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ABSTRACT 

 
In some practical Neural Network (NN) 

applications, fast response to external events 

within enormously short time is highly 

demanded. However, by using back 

propagation (BP) based on gradient descent 

optimisation method obviously not satisfy in 

several application due to serious problems 

associated with BP which are slow learning 

convergence velocity and confinement to 

shallow minima. Over the years, many 

improvements and modifications of the BP 

learning algorithm have been reported. In 

this research, we modified existing BP 

learning algorithm with adaptive gain by 

adaptively change the momentum 

coefficient and learning rate. In learning the 

patterns, the simulation results indicate that 

the proposed algorithm can hasten up the 

convergence behaviour as well as slide the 

network through shallow local minima 

compare to conventional BP algorithm. We 

use five common benchmark classification 

problems to illustrate the improvement of 

the proposed algorithm. 
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1 INTRODUCTION 
 

Multilayer Feedforward Neural Network 

(MLFNN) also referred to as Multilayer 

Perceptron (MLP) is one of the most 

popular and most frequently used type of 

Neural Network (NN) models due to its 

clear architecture and comparably simple 

algorithm. It can unravel classification 

problems implicating non-linearly 

separable patterns and can be used as a 

comprehensive function generator [1]. 

Due to its ability to solve some problems 

with relative ease of use, robustness to 

noisily input data, execution speed and 

analysing complicated systems without 

accurate modelling in advance, MLP has 

successfully been implemented across an 

extraordinary range of problem domains 

that involves prediction and a wide 

ranging usage area in the classification 

problems [2-9]. 

 

The MLP is composed by a set of 

sensorial units organised in three 

hierarchical of layers comprise of the 

input layer of neurons, one or more 

intermediary or hidden layer of neurons 

and the output layer of neurons. The 

consecutive layers are fully connected. 

The connections between the neurons of 

adjacent layers relay the output signals 
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from one layer to the next. Throughout 

the learning phase, the interconnections 

are optimised to minimise the predefined 

function. 

 

Among the existing paradigms, Back 

Propagation (BP) algorithm is a 

supervised learning procedure for 

training MLP which is based on the 

gradient descent (GD) optimisation 

method that endeavors to minimise the 

error of the network by moving down 

the gradient of the error curve [1]. This 

algorithm mapping the input values to 

the desired output through the network. 

This output pattern (actual output) is 

then compared to the desired output and 

the error signal is computed for each 

output unit. The signals are then transmit 

backward from the output layer to each 

unit in the transitional layer that 

contributes directly to the output and the 

weights are adjusted iteratively during 

the learning process.  

 

In some practical NN applications, fast 

response to external events within 

tremendously short time are highly 

demanded and expected. However, the 

comprehensively used of BP algorithm 

based on GD optimisation method 

obviously not satisfy in many 

applications especially large scale 

application and when higher learning 

accuracy as well as generalisation 

performances are obligatory. The reason 

for this unsatisfaction is due to the slow 

learning convergence velocity though 

the network has achieved stopping 

criteria. Moreover, it also frequently 

confinement to shallow minima.  

 

It is noted that many local minima 

complications are closely associated to 

the neuron saturation in the hidden layer. 

When such saturation exists, neuron in 

the hidden layer will lose their 

sensitivity to the input signals and 

propagation chain is blocked severely. In 

some situation, the network can no 

longer learn. Furthermore, the 

convergence behaviour of the BP 

algorithm also depends on the selection 

of network architecture, initial weights 

and biases, learning rate, momentum 

coefficient, activation function and value 

of the gain in the activation function. 

 

In the recent years with the progress of 

researches and applications, the NN 

technology has been enhanced and 

sophisticated. Research has been done 

on modification of the conventional BP 

algorithm in order to improve the 

efficiency and performance of MLP 

network training. Much work has been 

devoted to improve the generalization 

ability of the networks. These implicated 

the development of heuristic techniques, 

based on properties studies of the 

conventional BP algorithm. These 

techniques include such idea as varying 

the learning rate, using momentum and 

gain tuning of activation function. 

