ease of Use

Metric Comments

UCP[10] Very easy to compute effort

using UCP. It can be done at the

early stages of the development

of the life cycle. A rough

estimate can also be made just by

mental calculation.

Transactions[24] An easy method involving

counting the number of

transactions in each Use Case

and subsequently the total in a

system.

Paths[24] A relatively complex method to

use, involving obtaining the

complexity of a transaction by

summing up the number of

binary decisions and

identification and summing up of

multiple decisions.

EUCP[21] A complex method involving

fuzzifying the inputs and training

the Bayesian Belief Network for

estimating effort and

consequently defuzzifying the

output to obtain a crisp value.

UCPm[22] An easy method, almost similar

to UCP; the only difference being

size is calculated as the product

of Unadjusted Use Case Weights

and the sum of Technical

Complexity factors.

AUCP[23] A complex method compared to

other approaches. Involves

computing modified Unadjusted

Use Case Weights and uses many

additional factors such as

Adaptation Adjustment Factor

(AAF), and Equivalent

Modification Factor (EMF)

which itself comprises of 6 other

factors.

USP[20] A fairly simple method to

calculate the effort. Only lengthy

part is to consider the details of

use cases and classify them

appropriately.

FUSP[20] A simple method, slightly

complex than USP because of the

Fuzzification of inputs and

Defuzzification of outputs

respectively.

SUCP[27] A method simpler than

conventional UCP, this reduces

the number of Technical

Complexity Factors and

Experience Factors by limiting

them to 6 only.

IUCP[3] A simple method similar to UCP,

with the additional overhead of

calculating for non-functional

requirements like documenting

reports, spread sheets, etc.

Discussion: Almost all the metrics are

subjectively rated equally in terms of „Ease of

Use‟, with the exception of Paths and AUCP

metrics. It is intuitive that since the basic UCP

method is quite simple in terms of use, a metric

or method which deviates from the norms and

structure of the basic method is bound to be

relatively complex. Though the EUCP method is

mentioned as complex, the rational can be to

consider the metrics which use soft computing

methods as relatively more time consuming

rather than terming them as complex to use. We

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

961

recommend SUCP as the metric easiest to use

compared to the others with UCP coming a close

second.

3 Use Case Detail Considerations

Metric Comments

UCP[10] Only considers the complexity

classification of a Use Case by

counting the number of

transactions in a Use Case.

Classified as simple, average and

complex.

Transactions[24] Considers only the stimulus by

an actor and response by the

system, by counting the number

of transactions. No other details

are considered.

Paths[24] Identifies binary and multiple

decisions in a Use Case. Sums up

the number of binary and

multiple decisions in a Use Case

and consequently for the entire

system. No other details are

considered.

EUCP[21] The Use Case classification is

refined by considering detailed

aspects of a Use Case such as

User Interface Screens, pre-

conditions, primary scenario,

alternative scenario, exception

scenario, post-conditions.

UCPm[22] High level of detail is considered.

Scoping of actors, classification

of Use Cases as zero weight use

cases, duplicated use cases,

background process use cases,

report use cases. Also considers

the granularity of use cases.

AUCP[23] Initially all Use Cases as

considered complex, then are

broken down to simple and

average based on transactions.

Include extended Use Cases as

base Use Cases and exceptional

flows in a Use Case are also

assigned a weight factor of 2.

USP[20] A detailed classification

comprising of pre-conditions,

post-conditions, main scenarios,

alternate scenarios and

exceptional scenarios.

FUSP[20] The Use Case detailed

classification comprises of pre-

conditions, post-conditions, main

scenarios, alternate scenarios and

exceptional scenarios.

SUCP[27] Considers the complexity

classification of a Use Case by

counting the number of

transactions in a Use Case.

Additionally, the cardinality of

Use Cases is computed.

IUCP[3] Similar to UCP, IUCP does not

consider any extra Use Case

details except the complexity

classification.

Discussion: Majority of the metrics base their

calculations of size on the number of transactions

in a Use Case without considering other details

related with use cases. If the metrics were to be

ranked according to this attribute or

recommended on this basis, Use Case Size Point

„USP‟ would win the evaluation followed by

UCPm and AUCP. The reason for this ranking is

quite visible in the tabulated information. USP

considers almost all the details associated with a

Use Case. UCPm takes it to a further level by

classifying use cases by varying levels but

misses including the pre-conditions and post-

conditions.

4 Factor Inclusion

Metric Comments

UCP[10] Includes Actor weights and Use

Case weights. Also includes 13

Technical Complexity Factors

and 8 Experience Factors.

Transactions[24] No use of Actor weights and Use

Case weights. Does not include

any Technical Complexity

Factors and Experience Factors.

Paths[24] No use of Actor weights and Use

Case weights. Does not include

any Technical Complexity

Factors and Experience Factors.

EUCP[21] Includes Actor weights, Use Case

weights, 13 Technical

Complexity Factors and 8

Experience Factors.

UCPm[22] Includes Actor weights, Use Case

weights, 13 Technical

Complexity Factors, 8

Experience Factors. Additionally,

UCPm includes Base System

Complexity factor and

Supplementary Effort Factor.

AUCP[23] Actor Weights and Use Case

weights are included. All the

Technical Complexity Factors

and Experience Factors are

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

962

discarded. Includes new factors

such as Adaptation Adjustment

Factor (AAF), Equivalent

Modification Factor (EMF), and

Overhead Factor (OF).

