

A Study on the Evaluation of

Unit Testing for Android Systems

Ben Sadeh and Sundar Gopalakrishnan

Department of Computer and Information Science,

Norwegian University of Science and Technology,

Trondheim, Norway

{sadeh, sundar}@idi.ntnu.no

ABSTRACT

Unit testing is a method for quickly

assessing the building blocks of a program

and for obtaining accurate error

localizations. However, in order to achieve

these qualities, the tests cases need to be

isolated, since an external call may imply a

connection to a remote database. This

requirement also makes unit testing difficult

to initiate for classes with outside

dependencies, and consequently several

approaches have been devised to facilitate

unit testing of these methods. This paper

focuses on the different ways of unit testing

Java methods with external dependencies in

an Android application. Additionally, it

covers a new category of testing

methodology called shadow objects. First,

the study examines some of the current

methods of testing. Then, it details the

different ways a class with an external

dependency could be unit tested. Finally, the

paper presents a discussion and evaluation

of the study.

KEYWORDS

Unit Testing, Integration Testing, Graphical

User Interface (GUI), Android Activity,

Test-driven Development (TDD), Mock

Objects, Robolectric, Shadow Classes

1 INTRODUCTION

The purpose of this study is to promote

practices like TDD for the Android

platform by examining different ways to

unit test methods with external

dependencies. While approaches such as

mock objects and dependency injections

are making it easier to unit test, these

methods are often language and system-

specific. For this reason, this study is

interested in facilitating unit testing for

Android. This paper will cover unit

testing of methods with external

dependencies by specifically looking at

GUI methods since they act similarly

and for their central role in a mobile

application’s interaction [1,2].

This paper builds on the authors’

previous work, Towards Unit Testing of

User Interface Code for Android Mobile

Applications [3].

However, unit testing the GUI is

difficult [4]. Consequently, several

methods have been devised in order to

test classes with dependencies in a more

practical way [5]. Additionally, as

modern GUIs are continuously evolving

in complexity, it also becomes harder to

establish which parts are relevant to

testing [6]. Despite these obstacles,

testing the GUI is important for an

application's resilience and chance of

success and is the basis of this study

[7,8].

This paper explores the different

methods of unit testing the GUI in an

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 926

Android Activity [9]. Section 2 states

our motivation and goals for the research

and briefly presents some alternate

methods for GUI testing an Android

activity. Section 3 outlines the steps

taken to successfully unit test an

Android activity. Then, Section 4

compares the different methods of unit

testing to determine which one fits the

research goals. Finally, Section 5

concludes the paper with further steps to

future research.

2 BACKGROUND AND RELATED

WORK

In this research paper, we are interested

in unit testing the GUI code of an

Android application. Since the testing

process is difficult to handle and

important for the user experience, this

paper has been written with the

following research questions in mind:

RQ1. What are the different

methods of assessing the GUI

code in an Android activity?

RQ2. Is unit testing of the GUI

code on the Android platform

feasible?

RQ3. If so, is unit testing the

GUI code on the Android

platform beneficial?

2.1 Testing Concepts

Several testing concepts are relevant to

the study and are outlined below.

Android Instrumentation test. Currently,

testing the GUI in applications is based

on structuring the code in such a way

that as much logic as possible is

separated from the interface code. Given

this distinction, the GUI can be tested

using standard instrumentation tests,

which are included in the Android SDK.

In Android's own Instrumentation

Testing Framework, the framework

launches an emulator and runs the

application and its test simultaneously,

allowing the testing to interact with the

whole application. This method can give

an accurate depiction of an Android

activity’s behavior and functionality.

However, since this method requires the

tests to be run inside an emulator, it

performs slow and is difficult to isolate.

Dalvik Virtual Machine (VM). The

Dalvik VM is a java bit code interpreter

used by Android mobile devices. It is

optimized in terms of battery life and

watt efficiency [10,11]. During Android

Instrumentation tests, an emulator

simulates a Dalvik VM environment to

achieve a behavior very close to a real

Android device [12]. However, since the

program code needs to pass through an

interpreter that resides inside an

emulator, testing realism comes at the

cost of testing speed. Because speed is of

importance to the study, this paper may

favor methods of testing that circumvent

the Dalvik VM and use the standard Java

VM instead.

