

Improvements of Back Propagation Algorithm Performance by

Adaptively Changing Gain, Momentum and Learning Rate

Norhamreeza Abdul Hamid*, Nazri Mohd Nawi,

Rozaida Ghazali, Mohd Najib Mohd Salleh.

Faculty of Computer Science and Information Technology,

Universiti Tun Hussein Onn Malaysia,

86400 Parit Raja, Batu Pahat, Johor, MALAYSIA.

gi090007@siswa.uthm.edu.my, {nazri, rozaida, najib}@uthm.edu.my

ABSTRACT

In some practical Neural Network (NN)

applications, fast response to external events

within enormously short time is highly

demanded. However, by using back

propagation (BP) based on gradient descent

optimisation method obviously not satisfy in

several application due to serious problems

associated with BP which are slow learning

convergence velocity and confinement to

shallow minima. Over the years, many

improvements and modifications of the BP

learning algorithm have been reported. In

this research, we modified existing BP

learning algorithm with adaptive gain by

adaptively change the momentum

coefficient and learning rate. In learning the

patterns, the simulation results indicate that

the proposed algorithm can hasten up the

convergence behaviour as well as slide the

network through shallow local minima

compare to conventional BP algorithm. We

use five common benchmark classification

problems to illustrate the improvement of

the proposed algorithm.

KEYWORDS

Back propagation, convergence speed,

shallow minima, adaptive gain, adaptive

momentum, adaptive learning rate

1 INTRODUCTION

Multilayer Feedforward Neural Network

(MLFNN) also referred to as Multilayer

Perceptron (MLP) is one of the most

popular and most frequently used type of

Neural Network (NN) models due to its

clear architecture and comparably simple

algorithm. It can unravel classification

problems implicating non-linearly

separable patterns and can be used as a

comprehensive function generator [1].

Due to its ability to solve some problems

with relative ease of use, robustness to

noisily input data, execution speed and

analysing complicated systems without

accurate modelling in advance, MLP has

successfully been implemented across an

extraordinary range of problem domains

that involves prediction and a wide

ranging usage area in the classification

problems [2-9].

The MLP is composed by a set of

sensorial units organised in three

hierarchical of layers comprise of the

input layer of neurons, one or more

intermediary or hidden layer of neurons

and the output layer of neurons. The

consecutive layers are fully connected.

The connections between the neurons of

adjacent layers relay the output signals

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 866-878
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 866

mailto:gi090007@siswa.uthm.edu.my

from one layer to the next. Throughout

the learning phase, the interconnections

are optimised to minimise the predefined

function.

Among the existing paradigms, Back

Propagation (BP) algorithm is a

supervised learning procedure for

training MLP which is based on the

gradient descent (GD) optimisation

method that endeavors to minimise the

error of the network by moving down

the gradient of the error curve [1]. This

algorithm mapping the input values to

the desired output through the network.

This output pattern (actual output) is

then compared to the desired output and

the error signal is computed for each

output unit. The signals are then transmit

backward from the output layer to each

unit in the transitional layer that

contributes directly to the output and the

weights are adjusted iteratively during

the learning process.

In some practical NN applications, fast

response to external events within

tremendously short time are highly

demanded and expected. However, the

comprehensively used of BP algorithm

based on GD optimisation method

obviously not satisfy in many

applications especially large scale

application and when higher learning

accuracy as well as generalisation

performances are obligatory. The reason

for this unsatisfaction is due to the slow

learning convergence velocity though

the network has achieved stopping

criteria. Moreover, it also frequently

confinement to shallow minima.

It is noted that many local minima

complications are closely associated to

the neuron saturation in the hidden layer.

When such saturation exists, neuron in

the hidden layer will lose their

sensitivity to the input signals and

propagation chain is blocked severely. In

some situation, the network can no

longer learn. Furthermore, the

convergence behaviour of the BP

algorithm also depends on the selection

of network architecture, initial weights

and biases, learning rate, momentum

coefficient, activation function and value

of the gain in the activation function.

In the recent years with the progress of

researches and applications, the NN

technology has been enhanced and

sophisticated. Research has been done

on modification of the conventional BP

algorithm in order to improve the

efficiency and performance of MLP

network training. Much work has been

devoted to improve the generalization

ability of the networks. These implicated

the development of heuristic techniques,

based on properties studies of the

conventional BP algorithm. These

techniques include such idea as varying

the learning rate, using momentum and

gain tuning of activation function.