USP[20] Actor weights and Use Case

weights are included as per the

detailed Use Case classification.

Additionally, 14 Technical

Complexity factors and 5

Environmental Factors are

included.

FUSP[20] Actor weights and Use Case

weights are included. 14

Technical Complexity Factors

and 5 Environmental Factors are

included.

SUCP[27] Discards Actor weights and

includes only Use Case weights.

9 out of 13 Technical Complexity

factors and 6 out of 8 Experience

Factors are discarded.

IUCP[3] Includes Actor weights and Use

Case weights. Also includes 13

Technical Complexity Factors

and 8 Experience Factors.

Discussion: Perhaps the most debated attribute

which can involve lot of future work. The issue

is to find the optimum number of factors that are

to be considered while estimating effort. Many

metrics agree with the standardized thirteen

technical complexity factors and the eight

experience or environmental factors as proposed

by the basic UCP method. SUCP discards nine

technical complexity factors and six experience

factors. UCPm keeps all the standard factors

same but includes additional factors. Few

metrics like Transactions, Paths and AUCP

discard all the standardized factors but the latter

makes up for the non-inclusion by using new

factors such as AAF, EMF and OF. As such, we

cannot recommend any metric to be the best in

terms of this attribute.

5 Adaptability

Metric Comments

UCP[10] Very simple and adaptable

method. Fits any Use Case

modeling environment easily.

Transactions[24] An adaptable method, worked

well with 13 different projects

under different environments.

Fits the dynamic model of

software development. Only

needs counting the number of

transactions.

Paths[24] Fairly adaptable. Depends on

calculating the complexity of Use

cases. Slight difficulty expected

in adapting to environments with

less experienced teams.

EUCP[21] Less adaptive as compared with

other metrics because of the

involvement of the training BBN.

UCPm[22] Fairly adaptable to different

environments. Difficulty with

less experienced teams for

estimating effort.

AUCP[23] Perhaps the most adaptable

metric. The aim of realizing this

metric was to fit the incremental

model of development and

support environments where

Extreme Programming is used.

USP[20] Slightly less adaptable relatively.

The adjustment factors need to be

calibrated with each and every

changing project and

environment.

FUSP[20] Same as the USP method. Less

adaptable relatively.

SUCP[27] Adaptable in many environments.

Applied to 14 industrial and

academia projects with relative

ease and promising results were

obtained. Removal of few factors

supports adaptability.

IUCP[3] A very adaptable metric, perhaps

because of the feedback loop and

its ability to fit into any mode of

operation and environment. The

metric has been custom designed

to fit any model of development.

Discussion: Almost all metrics qualify well for

this attribute. Few of them are more adaptable in

terms of their structure, ease of use and lesser

difficulty with new and inexperienced teams. An

interesting observation is that, the use of soft

computing methods like in the case of EUCP,

where a learning Bayesian Belief Network is

incorporated in the estimation process, it made

the metric relatively less adaptable to different

working environments. But the validity of this

observation can be debatable. AUCP is the most

recommended metric in terms of Adaptability.

6 Handling Imprecision and Uncertainty

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

963

Metric Comments

UCP[10] Doesn‟t handle imprecision,

though it manages to deal with

uncertainty up to some extent.

Transactions[24] Doesn‟t handle imprecision nor

uncertainty.

Paths[24] It is not designed to handle

imprecision and uncertainty.

EUCP[21] Handles imprecision and

uncertainty fairly because of the

use of Fuzzy logic and

additionally because of the

learning Bayesian Belief

Network.

UCPm[22] Not capable of handling

imprecision and uncertainty.

AUCP[23] Does not handle imprecision, but

the metric deals with uncertainty

satisfactorily.

USP[20] Is not capable of handling both

imprecision and uncertainty.

FUSP[20] The fuzzified version of USP,

and hence it handles imprecision

and uncertainty quite well.

SUCP[27] Does not handle imprecision, nor

does it handle uncertainty.

IUCP[3] A metric tailored to deal with

uncertainties but cannot handle

imprecision.

Discussion: It is much desirable that in a process

like estimation of effort and cost where loads of

uncertainty is possible and imprecise estimates

are quite common, a metric should account for

both the afore-mentioned factors. Unfortunately,

most of the metrics don‟t account for both

imprecision and uncertainty. Few of them such

as UCP, AUCP and IUCP are capable of dealing

with uncertainties but not imprecision. EUCP

and FUSP, since they use soft computing

techniques account reasonably well for both

imprecision and uncertainty and are

recommended for use.

7 Sensitivity

Metric Comments

UCP[10] The metric is less sensitive to

input changes. Can accommodate

noise reasonably well.

Transactions[24] Is less sensitive to changes. A

small change to the input i.e. the

increase or decrease in the

number of transactions of a Use

Case will not adversely impact

the effort estimated.

Paths[24] Is moderately sensitive when

compared to Transactions metric.

If the Use Case details are

changed, the number of binary

decisions and multiple decisions

change considerably. This affects

the final estimated effort.

EUCP[21] Less sensitive because of the

Fuzzification and Defuzzification

process. Accommodates noise

levels easily.

UCPm[22] Less sensitive as the input factors

don‟t impact the final estimated

effort much.