Mock Objects. When working with

automated software testing, unit testing

allows developers to quickly assess

critical boundaries of their applications

such as upper and lower limits and

corner-cases. However, in order to

maintain high testing speeds, unit tests

need to adhere to several conditions

including being isolated from potentially

expensive external calls. To facilitate in

testing of modules that do have external

dependencies, programmers may

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 927

substitute external calls of the code with

mock objects to make the assessments

non-deterministic. For example, a

method that interacts with a database

may instead call a static database that

always returns the same answers.

Depending on the functionality in

question, the method can now be

properly unit tested because the external

dependency has been isolated.

On the other hand, using too many mock

objects can lead to more lines of code

that needs to be maintained in order to

facilitate testing. While mock objects

may solve the issue of dependency

isolation, they can introduce other

inconveniences such as test methods

maintenance.

3 SUGGESTED TESTING

APPROACH

An essential part of GUI code is to

interact with the graphical components

on the screen, such as buttons and text

fields. A well-designed application

separates the GUI code from the

business logic. For example, a

controller's job is to receive interactions

from the user, such as a button click, and

react to the interaction, perhaps

involving requests to the business logic.

Unit testing a controller in such an

application is challenging, but possible

with commonly used techniques for unit

testing business logic [13]. This section

will take advantage of certain

programming techniques using a simple

example application containing a method

in the controller class to be tested. The

approach involves breaking the

dependencies to the user interface

framework, and optionally to the

business logic. In Subsection 3.1 the

example application and the method to

be tested are described. Then,

Subsection 3.2 covers the steps taken to

unit test the method using the standard

Eclipse environment. Finally, Subsection

3.3 outlines the convenience of unit

testing using an assisting framework.

3.1 Example Application

public void onClick(View view) {

 // Get the token that 'view' maps to

 CalculatorButton button = CalculatorButton.findById(view.getId());

 calculatorState.pushToken(button);

 updateDisplay();

}

Listing 1: Original onClick() implementation

480px x 800px
Samsung
Galaxy S
[Vibrant]

Figure 1: The calculator application with the

add and subtract function

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

928

The example program will be a custom

made calculator. It supports addition and

subtraction of numbers, and has a user

interface similar to traditional pocket

calculators, as illustrated in Figure 1.

The calculator contains three main

classes that are illustrated in Figure 2.

CalculatorButton. This is an enumerator

with one value for each button of the

calculator. It maps an Android

component ID to the CalculatorButton

value that is used to represent said

button. The '+' button in the user

interface maps, for example, to

CalculatorButton.B_add.

CalculatorState. This class handles the

business logic of the calculator. It

accepts a CalculatorButton as its input

and handles the state of the calculator

when numbers are received.

Calculator. This class is the Android

Activity of the application. It handles the

user interaction by listening to click

events in the user interface,

accomplished by the onClick() method

as shown in Listing 1.

OnClick(). This method performs a

two-way communication with the user

interface: It retrieves the button clicked

and updates the display, and to do this

correctly, it needs to interact with the

business logic.

UpdateDisplay(). This simple

 class RealCalculatorClickListener {

 public void onClick(View view) {

 // Definition omitted

 }

}

class CalculatorClickListener extends RealCalculatorClickListener

 implements OnClickListener {

 // Empty class

}

Listing 2: CalculatorClickListener

class ViewIdGetter {

 int getId(View view) { return view.getId(); }

}

class RealCalculatorClickListener {

 private ViewIdGetter viewIdGetter;

 RealCalculatorClickListener(ViewIdGetter viewIdGetter) {

 this.viewIdGetter = viewIdGetter;

 }

 public void onClick(View view) {

 int viewId = viewIdGetter.getId(view);

 // Remainder of definition omitted

 }

}

Listing 2: ViewIdGetter

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 929

method will be tested using the same

techniques as onClick().

3.2 Standard Environment Approach

In this approach, the default Eclipse

environment is considered for the

Android development [14]. However,

out of the box, it doesn't grant access to

the Android classes, and so it is not

possible to initialize the GUI classes

such as the Calculator class.

3.2.1 Avoiding Initializing Classes

By extracting the onClick() method

into a different class, say

CalculatorClickListener, the code

can be tested without initializing

Calculator. If

CalculatorClickListener implements

the OnClickListener interface, it can

act as the click listener for Calculator,

but this prevents

CalculatorClickListener from being

instantiated. Therefore, the proposed

approach works around the issue by

creating a class that inherits from the

class that implements onClick(), as

shown in Listing 2.