Lera et al. [10] described the use of

Levenberg-Marquardt algorithm for

training multi-layer feed forward neural

networks. Though, the training times

required strongly depend on

neighbourhood size. Meanwhile, Ng et

al. [11] localised generalisation error

model for single layer perceptron neural

network (SPLNN). This is an

extensibility of the localised

generalisation model for supervised

learning with mean squared error

minimisation. Though, this approach

serves as the first step of considering

localised generalisation error models of

ANN.Meanwhile, Wang et al. [12]

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 866-878
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 867

proposed an improved BP algorithm

caused by neuron saturation in the

hidden layer. Each training pattern has

its own activation function of hidden

nodes in order to prevent neuron

saturation when the network output has

not acquired the desired signals. The

activation functions are adjusted by the

adaptation of gain parameters during the

learning process. However, this

approach not performed well on the

large problems and practical

applications. Otair and Salameh [13]

designed the optical back propagation

(OBP) algorithm which is applied on the

output units. This kind of algorithm used

for training process that depends on a

multilayer NN with a very small learning

rate, especially when using a large

training set size. Conversely, it does not

guarantee to converge at global minima

because if the error closes to maximum,

the OBP error grows increasingly. While

Ji et al. [14] proposed a BP algorithm

that improved conjugate gradient (CG)

based. In the CG algorithm, a search is

performed along conjugate directions

which usually lead to faster convergence

compared to gradient descent directions.

Nevertheless, if it reaches a local

minimum, it remains forever, as there is

no mechanism for this algorithm to

escape.

Nazri et al. [15] demonstrated that by

adaptively change the „gain‟ value for

each node can significantly reduce the

training time without modifying the

network topology. Therefore, this

research proposed a further improvement

on [15] by adjusting activation function

of neurons in the hidden layer in each

training patterns. The activation

functions are adjusted by the adaptation

of gain parameters together with

adaptive momentum and adaptive

learning rate value during the learning

process. The proposed algorithm, back

propagation gradient descent with

adaptive gain, adaptive momentum and

adaptive learning rate

(BPGD-AGAMAL) significantly can

obviate the network from trapping into

shallow minima that caused by the

neuron saturation in the hidden layer as

well as hasten up the convergence

behaviour. In order to verify the

efficiency of the proposed algorithm, the

performance of the proposed algorithm

will be compared with the conventional

BP algorithm and back propagation

gradient descent with adaptive gain

(BPGD-AG) proposed by [15]. Some

simulation experiments were performed

on three classification problems

including glass [16], soybean [17],

breast cancer Wisconsin [18], card [19]

and Iris [20].

The remaining of the paper is organised

as follows. In Section 2, the effect of

using activation function with adaptive

gain is reviewed. While in Section 3

presents the proposed algorithm. The

performance of the proposed algorithm

is simulated on benchmark dataset

problems in Section 4. This paper is

concluded in the final section.

2 THE GAIN OF ACTIVATION

FUNCTION IN BACK

PROPAGATION ALGORITHM

An activation function is used for

limiting the amplitude of the output

neuron. It generates an output value for a

node in a predefined range as the closed

unit interval  1,0 or alternatively  1,1

which can be a linear or non-linear

function. This value is a function of the

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 866-878
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 868

weighted inputs of the corresponding

node. The most commonly used

activation function is the logistic

sigmoid activation function. Alternative

choices are the hyperbolic tangent,

linear, step activation functions. For

the thj node, a logistic sigmoid activation

function which has a range of  1,0 is a

function of the following variables, viz:

jn etjacj
e

o
,1

1



 (1)

where,

j

l

i

iijjnet owa 







 

1

,
 (2)

j
o

output of the thj unit.

i

o output of the thi unit.

ij
w

weight of the link from unit i

to unit j.

jnet
a

,
 net input activation function

for the thj unit.

j
 bias for the thj unit.

j

c gain of the activation

function.

The value of the gain parameter,
j

c ,

directly influences the slope of the

activation function. For large gain values

 1c , the activation function

approaches a „step function‟ whereas for

small gain values  10  c , the output

values change from zero to unity over a

large range of the weighted sum of the

input values and the sigmoid function

approximates a linear function.