AUCP[23] A moderately sensitive metric.

AUCP incorporates many factors

because of which, a slight change

in some factors may result in

considerable changes to the final

estimated effort.

USP[20] Less sensitive to changes.

FUSP[20] A slightly less sensitive metric

than the USP. It accounts for

varying levels of input changes.

SUCP[27] A lesser sensitive metric. Almost

similar to the conventional UCP

metric.

IUCP[3] Not sensitive to input changes.

Works the dynamic way and

hence accounts for changes

anywhere in the process lifecycle.

Discussion: A much desirable attribute for

comparison in many fields and not just effort

estimation, Sensitivity like „Use Case Details

Consideration‟ can distinguish between metrics

in a very proper way. Unfortunately, it is very

difficult to distinguish between the available

metrics because of lack of information related

with the sensitiveness of the metric inputs and

outputs. Nevertheless, few metrics have been

classified as lowly sensitive and moderately

sensitive. It is worth noting that, using soft

computing approaches can minimize the

sensitivity of a metric considerably. The IUCP

can be recommended for use if Sensitivity is the

main concern.

8 Transparency

Metric Comments

UCP[10] UCP is not transparent. The

equations of the UCP method

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

964

don‟t give any idea about the way

UCP is calculated. As such

experts cannot calibrate the factor

values of UCP

Transactions[24] Not transparent. The calculation

of size is based on the number of

transactions and the final effort is

calculated based on Historical

Mean Productivity.

Paths[24] Not transparent. The calculation

of size is based on the number of

paths and the final effort is

calculated based on Historical

Mean Productivity.

EUCP[21] Not transparent. Even though

EUCP uses the Bayesian Belief

Network for training the

prediction system, the visibility

of the underlying process is

minimal.

UCPm[22] Not transparent enough. Just

allows the expert to calibrate few

factors but as a whole the effect

of calibrating those factors

cannot be determined.

AUCP[23] AUCP is not transparent, as it

follows the UCP method and its

associated equations with few

modifications.

USP[20] Not transparent. All the use cases

are classified and size is

calculated based on training from

the historical data.

FUSP[20] Not transparent. The size and

effort are calculated based on

historical data.

SUCP[27] Not transparent. Doesn‟t allow

for any calibrations within the

process.

IUCP[3] IUCP is not transparent. It has

the basic equations of the UCP

method and only adopts few

additional industrial practices,

which don‟t account for

transparency.

Discussion: Transparency is a very important

factor in effort prediction processes. A metric or

a method can be termed as fully transparent if its

underlying model is clear enough to be

understood and allows the experts to calibrate the

input values while knowing what the

corresponding results will be obtained. But

unfortunately, none of the metrics have taken

into account this factor.

9 Appropriate Use of Productivity Factor

Metric Comments

UCP[10] Karner described the method and

fixed the productivity factor at 20

man-hours per Use Case Point.

Transactions[24] Effort calculation is based on

Historical Mean productivity

technique. No involvement of

Productivity Factor.

Paths[24] Effort Estimation is based on

Historical Mean productivity

technique. No involvement of

Productivity Factor.

EUCP[21] Not much use of the productivity

factor. All the calculations are

based on adjusting other factors.

UCPm[22] Uses the productivity factor

specified by the conventional

UCP method.

AUCP[23] Productivity factor of 36 man-

hours per Use Case is used in

addition to other adjustment

factors such as AAF, EMF and

OF. In case of the overhead

factor (OF) not being used, the

use of 72 man-hours as

productivity factor has been

prescribed.

USP[20] A productivity factor of 26 man-

hours is used as per the

calculations.

FUSP[20] Productivity factor of 26 man-

hours has been used.

SUCP[27] Productivity factor of 20 man-

hours, 28 man-hours and 36 man-

hours has been used as per the

requirement of the project under

consideration which is

appropriate.

IUCP[3] Productivity factor of 20 man-

hours and 28 man-hours has been

used as other adjustments are

taken care of by the risk

adjustment factor and factors like

estimating for reports.

Discussion: This attribute has a vital

contribution in the comparative analysis. In

infant stages of estimating effort based on use

cases, there were quite significant variations in

estimated effort even though the technical

complexity factors and experience factors were

properly adjusted. The reason which came in the

focus after many years was the inappropriate use

of Productivity Factor. Since, Karner proposed a

20 person-hour per use case; it was not changed

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

965

for quite some time until variations with it

resulted in more accurate effort estimates. SUCP

can be recommended for use as it allows variable

use of the Productivity Factor with respect to the

project. The use of IUCP is also recommended

as it provides freedom to the estimators for

selecting the appropriate Productivity Factor.

10 Artifacts considered

Metric Comments

UCP[10] Does not take into account any

additional artifacts.

Transactions[24] Does not consider any additional

artifacts. Deals with the

functional requirements only.

Paths[24] No consideration of additional

artifacts.

EUCP[21] No additional artifacts

considered.

UCPm[22] No additional artifacts are

considered.

AUCP[23] Considered artifacts related to

non-functional requirements of

the process lifecycle like

availability, performance and

security.

USP[20] No consideration of additional

artifacts.

FUSP[20] No additional artifacts are

considered.

SUCP[27] Additional artifacts are not

considered.

IUCP[3] A lot many artifacts have been

considered by the IUCP metric.