Lera et al. [10] described the use of 

Levenberg-Marquardt algorithm for 

training multi-layer feed forward neural 

networks. Though, the training times 

required strongly depend on 

neighbourhood size. Meanwhile, Ng et 

al. [11] localised generalisation error 

model for single layer perceptron neural 

network (SPLNN). This is an 

extensibility of the localised 

generalisation model for supervised 

learning with mean squared error 

minimisation. Though, this approach 

serves as the first step of considering 

localised generalisation error models of 

ANN.Meanwhile, Wang et al. [12] 
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proposed an improved BP algorithm 

caused by neuron saturation in the 

hidden layer. Each training pattern has 

its own activation function of hidden 

nodes in order to prevent neuron 

saturation when the network output has 

not acquired the desired signals. The 

activation functions are adjusted by the 

adaptation of gain parameters during the 

learning process. However, this 

approach not performed well on the 

large problems and practical 

applications. Otair and Salameh [13] 

designed the optical back propagation 

(OBP) algorithm which is applied on the 

output units. This kind of algorithm used 

for training process that depends on a 

multilayer NN with a very small learning 

rate, especially when using a large 

training set size. Conversely, it does not 

guarantee to converge at global minima 

because if the error closes to maximum, 

the OBP error grows increasingly. While 

Ji et al. [14] proposed a BP algorithm 

that improved conjugate gradient (CG) 

based. In the CG algorithm, a search is 

performed along conjugate directions 

which usually lead to faster convergence 

compared to gradient descent directions. 

Nevertheless, if it reaches a local 

minimum, it remains forever, as there is 

no mechanism for this algorithm to 

escape. 

 

Nazri et al. [15] demonstrated that by 

adaptively change the „gain‟ value for 

each node can significantly reduce the 

training time without modifying the 

network topology. Therefore, this 

research proposed a further improvement 

on [15] by adjusting activation function 

of neurons in the hidden layer in each 

training patterns. The activation 

functions are adjusted by the adaptation 

of gain parameters together with 

adaptive momentum and adaptive 

learning rate value during the learning 

process. The proposed algorithm, back 

propagation gradient descent with 

adaptive gain, adaptive momentum and 

adaptive learning rate 

(BPGD-AGAMAL) significantly can 

obviate the network from trapping into 

shallow minima that caused by the 

neuron saturation in the hidden layer as 

well as hasten up the convergence 

behaviour. In order to verify the 

efficiency of the proposed algorithm, the 

performance of the proposed algorithm 

will be compared with the conventional 

BP algorithm and back propagation 

gradient descent with adaptive gain 

(BPGD-AG) proposed by [15]. Some 

simulation experiments were performed 

on three classification problems 

including glass [16], soybean [17], 

breast cancer Wisconsin [18], card [19] 

and Iris [20]. 

 

The remaining of the paper is organised 

as follows. In Section 2, the effect of 

using activation function with adaptive 

gain is reviewed. While in Section 3 

presents the proposed algorithm. The 

performance of the proposed algorithm 

is simulated on benchmark dataset 

problems in Section 4. This paper is 

concluded in the final section. 

 

2 THE GAIN OF ACTIVATION 

FUNCTION IN BACK 

PROPAGATION ALGORITHM 
 

An activation function is used for 

limiting the amplitude of the output 

neuron. It generates an output value for a 

node in a predefined range as the closed 

unit interval  1,0  or alternatively  1,1  

which can be a linear or non-linear 

function. This value is a function of the 
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weighted inputs of the corresponding 

node. The most commonly used 

activation function is the logistic 

sigmoid activation function. Alternative 

choices are the hyperbolic tangent, 

linear, step activation functions. For 

the thj node, a logistic sigmoid activation 

function which has a range of  1,0  is a 

function of the following variables, viz: 

jn etjacj
e
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1
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o  output of the thi  unit.
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weight of the link from unit i  

to unit j.
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,
 net input activation function 

for the thj  unit.
 

j
  bias for the thj  unit.

 
j

c  gain of the activation 

function. 

 

The value of the gain parameter,
j

c , 

directly influences the slope of the 

activation function. For large gain values 

 1c , the activation function 

approaches a „step function‟ whereas for 

small gain values  10  c , the output 

values change from zero to unity over a 

large range of the weighted sum of the 

input values and the sigmoid function 

approximates a linear function.  

 

Most of the application oriented papers 

on NN tend to advocates that NN 

operate like a „magic black box‟, which 

can simulate the “learning from 

example” ability of our brain with the 

help of network parameters such as 

weights, biases, gain, hidden nodes, and 

so forth. Also, a unit value for gain has 

generally being used for most of the 

research reported in the literature, 

though a few authors have researched 

the relationship of the gain parameter 

with other parameters which used in BP 

algorithms.  