The proposed approach instantiates

RealCalculatorClickListener in the

unit test. CalculatorClickListener is

not supposed to contain any code, and

therefore it should not require testing.

However, in this implementation,

RealCalculatorClickListener takes

arguments in its constructor, meaning

that CalculatorClickListener must

have a constructor as well.

Figure 2: The main classes in the calculator application

before testing

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 930

Since Android classes cannot be

instantiated in this environment, any

classes extending or implementing them

cannot be tested. Therefore, the

constructor of

CalculatorClickListener remains

untested.

3.2.2 Interacting with Android

Components

Code that interacts directly with Android

classes, such as onClick(), cannot run

in a unit test because they cannot be

instantiated. The solution in the standard

environment is to extract the code that

performs the interaction into a separate

class, which then can be faked in the unit

test, as illustrated in Listing 2.

Figure 3: The main classes in the calculator application before testing

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 931

This leaves ViewIdGetter.getId()

untested because it requires a View

instance, and by extracting similar

statements, one is able to minimize and

isolate the untested code. Figure 3

provides an overview of the calculator

classes after the refactoring. onClick()

can now be unit tested using fake

objects, as shown in Listing 3.

3.3 Robolectric Approach

Robolectric [15] is an open-source

framework built to assists in unit testing

and is released under the open-source

MIT license. The framework is

comprised of a series of mock objects

that mimic many of the actual Android

classes, several of which are unable to be

initialized conventionally because of

dependencies to the Dalvik VM.

However, Robolectric proposes a new

way to relate to mock objects through

something they dub ‘shadow classes.’

Instead of re-writing the program code to

interact with their mock objects,

Robolectric intercepts the code during

test-time and refers the appropriate

methods to their shadow equivalent. In

this case, the shadow object ‘shadows’ a

real object, so that the code will call

different classes during run-time and

test-time, circumventing the need to

change the code for testing purposes.

public class CalculatorClickListenerTest {

 static class FakeCalculatorDisplay implements CalculatorDisplay {

 public String display;

 public void setCalculatorDisplay(String message) {

 display = message;

 }

 }

 static class FakeViewIdGetter extends ViewIdGetter {

 public static final CalculatorButton CLICKED_BUTTON =

 CalculatorButton.B_05;

 int getId(View unused) { return CLICKED_BUTTON.getId(); }

 }

 static class FakeCalculatorState extends CalculatorState {

 public CalculatorButton receivedToken;

 public static final String DISPLAY =

"Display:FakeCalculatorState";

 public void pushToken(CalculatorButton button) {

 assertEquals(null, receivedToken);

 receivedToken = button;

 }

 public String getDisplay() { return DISPLAY; }

 }

Listing 3: Testing the CalculatorClickListener

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 932

As was explained in subsection 3.2, in

order to unit test Calculator in the

standard environment, the code had to be

refactored to avoid initializing the

Android framework classes. Conversely,

by using the Robolectric framework, the

Calculator class can be tested with

no refactoring, as illustrated in Listing 5.

4 EVALUATION AND DISCUSSION

The Calculator application was

successfully unit tested in the standard

environment, but only after a significant

amount of refactoring and boilerplate

code. This approach may become

unmanageable for larger applications as

refactoring of the methods may grow to

be complicated to maintain and difficult

to debug.

However, Robolectric’s Shadow Classes

made it easy to write unit tests by

shadowing the real classes and

bypassing the need for extra steps and

abstractions.

This study aims for efficiency in unit

testing the GUI code in an Android

mobile application. By making use of

the Robolectric framework, certain

qualities that are important to this

research can be achieved. This paper

both aspires for and achieves:

 tests that run fast

 tests that are relevant

 code that is easy to maintain

Based on the initial research questions

and the qualities listed above, there are

several categories of software tests that

are of interest.

4.1 Automated Software Testing

Categories

 private RealCalculatorClickListener calculatorClickListener;

 private FakeCalculatorState calculatorState;

 private FakeCalculatorDisplay calculatorDisplay;

 private FakeViewIdGetter viewIdGetter;

 @Before

 public void setUp() {

 calculatorState = new FakeCalculatorState();

 calculatorDisplay = new FakeCalculatorDisplay();

 viewIdGetter = new FakeViewIdGetter();

 calculatorClickListener = new RealCalculatorClickListener(

 calculatorState, calculatorDisplay, viewIdGetter);

 }

 @Test

 public void testOnClick() {

 calculatorClickListener.onClick(null);

 assertEquals(FakeViewIdGetter.CLICKED_BUTTON,

 calculatorState.receivedToken);

 assertEquals(FakeCalculatorState.DISPLAY,

 calculatorDisplay.display);

 }

}

Listing 4: Continued

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 933

The following section will differentiate

between the different testing methods

and explain the author’s reason for

choosing one over the other.

a) Unit Testing. To ensure that the

individual components in a program are

working, one needs to assess that the

smallest building blocks are built

correctly. As a result, Unit tests [16,17]

are run on individual functions and in

some cases even whole classes in

isolation from the rest of the application.