Artifacts like estimating for

reports, risk management

artifacts, artifacts dealing with

performance analysis, deliverable

analysis, schedulable analysis

and defect analysis are

considered.

Discussion: In terms of this study, artifacts

imply the inclusion of non-functional

requirements in the effort estimation process. As

tabulated in the above tables, most of the metrics

do not consider any additional artifacts with the

exception of the AUCP and the IUCP. AUCP

considers important non-functional requirements

such as performance and security. IUCP also

considers non-functional requirements in

addition to including lesser effect artifacts such

as Reports documentation etc. As such, both

AUCP and IUCP are recommended for use.

11 Empirical Validations

Metric Comments

UCP[10] Many empirical validations are

available for the use of traditional

UCP approach. Many authors

have validated the UCP

procedure empirically using both

Industry datasets as well as

Student datasets.

Transactions[24] Empirically validated using

datasets comprising of 13 small

business projects distributed

across 3 different contexts; an

Undergraduate Academic

Environment, System and

Technology Department at

Austral University and a level 4

CMM certified company. The

projects are also distributed

implementation wise as well.

Paths[24] The same datasets used to

validate the Transactions metric

were used.

EUCP[21] Validated using two industry

projects in a Chinese company of

500 employees. Since results

show some inconsistency, more

evaluation needs to be done with

the metric.

UCPm[22] Not validated using any dataset.

The proposed metric is a result of

analysis carried out over 50

projects in a period of 2 years as

reported.

AUCP[23] The results of applying this

metric were validated using a

telecom project of Ericcson and

across 2 releases. The authors

report more case studies that

validated the AUCP metric but

information about them has not

been specified explicitly.

USP[20] A case study was done to validate

the results of this metric using a

real project database of a private

company. The metric was

validated against Function Points

and traditional UCP.

FUSP[20] Same case study as was used by

the USP metric. FUSP was

validated against Function Points,

traditional UCP and USP itself.

Differences between USP and

FUSP were also highlighted. The

use of these metric needs more

validations and more experiments

needs to be done.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

966

SUCP[27] Empirically validated against 7

industrial projects and 7 other

projects from the Poznan

University of Technology. The

range of the actual effort was 277

man-hours to 3593 man-hours.

Promising results were obtained.

Additionally, a framework was

built to evaluate the estimation

accuracy of all the 14 projects

using this metric.

IUCP[3] The metric has been validated

over a continuous period of 5

years, consisting of 200 projects

in a CMM level 5 company. The

results are astonishing as the

feedback loop helped in reaching

9% deviation with reference to

the Actual Effort for 95% of the

company‟s projects.

Discussion: The attribute where in all the

metrics are on par with each other. It is

interesting to note that all the metrics have been

extensively validated using Industrial data sets.

As such, we cannot underestimate the

evaluations of the proposed metrics in any

manner.

6 ANALYSIS

Based on the critical survey and after

drawing comparisons between the

various Use Case based metrics on a

common ground, several shortcomings

arose which were anticipated. The

comparison brought forth many weak

links in the Use Case based estimation

process and at the same time highlighted

many advantages of using it. The

comparison findings can be summarized

in tabulated format as shown in table 1.

 Nearly all the metrics have been

validated extensively using industry

datasets and student datasets. This is an

onus for the validity of the efficiency

and accuracy of the metrics. This is well

complemented by the fact that most of

them have competent and reliable effort

estimates. Most of the proposed metrics

are easy to use which makes them more

liable to be favored over other

techniques and metrics which provide

similar results. Adaptability, in terms of

usage of the metrics is noteworthy

considering that almost all metrics

qualify as being fairly adaptable and the

case studies involving them verify the

fact. Few metrics consider detail

classification of the Use Cases with

respect to complexity by considering all

the aspects related to the implementation

of Use Case. Metrics which capture the

details are definitely more useful and

efficient than metrics which do not

consider detailed classification. Also,

the inclusion and exclusion of the

technical complexity factors and

experience factors showed varied results.

Mostly, it was generalized that the

exclusion of few factors does not have

negative impact on the estimation of

effort. Many metrics considered the

technical complexity factors to be

overlapped and hence discarded many

such factors.

Sensitivity is an attribute which could

not be properly addressed in the

comparison. It is due to the fact that

enough information was not available to

distinguish the metrics from being

highly sensitive and lowly sensitive. It is

desirable to have metrics and techniques

which have low level of sensitivity.

Based on our comparison, few metrics

were found to be lowly sensitive and few

moderately sensitive. Productivity factor

is an important concern while estimating

effort using Use Cases. It is an

important contributor for the conversion

of the metric in terms of size to effort.

Appropriate use of this factor affects the

final estimated results. The degree of

correlation between estimated effort and

Actual effort can be established

satisfactorily if the productivity factor is

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

967

rightly used. Most of the proposed

approaches don‟t consider the

importance of this factor and focus more

on other adjustment factors. Use of

expert opinion or analogy can be used to

at least appropriately select the

Productivity factor.

The two most important and perhaps

the negative factors in terms of using

Use Case based metrics are the inability

to deal with imprecision and uncertainty

and little consideration of additional

non-functional artifacts. These two

attributes show the vulnerability of the

Use Case based approach when

compared with other approaches. Most

of the compared metrics do not account

for imprecision with the exception of the

metrics using Fuzzy logic and other

machine learning techniques.