 

The learning rate (LR) is one of the most 

effective means to accelerate the 

convergence of BP learning. It is a 

crucial factor to control the variable of 

the neuron weight adjustments at each 

iteration during the training process and 

therefore affects the convergence rate. In 

fact, the convergence speed is highly 

depending on the choice of LR. The LR 

values need to be set appropriately since 

it dominate the performance of the BP 

algorithm. The algorithm will take 

longer time to converge or may never 

converge if the LR is too small. On the 

contrary, the network will accelerate the 

convergence rate significantly and still 

possibly will cause the instability 

whereas the algorithm may oscillates on 

the ideal path if the LR value is too high. 

The value of LR usually set to be 

constant which means that the selected 

value is employed for all weights in the 

whole learning process. Later, Ye [21] 

stated that the constant learning rate of 

the BP algorithm fails to optimise the 

search for the optimal weight 

combination. Hence, a search 

methodology has been classified as a 

“blind-search”.  

 

Another effective approach regarding to 

hasten up the convergence and stabilise 

the training procedure is by adding some 

momentum coefficient (MC) to the 

network. Moreover, with MC, the 

network can slide through shallow local 
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minima. Formerly, the MC is typically 

preferred to be constant in the 

interval  1,0 . In spite of that, it is 

discovered from simulations that the 

fixed momentum coefficient value seems 

to hasten up learning only when the 

recent downhill gradient of the error 

function and the last change in weight 

have a parallel direction. When the 

recent negative gradient is in a crossing 

direction to the previous update, the MC 

may cause the weight to be altered up 

the slope of the error surface as opposed 

to down the slope as preferred. This 

leads to the emergence of diverse 

schemes for adjusting the MC value 

adaptively instead of being kept constant 

throughout the training process. 

Results in [22] demonstrate that the LR, 

MC and gain of the activation function 

have a significant impact on training 

speed.. Thimm et al. also proved that a 

relationship between the gain value, a set 

of initial weight values, and LR value 

exists. Eom et al. proposed a method for 

automatic gain tuning using a fuzzy 

logic system. Nazri et al. [15] proposed 

a method to change the gain value 

adaptively on other optimisation method 

such as CG. Norhamreeza et al. 

demonstrated that adaptive momentum 

coefficient and adaptive gain of the 

activation function significantly 

improved the training time. 

 

3 THE PROPOSED ALGORITHM 

 

In this section, a further improvement on 

the current working algorithm proposed 

by [15] for improving the training 

efficiency of BP is proposed. The 

proposed algorithm modifies the initial 

search direction by changing the three 

terms adaptively for each node. Those 

three terms are; gain value, MC and LR. 

The advantages of using an adaptive 

gain value together with MC and LR 

have been explored. Gain update 

expressions as well as weight and bias 

update expressions for output and hidden 

nodes have also been proposed. These 

expressions have been derived using 

same principles as used in deriving 

weight updating expressions. 

 

The following iterative algorithm is 

proposed for the batch mode of training. 

The weights, biases, gains, LRs and 

MCs are calculated and updated for the 

entire training set which is being 

presented to the network. 

 

For a given epoch, 
For each input vector, 

Step 1. 

Calculate the weight and 

bias values using the 

previously converged gain, 

MC and LR value. 

Step 2. 

Use the weight and bias 

value calculated in Step (1) 

to calculate the new gain, 

MC and LR value.  

Repeat Steps (1) and (2) for 

each input vector and sum all 

the weights, biases, LR, MC and 

gain updating terms 

Update the weights, biases, 

gains, MCs and LRs using the 

summed updating terms and repeat 

this procedure on epoch-by-epoch 

basis until the error on the 

entire training data set reduces 

to a predefined value. 

 

The gain update expression for a 

gradient descent (GD) method is 

calculated by differentiating the 

following error term E with respect to 

the corresponding gain parameter. 

The network error E is defined as 

follows 
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Therefore, the gain update expression for 

links connecting to output nodes is: 
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Therefore, the gain update expression for 

the links connecting hidden nodes is: 
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Similarly, the weight and bias 

expressions are calculated as follows: 

The weights update expression for the 

links connecting to output nodes: 

       nwocoootnw
jkjkkkkkjk

  11  (10) 

Where the LR,  and MC,  are 

randomly generated.  