Thus, design guidelines and techniques

for breaking dependencies have been

developed. For example, combination of

the Dependency Injection design pattern

[18] and Mock Objects can be used to

allow unit testing of a class with

dependencies that would otherwise make

it hard to test.

Similarly, unit testing a GUI is similar to

testing a class with several external

dependencies, because the interaction

with a GUI framework represents a

black-box to the unit test.

Because unit tests cover specific parts of

the program, they offer the advantage of

running quickly and independent of the

rest of the application.

b) Integration Testing, Limitations. After

the different components have been

tested, they can be put together to see

whether they perform as expected.

Integration testing [19] is performed by

combining multiple parts of the

application and is useful for checking

that the different parts of the program

are working together.

Integration testing is relevant for quality

assurance since it covers larger parts of

the program. However, these tests may

run slower due to some times unforeseen

dependencies and so they do not meet

the conditions set forth by this paper.

Figure 4 and Figure 5 illustrates the

difference between a unit test and an

integration test.

public class CalculatorTest {

 @Test public void testOnClick() {

 Calculator calculator = new Calculator();

 calculator.onCreate(null);

 View fakeView = new View(null) {

 @Override public int getId() {

 return CalculatorButton.B_04.getId();

 }

 }

 calculator.onClick(fakeView);

 TextView display = (TextView)calculator.findViewById(

 R.id.CalculatorDisplay);

 assertEquals("4.0 ", display.getText());

 }

}

Listing 5: Testing Calculator using the Robolectric framework

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 934

4.2 Test Results

The onClick() method was tested
1

using three different methods,

summarized in Table 1. Furthermore,

comparison of the methods in relation to

the research goals is illustrated in Table 2.

Table 1. Summarization of test approaches for

the Calculator application

Method Type of test Test runtime

Android

Instrumentation

Integration test 5.629 sec

Standard

environment

Unit test 0.69 sec

Robolectric Unit test 1.16

Table 2. Comparison between the selected

methods

Factors Android

Instrumenta

tion

(Integration

test)

Standard

environm

ent (Unit

test)

Robolect

ric (Unit

test)

Ease of

writing

tests

++ - +

Ease of

maintena

nce

+ -- +

Error

localizati

on

-- - ++

Relevanc

e

+ + +

Speed -- ++ +

1
 Computer specifications:

Intel Core 2 Duo E7500, 4 GB RAM, Debian

GNU/Linux, Eclipse Helios

Class1

methodToTest#1()
methodToTest#2()

Figure 4: Unit testing: a single

isolated component is tested

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 935

The notation is explained in the following table:

++ stands for very good

+ “ good

- “ unsatisfactory

-- “ very unsatisfactory

For applications that are more complex,

using the Robolectric framework is

likely to be more practical, because it

scales by allowing developers to avoid

having to maintain a collection of fake

objects and interfaces.

Because of its nature, standard Unit

testing will remain as the quickest

testing method. However, classes that

are refactored to allow for unit testing

make them more difficult to maintain

correctly. By using the Robolectric

framework, one can achieve close to the

speed of unit tests together with the ease

of writing found in the integration tests.

From Table 1 and Table 2, Robolectric

and Android Instrumentation can be

used for testing user interface code for

the number of qualities listed in it.

Again, we conducted a controlled

experiment with the two above

alternatives for the same simple

calculator application. Four people

participated for this experiment, two

from an academic background and two

from an industry background. This

experiment is conducted to find the

preferable method in terms of TAM [20]

model, as illustrated in Figure 6.

The questionnaire experiment was

carefully prepared to reflect three factors

for the Technology Acceptance Model

(TAM) viz., Perceived Ease Of Use

(PEOU), Intention to Use (IU) and

perceived usefulness. The participants

were asked to use these two alternative

testing methods for the calculator

application and then to fill out a

questionnaire on their experience with

this experiment. We assign value 4 to

completely agree and 0 to completely

disagree with the statement in the

questionnaire. The questionnaire used

for this experiment is provided as an

appendix for reference.