Uncertainty, however, did not seem to

have caught enough attention; future

research is needed to consider the

uncertainty associated with

measurements provided by the different

metrics.

One of the most important weaknesses

of Use Case based approaches was the

non-consideration of the non-functional

requirements associated with software

development processes. Though few

metrics attempted to incorporate the

artifacts pertaining to non-functional

requirements, it is not enough. Any

software process depends on both

functional and non-functional

requirements. A metric or technique

which does not consider additional

artifacts will have varying levels of

deviation in the estimated effort.

Despite few shortcomings and

negative aspects, the detailed

comparison and evaluations support the

fact that estimating effort using Use

Cases is justified and that they can be

successfully used in the software effort

estimation process. The important

requirement is that the negative aspects

which expose the vulnerability of Use

Cases should be addressed. In the same

context, if a standardized approach is

established to write Use Cases, many

issues would be minimized. Alternately,

each organization can come up with their

own standards of writing Use Cases and

keep a check on the standards so that,

the estimation process can be

generalized using Use Cases. The

incorporation of non-functional

requirements is an essential paradigm

that should be taken care. It would

remove lot of pessimism about the

reliability and efficiency of the use of

Use Case metrics. Lastly, using the

process improvement lifecycle as a

feedback loop to learn and incorporate

efficient techniques should be prescribed

by organizations so as to reap the

benefits of efficient and accurate effort

estimation. Causal Analyses and

Quantitative Management Analysis of

the reports documented should be

carried out on a periodic interval to

ensure continuous improvement.

Attributes / Metrics UCP Transactions Paths EUCP UCPm AUCP USP FUSP SUCP IUCP

Accuracy H H H M H VH M H H VH

Ease of Use VH H H L VH L M M VH VH

Use case detail

considerations M L L L M H VH VH H H

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

968

Factor Inclusion M VL VL M M H H H H H

Adaptability H H H H H VH H H VH VH

Handling Imprecision

and Uncertainty VL VL VL VL VL L VL L VL L

Sensitivity L L M L L M L L L VL

Transparency VL VL VL VL VL VL VL VL VL VL

Appropriate use of

Productivity Factor M VL VL L M H M M H H

Artifacts considered VL VL VL VL VL M VL VL VL H

Empirical Validations VH M M L VL M M M H VH

VL – Very Low L – Low M –Moderate H – High VH – Very High

Table 1: Subjective comparison of metrics with respect to the comparison criteria

7 A FRAMEWORK FOR USE

CASE BASED EFFORT

ESTIMATION USING FUZZY

LOGIC

Based on the analysis of the comparison

results between the various Use Case

based metrics, we propose here a generic

framework for estimating effort based on

fuzzy logic. Fuzzy Logic offers two

major properties that are the key to the

desirable effort estimation models:

ability to handle imprecise information

and transparency. One of the limitations

of effort estimation models is the dearth

of historical data which can be used to

develop efficient estimation models. In

such a case, expert opinions are very

important to accommodate in the

estimation model. But this is possible

when the model is transparent enough to

allow the experts or end-users to

understand the underlying model and

incorporate the necessary changes. The

changes or calibrations can be either to

input or intermediate factors of the

estimation model. Transparency allows

the experts to tune the model and

calibrate input or intermediate factors in

building and using the effort estimation

model. A model which allows coupling

of expert opinions outperforms the

standalone model or the expert himself.

Hence, we propose to incorporate the

concept of type-1 fuzzy logic systems in

the estimation framework which is

known to provide solutions for the

aforementioned problems.

7.1 Factors used in Use Case-based

Effort Estimation

For the purpose of describing the

possible framework for effort estimation,

the various factors considered in the

literature are presented in the following

subsection. This provides a brief insight

about the major factors to be considered

in the estimation framework.

Subsequently, a generic estimation

framework is presented in the second

subsection to portray the idea of

developing the fuzzy estimation

inference system.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

969

1. Weighted Actors

[3][10][20][21][22][23][27] - Actors

are classified as simple, average or

complex based on the level of

interaction with the system.

2. Weighted Use Cases

[3][10][20][21][22][23][27] - Use

Cases are classified as simple,

average or complex based on the

number of transactions within the

Use Case.

3. Technical Complexity Factors

[3][10][20][21][22][23][27] –

Thirteen technical complexity factors

are considered in majority of the

metrics whereas few metrics discard

few technical complexity factors.

4. Experience Factors

[3][10][20][21][22][23][27] – Eight

experience factors are considered in

majority of the metrics whereas few

metrics discard few experience

factors. These are also called

Environmental Factors.

5. Productivity Factor

[3][10][20][21][22][23][27] – The

factor which translates the number of

UCP‟s or any other size metric into

effort in terms man-hours. Initially,

Karner proposed a 20 man-hours

productivity factor per UCP. More

recently, many others have

productivity factors of 28 man-hours

and 36 man-hours depending on the

nature of the development project.

6. Supplementary Effort Factor [22] –

The additional effort required to

build the product which does not

necessarily depend on the size of the

product, e.g., effort to write

configuration management scripts or

to perform regression testing.

7. Equivalent Modification Factor [23]

– This factor is used to estimate

equivalent use case points for

modification of software from a

previous release or secondary

changes, including perfection of

quality attributes.

8. Overhead Factor [23] - OF is used to

estimate the total effort based on the

effort for Development before

System Test.