Similarly, the bias update expressions 

for the output nodes would be: 

       nwcoootn
jkkkkkkk

  11  (11) 

The weight update expression for the 

links connecting to hidden nodes is: 
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Similarly, the bias update expressions 

for the hidden nodes would be: 
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4 RESULTS AND DISCUSSIONS 

 

The performance criterion used in this 

research focuses on the speed of 

convergence, measured in number of 

iterations and CPU time as well as 

accuracy. The real world classification 

problem datasets are obtained from UCI 

Machine Learning Repository at Centre 

for Machine Learning and Intelligent 

Systems have been used to verify our 

algorithm. Five classification have been 

tested including glass [16], soybean [17], 

breast cancer Wisconsin [18], card [19] 

and Iris [20]. 

The simulations have been carried out on 

a Pentium IV with 2 GHz HP 

Workstation, 3.25 GB RAM and using 

MATLAB version 7.10.0 (R2010a). On 

each problem, the following three 

algorithms were analysed and simulated. 

1) The conventional Back Propagation 

Gradient Descent (BPGD)  

2) The Back Propagation Gradient 

Descent with Adaptive Gain 

(BPGD-AG) [15] 

3) The proposed algorithm which is 

Back Propagation Gradient Descent 

with Adaptive Gain, Adaptive 

Momentum and Adaptive Learning 

Rate (BPGD-AGAMAL)  

 

To compare the performance of the 

proposed algorithm with conventional 

BPGD and BPGD-AG [15], network 

parameters such as network size and 

architecture (number of nodes, hidden 

layers and so forth), values for the initial 

weights and gain parameters were kept 

the same. For all problems, the NN had 
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one hidden layer with five hidden nodes 

and sigmoid activation function was 

used for all nodes. All algorithms were 

tested using the same initial weights 

which were randomly initialised from 

range  1,0  and received the input 

patterns for training in the same 

sequence. 

 

For all training algorithms, as the gain, 

MC and LR value were modified; the 

weights and biases were updated using 

the new value of gain, MC and LR. To 

avoid oscillations during training and to 

achieve convergence, an upper limit of 

1.0 is set for the gain value. The initial 

value used for the gain parameter is set 

to one. The initial value for MC and LR 

is randomly generated depends on the 

dataset problems. For each run, the 

numerical data is stored in two files - the 

results file and the summary file. The 

result file lists the data about each 

network. The number of iterations until 

the network converged is accumulated 

for each algorithm which is the mean, 

the standard deviation (SD) and the 

number of failures is calculated. The 

networks that failed to converge are 

obviously excluded from the calculations 

of the mean and SD and were considered 

to be reported as failures. For each 

problem, 50 different trials were run, 

each with different initial random set of 

weights. For each run, the number of 

iterations required for convergence is 

reported. For an experiment of 50 runs, 

the mean of the number of iterations 

(mean), the SD, and the number of 

failures are collected. A failure occurs 

when the network exceeds the maximum 

iteration limit; each experiment is run to 

10 000 iterations; otherwise, it is halted 

and reported as a failure. Convergence is 

achieved when the outputs of the 

network conform to the error criterion as 

compared to the desired outputs. 

 

4.1 Glass Classification Problem 
 

This dataset was collected by B. German 

on fragments of glass encountered in 

forensic work. The glass dataset is used 

for separating glass splinters into six 

classes, namely float processed building 

windows, non-float processed building 

windows, vehicle windows, containers, 

tableware, or head lamps [16]. The 

selected architecture of the network is 9-

5-6 with target error was set to 0.001. 

The best MC and LR value for 

conventional BPGD and BPGD-AG for 

the glass dataset are 0.1 and 0.1 while 

BPGD-AGAMAL is initialised 

randomly in range  3.0,1.0  for MC and 

 2.0,1.0  for LR value.  

Table 1. Algorithm performance for Glass 

Classification Problem [16].  