Most of the application oriented papers

on NN tend to advocates that NN

operate like a „magic black box‟, which

can simulate the “learning from

example” ability of our brain with the

help of network parameters such as

weights, biases, gain, hidden nodes, and

so forth. Also, a unit value for gain has

generally being used for most of the

research reported in the literature,

though a few authors have researched

the relationship of the gain parameter

with other parameters which used in BP

algorithms.

The learning rate (LR) is one of the most

effective means to accelerate the

convergence of BP learning. It is a

crucial factor to control the variable of

the neuron weight adjustments at each

iteration during the training process and

therefore affects the convergence rate. In

fact, the convergence speed is highly

depending on the choice of LR. The LR

values need to be set appropriately since

it dominate the performance of the BP

algorithm. The algorithm will take

longer time to converge or may never

converge if the LR is too small. On the

contrary, the network will accelerate the

convergence rate significantly and still

possibly will cause the instability

whereas the algorithm may oscillates on

the ideal path if the LR value is too high.

The value of LR usually set to be

constant which means that the selected

value is employed for all weights in the

whole learning process. Later, Ye [21]

stated that the constant learning rate of

the BP algorithm fails to optimise the

search for the optimal weight

combination. Hence, a search

methodology has been classified as a

“blind-search”.

Another effective approach regarding to

hasten up the convergence and stabilise

the training procedure is by adding some

momentum coefficient (MC) to the

network. Moreover, with MC, the

network can slide through shallow local

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 866-878
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

869

minima. Formerly, the MC is typically

preferred to be constant in the

interval  1,0 . In spite of that, it is

discovered from simulations that the

fixed momentum coefficient value seems

to hasten up learning only when the

recent downhill gradient of the error

function and the last change in weight

have a parallel direction. When the

recent negative gradient is in a crossing

direction to the previous update, the MC

may cause the weight to be altered up

the slope of the error surface as opposed

to down the slope as preferred. This

leads to the emergence of diverse

schemes for adjusting the MC value

adaptively instead of being kept constant

throughout the training process.

Results in [22] demonstrate that the LR,

MC and gain of the activation function

have a significant impact on training

speed.. Thimm et al. also proved that a

relationship between the gain value, a set

of initial weight values, and LR value

exists. Eom et al. proposed a method for

automatic gain tuning using a fuzzy

logic system. Nazri et al. [15] proposed

a method to change the gain value

adaptively on other optimisation method

such as CG. Norhamreeza et al.

demonstrated that adaptive momentum

coefficient and adaptive gain of the

activation function significantly

improved the training time.

3 THE PROPOSED ALGORITHM

In this section, a further improvement on

the current working algorithm proposed

by [15] for improving the training

efficiency of BP is proposed. The

proposed algorithm modifies the initial

search direction by changing the three

terms adaptively for each node. Those

three terms are; gain value, MC and LR.

The advantages of using an adaptive

gain value together with MC and LR

have been explored. Gain update

expressions as well as weight and bias

update expressions for output and hidden

nodes have also been proposed. These

expressions have been derived using

same principles as used in deriving

weight updating expressions.

The following iterative algorithm is

proposed for the batch mode of training.

The weights, biases, gains, LRs and

MCs are calculated and updated for the

entire training set which is being

presented to the network.

For a given epoch,
For each input vector,

Step 1.

Calculate the weight and

bias values using the

previously converged gain,

MC and LR value.

Step 2.

Use the weight and bias

value calculated in Step (1)

to calculate the new gain,

MC and LR value.

Repeat Steps (1) and (2) for

each input vector and sum all

the weights, biases, LR, MC and

gain updating terms

Update the weights, biases,

gains, MCs and LRs using the

summed updating terms and repeat

this procedure on epoch-by-epoch

basis until the error on the

entire training data set reduces

to a predefined value.

The gain update expression for a

gradient descent (GD) method is

calculated by differentiating the

following error term E with respect to

the corresponding gain parameter.

The network error E is defined as

follows

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 866-878
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 870

  2,
2

1
  kjkk cootE (3)

For output unit,
kc

E




 needs to be

calculated whereas for hidden units
jc

E





is also required. The respective gain

values would then be updated with the

following equations:

)(
k

k
c

E
c




  (4)

)(
j

j
c

E
c




  (5)

     
kjjkkkkk

k

owooot
c

E





1 (6)

Therefore, the gain update expression for

links connecting to output nodes is:

       
kjjkkkkkk

owoootnc  11 (7)

     























 



 j

j
iijjj

k
kkkkjkk

j

owootoowc
c

E
011

(8)

Therefore, the gain update expression for

the links connecting hidden nodes is:

       























   j
j

iijjj
k

kkkkjkkj
owootoowcnc  0111

(9)

Similarly, the weight and bias

expressions are calculated as follows:

The weights update expression for the

links connecting to output nodes:

       nwocoootnw
jkjkkkkkjk

  11 (10)

Where the LR,  and MC,  are

randomly generated.