9. Use Case elements [20] – These are

the basic elements of a Use Case like

pre-conditions, post- conditions,

main scenarios and exception

scenarios, etc.

10. Risk Factor [3] – This factor is used

to accommodate the risk factors that

are not considered elsewhere in the

development lifecycle and in the

effort prediction process. Few risk

factors can be special system level

integration requirements, special

process specific training, etc.

7.2 Architectural Overview of the

Fuzzy Logic System for Effort

Estimation

The first step in building a fuzzy logic

system hereafter referred to as FLS; is to

define the fuzzy sets for each

input/internal and output/external

attribute. The second step is to formulate

the rule base using the linguistic

variables for each fuzzy set. The third

step is training the FLS to refine the

linguistic relationships in the rule base.

The fourth step is to validate the

performance of the FLS using test data.

The ability to handle the imprecise

information available during the early

stages of software development is

important as discussed earlier. Instead of

selecting crisp values for the actor

weights and Use Case elements weights,

fuzzy sets can be used to model the actor

weights and the various Use Case

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

970

elements weights. Since, fuzzy sets have

overlapping with the adjacent fuzzy sets,

the expert can choose between two close

values for a single factor based on

experience. This would provide freedom

to the experts to select from a range of

values for all the attributes in the

framework. Other factors such as

technical complexity factors, experience

factors, risk factors and supplementary

effort factors are also modeled as fuzzy

sets.

So all in all, fuzzy sets can be

employed to handle imprecision in the

estimation process. The objective here is

to fuzzify all the factors in the estimation

framework. For the sake of illustration,

Figure 1 gives an example of a possible

architecture of the effort estimation

framework.

The architecture is multi-layered (two

layers). The output of the first layer is

the input for the second layer. The

architecture has 4 components. The first

component is the FLS which takes 13

technical complexity factors as input and

gives a fuzzified value called TCF

(Technical Complexity Factor).The

second component is another FLS which

takes 8 experience factors as input and

gives a fuzzified value called EF

(Experience Factor). Similarly, the third

component is the FLS which takes the

SE factor (Supplementary Effort) and

Risk factor as input and gives a fuzzified

value called AF (Additional Factors).

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

971

Figure 1: A Possible Fuzzy Logic based multi-layered Effort Estimation Architecture

Likewise, the fourth component is

the FLS which takes the TCF, EF, AF,

AW (actor weights), and Use Case

elements as input and gives the fuzzified

value of effort. The various Use Case

elements are PR (pre-conditions), PO

(post-conditions), MS (Main Scenarios)

and EX (Exceptions).

For the purpose of developing the

rule base, fuzzy rules need to be

formulated. Rules are formulated based

on the relationship between the various

attributes of the framework. The rules

can be as shown below.

 For layer 1;

 IF TCF1 is high AND TCF2 is

v.high AND TCF3 is low AND……..

AND TCF13 is nominal THEN TCF is

high

 IF TCF1 is nominal AND TCF2

is high AND TCF3 is v.low AND……..

AND TCF13 is low THEN TCF is

nominal

…..

 IF EF1 is low AND EF2 is high

AND EF3 is v.high AND…….. AND

EF8 is nominal THEN EF is nominal

 IF EF1 is v.low AND EF2 is

nominal AND EF3 is high AND……..

AND EF8 is low THEN EF is low

…..

 IF SE is high AND RISK is low

THEN AF is nominal

 IF SE is nominal AND RISK is

v.high THEN AF is high

 For layer 2;

 IF TCF is high AND EF is v.high

AND AF is low ANDPR is nominal

AND PO is v.low AND MS is high

AND EX is nominal AND AW is low

THEN EFFORT is nominal

 IF TCF is v.low AND EF is high

AND AF is nominal AND PR is low

Fuzzy Logic

System for TCF

Fuzzy Logic

System for AF

Fuzzy Logic

System for EF

Fuzzy Logic

System for Actors

and Use Case weights

13 TC

Factors

8 EF

Factors

Risk

Factor

AF

EF

TCF

SE Factor

Effort

A B

A B

A B

A B

EX

AW

W
W

W
MS PO

PR

Layer 1 Layer 2

A – Fuzzy Set Definitions

B – Fuzzy Rules

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

972

AND PO is v.high AND MS is low

AND EX is v.high AND AW is nominal

THEN EFFORT is nominal

After defining the fuzzy sets and

formulating the fuzzy rules, the third

step is to train the FLS. Training the FLS

is required to refine the linguistic

relationships in the rule base which is

provided by the experts using either the

historical data or their experience. The

last part is to activate the FLS and

validate its performance for predicting

effort using test datasets, preferably

industrial datasets. This completes the

discussion about the estimation

framework. As stated earlier, this is just

a generic architecture for the estimation

framework. The actual architectures may

vary depending on the inclusion and

exclusion of various attributes within the

framework. Future work will involve

testing various architectures for the

purpose of coming up with a

standardized model for estimating effort

based on Use Cases.

8 CONCLUSION AND FUTURE

WORK

Estimating effort in software

development is a difficult and

challenging activity. There is no metric

or technique which can be preferred over

other techniques in all cases and

circumstances. Each technique has its

corresponding advantages and

disadvantages. Nevertheless the focus

should be on developing metrics and

techniques which complement the

desired capabilities. Due to its early

applicability during the development

lifecycle, use case based metrics have

gained wide acceptance recently and

have been proven to yield promising

results. More research should be

dedicated to develop metrics to

overcome the negative aspects discussed

above though.