 
BPGD BPGD-AG 

BPGD-

AGAMAL 

Mean 8613 2057 2052 

Total CPU 

time (s) of 

converge 

572.54 59.57 56.16 

CPU 

time(s)/ 

Epoch 

6.6510-2 2.910-2 2.7410-2 

SD 2.15103 2.4510 3.1210 

Accuracy 

(%) 
79.42 79.98 82.24 

Failures 70 0 0 

 

Table 1 shows that the proposed 

algorithm (BPGD-AGAMAL) exhibit 

excellent average performance in order 

to reach the target error. Furthermore, 

the accuracy of the proposed algorithm 

is better compared to BPGD and BPGD-

AG. Moreover, the proposed algorithm 

(BPGD-AGAMAL) needs 2052 epochs 

to converge as opposed to the 

conventional BPGD at about 8613 
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epochs, while BPGD-AG needs 2057 

epochs to converge. Apart from speed of 

convergence, the time required for 

training the classification problem is 

another important factor when analysing 

the performance. The graph depicted in 

Figure 1 clearly show that the proposed 

algorithm (BPGD-AGAMAL) 

practically outperformed conventional 

BPGD with an improvement ratio, 10.2 

seconds whilst BPGD-AG, the proposed 

algorithm outperformed with an 

improvement ratio nearly 2 seconds for 

the total time of converged. Besides, the 

BPGD did not perform well in this 

dataset since 70% of simulation results 

failed in learning the patterns. 

 

 

Figure 1. Performance comparison of 

BPGD-AGAMAL with BPGD-AG and 

conventional BPGD on Glass Classification 

Problem. 

 

4.2 Soybean Classification Problem 

 

The soybean data set was constructed to 

classify 19 different diseases of 

soybeans. The discrimination is done 

based on a description of the bean (e.g. 

whether its size and color are normal or 

not) and the plant (e.g. the size of spots 

on the leafs, whether these spots have a 

halo, whether plant growth is normal 

whether roots are rotted or not) and also 

information regarding the history of the 

plant‟s life (e.g. whether changes in crop 

occurred in the last year or last two 

years, whether seeds were treated or not, 

the effect of the temperature 

environment). The selected architecture 

of the network is 35-5-19 and the target 

error was set as 0.001. The best MC for 

conventional BPGD and BPGD-AG is 

0.1, meanwhile the best LR value for the 

soybean dataset is 0.1 and 0.4. The MC 

value for BPGD-AGAMAL is initialised 

randomly in range  2.0,1.0  for MC and 

 6.0,3.0  for LR value. 

 

Table 2. Algorithm performance for Soybean 

Classification Problem [17].  

 
BPGD BPGD-AG 

BPGD-

AGAMAL 

Mean 3038 1271 1089 

Total CPU 

time (s) of 

converge 

311.47 91.92 78.63 

CPU 

time(s)/ 

Epoch 

1.0210-1 7.2310-2 7.2210-2 

SD 3.38103 1.92102 8.5810 

Accuracy 

(%) 
94.23 91.08 94.82 

Failures 8 0 0 
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Figure 2. Performance comparison of 

BPGD-AGAMAL with BPGD-AG and 

conventional BPGD on Soybean Classification 

Problem. 

Figure 2 proved that the proposed 

algorithm (BPGD-AGAMAL) still 

outperformed other algorithms in terms 

of CPU time, number of epochs and 

accuracy. The proposed algorithm 

required 1089 epochs in 80.83 seconds 

CPU times to achieve the target error by 

94.82% accurate. Whereas BPGD-AG 

required 1271 epochs in 91.92 seconds 

CPU times with 91.08% accurate. At the 

same time, BPGD needs 3038 epochs in 

311.47 seconds CPU times and 94.23% 

accurate. As we can see in Table 2, the 

average number of learning iterations for 

the BPGD-AGAMAL was reduced up to 

2.8 and 1.2 faster as compared to BPGD 

and BPGD-AG. 

4.3 Breast Cancer Classification 

Problem 

 

This dataset was generated from 

University of Wisconsin Hospitals, 

Madison from Dr. William H. Wolberg 

[18]. The input attributes are for instance 

the clump thickness, the uniformity of 

cell size, the uniformity of cell shape, 

the amount of marginal adhesion, the 

single epithelial cell size, frequency of 

bare nuclei, bland chromatin, normal 

nucleoli and mitoses. This problem tries 

to diagnosis of Wisconsin breast cancer 

by trying to classify a tumor as either 

benign or malignant based on cell 

description gathered by microscopic 

examination. The selected architecture 

of the network is 9-5-2 with target error 

0.001. The best MC for conventional 

BPGD and BPGD-AG for the breast 

cancer dataset is 0.1 and LR is 0.4 whilst 

BPGD-AGAMAL is randomly 

initialised in range of  6.0,3.0  for MC 

and  2.0,1.0  for LR value. 