Based on the experiments results, the

evaluation results are plotted in Figure 7.

As per the participants view, Robolectric

considerably outperforms Android

Instrumentation testing alternative in all

the three factors, especially for the

alternative ‘Intention to use.’

However, the Robolectric approach is

not a complete replacement for

instrumentation tests, as it does not test

the actual graphical components.

Moreover, responsibility for the correct

assessments is given to Robolectric, and

the developer needs to be mindful over

the fact that the Android classes are

untouched and that the shadow classes

do the actual work.

LOGIC

Class1 Class2

Figure 5: Integration testing:

Interaction between two or more

components is tested

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 936

Lastly, shadow classes are written

independently and without automation,

so that when Android framework is

updated with new classes, there is no

automated process of including the new

additions. Therefore, Robolectric

currently plays a cat and mouse game by

supporting the latest Android framework

ad hoc.

4.3 Threats to Validity

Wohlin et al. suggests four categories for

threats to validity in experiments:

conclusion validity, construct validity,

internal validity and external validity. To

identify the best alternative testing

methodology, we conducted the

controlled experiment through

practitioners from academic and industry

as explained in previous section.

Conclusion validity concerns the

relationship between the treatment given

and the outcome in measured variables.

One important question is whether the

sample size is big enough to justify the

conclusions; here we have taken only

four participants, two academics and two

from industry with solid technical

background. So the effect low sample

size in terms of conclusion validity is

minimized.

Construct validity is concerned with the

inference from the measures made in the

experiment to the theoretical constructs

to be observed. This controlled

experiment is conducted for simple

applications. Naturally, more

experiments with a wider range of

experimental tasks would be necessary

to draw more certain conclusions for

practical usage.

Internal validity means that the observed

outcomes were due to the treatment, not

to other factors i.e., only because of the

two testing methodologies. Participants

were new to both testing methodologies

in the experiment and hence no bias

effect towards any approach.

External validity questions whether it is

possible to generalize from the

experimental setting to other situations.

This is impossible to answer from the

experimental data, but intuitively there is

no particular reason why the situation

should be different for other application

since we constrained ourselves only to

Android development.

5 CONCLUSION AND FUTURE

WORK

This paper explores the different options

developers have for assessing the

correctness of their Android mobile

application.

A GUI component was successfully unit

tested by adding extra code and

abstractions.

Figure 6: Illustrations of TAM model [20]

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 937

Robolectric allowed tests to be written to

said component with less refactoring of

the original source code, and the

resulting tests were fast and provided

relevant test coverage of the GUI code.

For this reason, unit testing GUI code is

likely to benefit Android developers.

A controlled experiment with a simple

application was conducted in order to

establish the best testing approach

between Android Instrumentation testing

and Robolectric. The study showed that

the participants preferred Robolectric to

conventional instrumentation testing.

Our research conclusion currently only

applies to our example application, and

in future studies, we wish to expand test

coverage to larger programs to obtain

additional confidence in recommending

unit testing with Robolectric for more

complex applications and systems.

6 REFERENCES

1. Liu Zhifang, Liu Bin, and Gao Xiaopeng.

Test automation on mobile device. In

Proceedings of the 5th Workshop on

Automation of Software Test, AST ’10,

pages 1–7, New York, NY, USA, 2010.

ACM.

2. Sun-Myung Hwang and Hyeon-Cheol Chae.

Design & implementation of mobile GUI

testing tool. In Proceedings of the 2008

International Conference on Convergence

and Hybrid Information Technology. IEEE

Computer Society, 2008.

3. Ben Sadeh, Kjetil Ørbekk, Magnus Eide,

Njaal Gjerde, Trygve Tønnesland and

Sundar Gopalakrishnan. Towards Unit

Testing of User Interface Code for Android

Mobile Applications In Proceedings of the

2011 Communications in Computer and

Information Science, Software Engineering

and Computer Systems.

4. P. Hamill. Unit Tests Framework. O’Reilly,

2004.

5. Penelope Brooks, Brian Robinson, and Atif

M. Memon. An initial characterization of

industrial graphical user interface systems.

In ICST 2009: Proceedings of the 2
nd

 IEEE

International Conference on Software

Testing, Verification and Validation.