Moreover, the variety of use case-

based size metrics, which has been

proposed, suggests that there may be

some inconsistencies among the

measurements computed using these

metrics. In turn, such inter-

inconsistencies raise the concern that

relying on measurements of one single

metric might not lead to the same

estimation of the effort. An obvious

important candidate for future work is to

study the uncertainty that should be

considered when relying on a single

metric. The uncertainty arises due to the

inability of the metric designer to

comprehensively consider all factors that

would indeed contribute to the use case

size as a predictor for effort; that is

neglecting some factors due to the lack

of a complete theory of the concept of

size and effort, the impracticality to list

all the factors that affect the size and

effort, etc. In other words, future work

should research a framework meant to

facilitate portraying the probability

distribution of the error associated with

measurements computed using a given

metric. This, in turn, allows associating

a degree of reliability to the effort

estimated by a given metric; that is a

level of how dependable such estimate

is.

Even though the evaluation attributes

were carefully selected, there may

certainly be some additional attributes

which can help in better evaluation from

a different perspective. Attributes like

Sensitivity could not be properly

addressed because of lack of insufficient

information in the corresponding metrics

description. It is much desirable to

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

973

distinguish between metrics as being

lowly sensitive and highly sensitive.

Moreover, as pointed out earlier, the use

of subjective ratings in evaluating the

different metrics need more clarity;

future work will investigate applying

more quantitative objective ratings. This

would help in recommending a

particular metric as the best metric in

terms of practical use for software

practitioners and software developers.

An important work would be to

address the problem of use cases not

accommodating non-functional

requirements. This is very important in

terms of effort estimation as the

consideration of non-functional

requirements can bring about reasonably

large variances in the estimated effort.

Typically, in the industry, the common

practice to avoid this problem is by

including supplementary effort which

includes effort pertaining to the non-

functional requirements. But this is

quite vague. A detailed work like the

concept of misuse cases for eliciting

security requirements by Guttorm Sindre

and Andreas Opdahl [30] should be

carried out for including the non-

functional requirements in a software

project.

Another direction in which work

needs to be done is to understand

whether the inclusion or exclusion of the

Technical Complexity factors and

Experience Factors brings forth any

significant differences in the estimated

Effort. In the Adapted Use Case Points

[23] approach, all the technical

complexity factors and experience

factors are excluded and factors like the

Adaptation Adjustment factor,

Equivalent Modification factor and the

Overhead Factor are included. The

change in effort as a result of this factor

exchange is portrayed to be better

compared to the previous approach. In

[27], authors have discarded nine

technical complexity factors and six

experience factors terming those factors

as „not required‟ in the estimation

process. No other techniques have

recommended this factor minimization.

Analysis needs to be done to understand

the effect of factor inclusion in the

estimation process.

An interesting observation is the

dearth of usage of machine learning

techniques in the estimation approaches

based on Use Cases. With the exception

of Use Case based estimation, many an

approach in Effort Estimation utilizes

the benefits of the machine learning

techniques. Interestingly, there is no

work in the literature which uses soft

computing in the estimation process. An

effort to incorporate fuzzy logic in the

estimation process has been attempted

by [20] and [21]. Future work in this

area is of paramount importance

especially given the benefits of using

soft computing. In this regard, a general

framework for effort estimation using

fuzzy logic has been proposed and

discussed earlier in section 7.

Based on the conclusions and the

possible generic framework discussed

earlier, future work can be aptly

described by presenting the following 3

research questions which can form the

basis for strong research work. The

research questions are as follows;

1. How can fuzzy logic be employed to

enable the development of

transparent use case based effort

prediction models capable of

incorporating expert opinions?

2. Among the variety of factors

considered by different researchers

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

974

in the various effort prediction

models, which factors are the most

influential on the accuracy and

which factors can be ignored?

3. Does prediction model architecture

impact the models accuracy; e.g.,

single layer vs. multi-layer?

The answers to these questions can pave

way for better effort estimation

techniques and practices to be

implemented in software development

houses and at the same time open more

avenues for further research, both in

academia and industry.

Acknowledgements. The authors wish to

acknowledge King Fahd University of

Petroleum and Minerals (KFUPM) for

utilizing the various facilities in carrying out

this research.

9 REFERENCES

1. Hareton, L., and Zhang F.: “Software Cost

Estimation”, Department of Computing,

Hong Kong Polytechnic University.

http://paginaspersonales.deusto.es/cortazar/d

octorado/articulos/leung-andbook.pdf

2. Kirsopp, C., Shepperd, M.J., Hart, J.: Search

heuristics, case-based reasoning and

software project effort prediction, in:

Genetic and Evolutionary Computing

Conference (GECCO 2002), AAAI, New

York, 2002

3. Caroll, E.R.: Estimating Software based on

Use Case Points. OOPSLA‟05, October 16-

20, 2005. ACM 1-59593-193-7/05/0010

4. Lai, R., Huang, S.J.: “A Model for

Estimating the Size of a Formal

Communication Protocol Specification and

Its Implementation”, IEEE Transactions on

Software Engineering, Volume 29, Issue 1,

Jan. 2003 Page(s):46 – 62

5. Boehm, B., Abts, C., and Chulani, S.:

“Software Development Cost Estimation

Approaches: A Survey”, University of

Southern California Centre for Software

Engineering, Technical Report, USC-CSE-

2000-505, 2000

6. MacDonell, S.G., Gray A.R.: “A

Comparison of Modeling Techniques for

Software Development Effort Prediction”,

In Proceedings of the 1997 International

Conference on Neural Information

Processing and Intelligent Information

Systems, Denedin, Newzealand, Springer-

Verlag (1997), 869-872

7. Ribu, K.: “Estimating Object-Oriented

Software Projects with Use Cases”, Master

of Science Thesis, Department of

Informatics, University of Oslo, Oslo,

Norway, November 7, 2001

8. Strike, K., El-Emam, K., Madhavji M.:

“Software Cost Estimation with Incomplete

Data”, IEEE Transactions on Software

Engineering, Vol. 27, No. 10, Oct. 2001

9. Costagliola, G., Ferrucci, F., Tortora, G.,

Vitiello, G.: “Class Point: An Approach for

the Size Estimation of Object-Oriented

Systems”, IEEE Transactions on Software

Engineering, Volume 31, Issue 1, January,

2005, pp. 52-74

10. Karner, G.: Metrics for Objectory. Diploma

thesis, University of Linkoping, Sweden.

No. LiTH-IDA-EX-9344:21, December

1993

11. Anda, B., Benestad, H.C., Hove, S.E.: “A

multiple case study of Effort Estimation

based on Use Case Points” Empirical

Software Engineering, 2005

12. Forbes, M.: “Use Case Survey (2009):

Towards Adopting Enterprise Standards for

Use Cases”

13. Robiolo, G., Orosco, R..: “Employing use

cases to early estimate effort with simpler

metrics”, Innovations System Software

Engineering (2008) 4:31–43

14. Smith, J. (1999): “The estimation of effort

based on use cases”. IBM Rational Software

White Paper

15. Boehm, B.: “Software Engineering

Economics” Englewood Cliffs, NJ: Prentice-

Hall, 1981, ISBN 0-13-822122-7

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

975

16. Saliu, M.O., Ahmed, M.A.: “Soft

Computing Based Effort Prediction Systems

– A Survey”, A Chapter in E. Damiani, L. C.

Jain, and M. Madravio (EDs), Soft

Computing in Software Engineering,

Springer-Verlag Publisher, July 2004, ISBN

3-540-22030-5

17. Jacobson, I., Booch, G., Rumbaugh, J.

(1999): The Unified Software Development

Process. Reading, MA: Addison Wesley

18. Neill, C.J., Laplante, P.A.: “Requirements

Engineering: The State of the Practice”.

Software, vol. 20, no. 6, November 2003,

pp. 40-46

19. Albrecht, A.J., Gaffney, J.E.: "Software

function, source lines of codes, and

development effort prediction: a software

science validation", IEEE Trans Software

Eng. SE-9, 1983, pp. 639-648

20. Braz, M.R., Vergilio, S.R.: Software Effort

Estimation based on Use Cases. Proceedings

of the 30
th

 Annual International Computer

Software and Applications Conference

(COMPSAC‟06), 2006 IEEE

21. Wang, F., Yang, X., Zhu, X., Chen, L.:

Extended Use Case Points Method for

Software Cost Estimation. 978-1-4244-

4507-0/09, IEEE 2009

22. Diev, S.: Use Cases modeling and software

estimation: Applying Use Case Points. ACM

Software Engineering Notes, November

2006

23. Mohagheghi, P., Anda, B., Conradi, R.:

Effort Estimation of Use Cases for

Incremental Large-Scale Software

Development. ICSE‟ 05 May 15-21,

Copyright ACM 1-58113-963-2/05/0005

24. Robiolo, G., Badano, C., Orosco, R.:

Transactions and Paths: two use case based

metrics which improve early effort

estimation. 978-1-4244-4841-8/09, IEEE

2009

25. Ahmad, I.: “A Probabilistic Size Proxy for

Software Effort Estimation: A Framework”,

Master Thesis, Information and Computer

Science Department, King Fahd University

of Petroleum and Minerals, Dhahran, Saudi

Arabia, April 2008

26. Probasco, L.: “Dear Dr. Use Case: What

about Function Points and Use Cases?”

www.ibm.com/developerworks/rational/libr

ary/2870.html

27. Ochodek, M., Nawrocki, J., Kwarciak, K.:

Simplifying effort estimation based on Use

Case Points. Journal of Information and

Software Technology, 0950-5849 © 2010

Elsevier B.V

28. Grimstad, S., Jorgensen, M.: “A Framework

for the Analysis of Software Cost Estimation

Accuracy”, Proceedings of the 2006

ACM/IEEE International Symposium on

Empirical Software Engineering pages 58-

65

29. Muzaffar, S.Z.: “Adaptive Fuzzy Logic

based Framework for handling imprecision

and uncertainty in software development

Effort prediction models”, Master Thesis,

Information and Computer Science

Department, King Fahd University of

Petroleum and Minerals, Dhahran, Saudi

Arabia, January 2006

30. Sindre, G., Opdahl, A: “Eliciting security

requirements with misuse cases”.

Requirements Engineering (2005) 10: 34-44

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 953-976
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

976