Table 3. Algorithm performance for Breast 

Cancer Classification Problem [18].  

 
BPGD BPGD-AG 

BPGD-

AGAMAL 

Mean 3136 590 526 

Total CPU 

time (s) of 

converge 

128.13 14.43 12.44 

CPU 

time(s)/ 

Epoch 

4.0910-2 2.4510-2 2.3710-2 

SD 1.95103 2.63102 3.1210 

Accuracy 

(%) 
68.29 94.12 95.47 

Failures 0 0 0 

 

 

Figure 3. Performance comparison of BPGD-

AGAMAL with BPGD-AG and conventional 

BPGD on Breast Cancer Classification Problem. 

 

From Figure 3, it is worth noticing that 

the performance of the 

BPGD-AGAMAL is 83.23% faster than 

BPGD and almost 10.9% faster than 

BPGD-AG. Table 3 reveals that 

BPGD-AGAMAL approximately took 

2.3710
-2 

per epoch to reach target error 

as well as 95.47% accurate. While, 

BPGD-AG took 2.4510
-2

 per epoch to 

reach target error with 94.12% accurate 

and BPGD took 4.0910
-2

 per epoch to 

reach target error by 68.29% accurate. 

Still, the proposed algorithm 
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(BPGD-AG) surpasses the BPGD and 

BPGD-AG algorithm in terms of total 

time of converge and accuracy to learn 

the pattern. 

 

4.4 Card Classification Problem 

 

This dataset contained all the details on 

the subject of credit card applications.  It 

predicted the approval or non-approval 

of a credit card to a customer [19]. 

Descriptions of each attribute name and 

values were not enclosed for 

confidentiality reason. There were 690 

instances, 51 inputs, and 2 outputs in this 

dataset. The dataset classified whether 

the bank granted the credit card or not. 

 

The selected architecture of NN is 51-5-

2 while the target error and maximum 

epoch were set as 0.001 and 10 000 

respectively. The best momentum 

coefficient value for conventional BPGD 

and BPGD-AG is 0.4 meanwhile the 

best learning rate value is 0.6.  The best 

momentum coefficient value for BPGD-

AGAMAL is found in the range 

 4.0,1.0  and  8.0,4.0  for learning rate 

value. 

Table 4. Algorithm performance for Card 

Classification Problem [19].  

 
BPGD BPGD-AG 

BPGD-

AGAMAL 

Mean 8645 1803 1328 

Total CPU 

time (s) of 

converge 

547.1 47.19 22 

CPU 

time(s)/ 

Epoch 

6.33x 10-2 2.61 x 10-2 1.66 x 10-2 

SD 2.76 x 10-3 6.55 x 10-1 6.75 x 10-2 

Accuracy 

(%) 
83.45 82.33 83.9 

Failures 82 0 0 

 

Figure 4. Performance comparison of 

BPGD-AGAMAL with BPGD-AG and 

conventional BPGD on Card Classification 

Problem. 

 

Table 4 reveals that BPGD needs 547 

seconds with 8645 epochs to converge, 

whereas BPGD-AG needs 47.2 seconds 

with 1803 epochs to converge. 

Conversely, the proposed algorithm 

(BPGD-AGAMAL) performed 

significantly better with only 41.1 

seconds and required 1328 epochs to 

converge. Figure 4, demonstrates that 

the performance of the 

BPGD-AGAMAL is almost 96% faster 

than BPGD and 53.4% faster than 

BPGD-AG.  

 

4.5 Iris Classification Problem 

 

This dataset was a classical classification 

dataset made famous by Fisher, who 

used it to illustrate principles of 

discriminant analysis [20]. There were 

75 instances, 4 inputs, and 3 outputs in 

this dataset. The classification of Iris 

dataset involves classifying the data of 

petal width, petal length, sepal width, 

and sepal length into three classes of 

species, which are Iris Sentosa, Iris 

Versicolor, and Iris Verginica. 
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The selected network topology for Iris 

classification problem is 4-5-3, which is 

4 input nodes, 5 hidden nodes and 3 

output nodes. 50 instances were 

represented as training dataset and the 

rest as testing dataset. The target error 

was set as 0.001 and the maximum 

epochs to 10 000. The best momentum 

term and learning rate value for 

conventional BPGD and BPGD-AG for 

the Iris dataset is 0.4 and 0.6 

respectively while BPGD-AGAMAL is 

found in the interval  4.0,1.0  for the 

best momentum coefficient value and 

 8.0,4.0 for learning rate value.  