6. Kai-Yuan Cai, Lei Zhao, Hai Hu, and

Chang-Hai Jiang. On the test case definition

for GUI testing. In Quality Software, 2005.

(QSIC 2005). Fifth International Conference

on, sept 2005.

7. Atif M. Memon. A comprehensive

framework for testing graphical user

interfaces. Ph.D., 2001.

8. Alex Ruiz and Yvonne Wang Price. Test-

driven GUI development with testng and

abbot. Software, IEEE, 24(3):51 –57, may-

june 2007.

9. Google inc. Android activity, 2011.

Available from: http://developer.android.

com/reference/android/app/Activity.html

[cited 2011-03-09].

10. David Ehringer, The Dalvik Virtual

Machine Architecture, March 2010.

Available from:

http://davidehringer.com/software/android/T

he_Dalvik_Virtual_Machine.pdf [cited

2011-07-04].

11. Google inc, Android Architecture, 2011.

Available from:

http://developer.android.com/guide/basics/w

hat-is-android.html [cited 2011-07-04].

12. Google inc. Testing fundamentals, 2011.

Available from: http://developer.

android.com/guide/topics/testing/testing_an

droid.html [cited 2011-03-09].

13. Michael Feathers. Working Effectively with

Legacy Code. Prentice Hall PTR, Upper

Saddle River, NJ, USA, 2004.

Figure 7: Evaluation by TAM factors

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 938

14. Google inc. Android developing

introduction, 2011. Available from: http:

//developer.android.com/guide/developing/i

ndex.html [cited 2011-03-09].

15. Pivotal Labs. Robolectric, 2011. Available

from: http://pivotal.github.com/robolectric/

[cited 2011-03-09].

16. IEEE 1008 - IEEE standard for software unit

testing, 1987.

17. R.S. Freedman. Testability of software

components. IEEE Transactions on Software

Engineering, 17:553–564, 1991.

18. Martin Fowler. Refactoring: Improving the

Design of Existing Code. Addison-Wesley,

Boston, MA, USA, 1999.

19. Ursula Linnenkugel and Monika

Müllerburg. Test data selection criteria for

(software) integration testing. In

Proceedings of the first international

conference on systems integration on

Systems integration ’90, 1990.

20. Davis, F. D. (1989), "Perceived usefulness,

perceived ease of use, and user acceptance

of information technology", MIS Quarterly

13(3): 319–340

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 939

Appendix

Below is the questionnaire used for our experiment to identify the best practice testing

methodology. The experiment was conducted with four practitioners, two from an

academic background and two from an industry background. They are provided with a

simple calculator application to be used with both Android Instrumentation testing and

the Roboelectric framework. After trying both alternatives, the below questionnaire was

filled out.

Sl

No

Questionnaire Testing Comp.

Agree

Partly

Agree

Neither/Nor

Agree/disag.

Partly

Disagr.

Comp.

Disagr.

1 Method gave me a better

understanding of the unit testing.

(PEOU)

Android

Instr. test

Roboelectric

2 I found this method is very easy

to master. (PEOU)

Android

Instr. test

Roboelectric

3 I found very easy to use and

recognize this testing. (PEOU)

Android

Instr. test

Roboelectric

4 I was not often confused about

how to apply this testing to

android mobile UI application.

(IU)

Android

Instr. test

Roboelectric

5

If I need to test UI in android

mobile application in a future

project, I would use this

testing.(IU)

Android

Instr. test

Roboelectric

6 I will try this method if I been

assigned in my future work

involving mobile application.

(IU)

Android

Instr. test

Roboelectric

7 If I am working as freelance

consultant for a customer who

needs help testing applications

(mobile UI)that are performed in

android system, I would use this

notation in discussions with that

customer. (IU)

Android

Instr. test

Roboelectric

8 If I am employed in a company

which discusses what method to

test android mobile UI and

someone suggest this method, I

would support that.(IU)

Android

Instr. test

Roboelectric

9 The method made Unit testing

User Ineterface more systematic

in android.(PU)

Android

Instr. test

Roboelectric

10 It is very easy to get used this

method in a project. (PU)

Android

Instr. test

Roboelectric

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 940

11 I can read and understand this

method quickly. (PU)

Android

Instr. test

Roboelectric

12 This method is easy to

remember. (PU)

Android

Instr. test

Roboelectric

13 This method made me more

productive in testing where the

UI applications developed with

android.(PU)

Android

Instr. test

Roboelectric

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 926-941
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 941