 

 

 

 

 

 

Table 5. Algorithm performance for Iris 

Classification Problem [20].  

 
BPGD BPGD-AG 

BPGD-

AGAMAL 

Mean 1081 721 533 

Total CPU 

time (s) of 

converge 

12.29 5.89 4.26 

CPU 

time(s)/ 

Epoch 

1.14 x 10-2 8.17 x 10-3 7.99 x 10-3 

SD 1.4 x 102 4.09 x 102 2.45 x 102 

Accuracy 

(%) 
91.9 90.3 93.1 

Failures 2 0 0 

 

Figure 5. Performance comparison of 

BPGD-AGAMAL with BPGD-AG and 

conventional BPGD on Iris Classification 

Problem. 

 

Table 5 shows that the proposed 

algorithm (BPGD-AGAMAL) still 

outperforms other algorithms in terms of 

CPU time and number of epochs. The 

proposed algorithm (BPGD-AGAMAL) 

needs only 533 epochs to converge as 

opposed to the conventional BPGD at 

about 1081 epochs while BPGD-AG 

needs 721 epochs to converge. Apart 

from speed of convergence, the time 

required for training the classification 

problem is another important factor 

when analysing the performance. The 

results in Figure 5 clearly show that the 

proposed algorithm (BPGD-AGAMAL) 

outperforms conventional BPGD with an 

improvement ratio, nearly 2.9 seconds 

while BPGD-AG, the proposed 

algorithm outperformed 1.38 seconds for 

the total time of converge. Furthermore, 

the accuracy of BPGD-AGAMAL is 

much better than BPGD and BPGD-AG 

algorithm.  

 

The results show that the 

BPGD-AGAMAL perform considerably 

better as compared to BPGD and 

BPGD-AG. Moreover, when comparing 

the proposed algorithm with BPGD and 

BPGD-AG, it has been empirically 

demonstrated that the proposed 

algorithm (BPGD-AGAMAL) 

performed highest accuracy than BPGD 

and BPGD-AG algorithm. This 

conclusion enforces the usage of the 

proposed algorithm as an alternative 

training algorithm of BP algorithm. 

 

5 CONCLUSIONS 
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Although BP algorithm is widely 

implemented in the most practical NN 

applications and performed relatively 

well, this algorithm still needs some 

improvements. We have proposed a 

further improvement on the current 

working algorithm proposed by Nazri et 

al. [15]. The proposed algorithm 

adaptively changes the gain parameter of 

the activation function together with MC 

and LR to hasten up the convergence 

behaviour as well as slide the network 

through shallow local minima. The 

effectiveness of the proposed algorithm 

has been compared with the 

conventional Back Propagation Gradient 

Descent (BPGD) and Back Propagation 

Gradient Descent with Adaptive Gain 

(BPGD-AG) [15]. The three algorithms 

had been verified by means of 

simulation on five classification 

problems including glass dataset with an 

improvement ratio 10.2 seconds for the 

BPGD and nearly 2 seconds better for 

the BPGD-AG in terms of total time to 

converge. Meanwhile, for soybean 

dataset, BPGD-AGAMAL was reduced 

up to 2.8 and 1.2 faster as compared to 

BPGD and BPGD-AG. While breast 

cancer dataset indicates that 

BPGD-AGAMAL is 83.23% faster than 

BPGD and almost 10.9% faster than 

BPGD-AG respectively. Whereas card 

almost 96% and 53.4% faster than 

BPGD and BPGD-AG respectively. 

Whilst Iris improved nearly 2.9 seconds 

than BPGD and improved 1.38 seconds 

than BPGD-AG for the total time of 

converged. The results show that the 

proposed algorithm (BPGD-AGAMAL) 

has a better convergence rate and 

learning efficiency as compared to 

conventional BPGD and BPGD-AG. 
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