Similarly, the bias update expressions

for the output nodes would be:

       nwcoootn
jkkkkkkk

  11 (11)

The weight update expression for the

links connecting to hidden nodes is:

         nwooocotoowcnw
ikijjj

k

kkkkjkkij













   111 (12)

Similarly, the bias update expressions

for the hidden nodes would be:

        nwoocotoowcn
ikjjj

k

kkkkjkkj













   111 (13)

4 RESULTS AND DISCUSSIONS

The performance criterion used in this

research focuses on the speed of

convergence, measured in number of

iterations and CPU time as well as

accuracy. The real world classification

problem datasets are obtained from UCI

Machine Learning Repository at Centre

for Machine Learning and Intelligent

Systems have been used to verify our

algorithm. Five classification have been

tested including glass [16], soybean [17],

breast cancer Wisconsin [18], card [19]

and Iris [20].

The simulations have been carried out on

a Pentium IV with 2 GHz HP

Workstation, 3.25 GB RAM and using

MATLAB version 7.10.0 (R2010a). On

each problem, the following three

algorithms were analysed and simulated.

1) The conventional Back Propagation

Gradient Descent (BPGD)

2) The Back Propagation Gradient

Descent with Adaptive Gain

(BPGD-AG) [15]

3) The proposed algorithm which is

Back Propagation Gradient Descent

with Adaptive Gain, Adaptive

Momentum and Adaptive Learning

Rate (BPGD-AGAMAL)

To compare the performance of the

proposed algorithm with conventional

BPGD and BPGD-AG [15], network

parameters such as network size and

architecture (number of nodes, hidden

layers and so forth), values for the initial

weights and gain parameters were kept

the same. For all problems, the NN had

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 866-878
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 871

one hidden layer with five hidden nodes

and sigmoid activation function was

used for all nodes. All algorithms were

tested using the same initial weights

which were randomly initialised from

range  1,0 and received the input

patterns for training in the same

sequence.

For all training algorithms, as the gain,

MC and LR value were modified; the

weights and biases were updated using

the new value of gain, MC and LR. To

avoid oscillations during training and to

achieve convergence, an upper limit of

1.0 is set for the gain value. The initial

value used for the gain parameter is set

to one. The initial value for MC and LR

is randomly generated depends on the

dataset problems. For each run, the

numerical data is stored in two files - the

results file and the summary file. The

result file lists the data about each

network. The number of iterations until

the network converged is accumulated

for each algorithm which is the mean,

the standard deviation (SD) and the

number of failures is calculated. The

networks that failed to converge are

obviously excluded from the calculations

of the mean and SD and were considered

to be reported as failures. For each

problem, 50 different trials were run,

each with different initial random set of

weights. For each run, the number of

iterations required for convergence is

reported. For an experiment of 50 runs,

the mean of the number of iterations

(mean), the SD, and the number of

failures are collected. A failure occurs

when the network exceeds the maximum

iteration limit; each experiment is run to

10 000 iterations; otherwise, it is halted

and reported as a failure. Convergence is

achieved when the outputs of the

network conform to the error criterion as

compared to the desired outputs.

4.1 Glass Classification Problem

This dataset was collected by B. German

on fragments of glass encountered in

forensic work. The glass dataset is used

for separating glass splinters into six

classes, namely float processed building

windows, non-float processed building

windows, vehicle windows, containers,

tableware, or head lamps [16]. The

selected architecture of the network is 9-

5-6 with target error was set to 0.001.

The best MC and LR value for

conventional BPGD and BPGD-AG for

the glass dataset are 0.1 and 0.1 while

BPGD-AGAMAL is initialised

randomly in range  3.0,1.0 for MC and

 2.0,1.0 for LR value.

Table 1. Algorithm performance for Glass

Classification Problem [16].

BPGD BPGD-AG

BPGD-

AGAMAL

Mean 8613 2057 2052

Total CPU

time (s) of

converge

572.54 59.57 56.16

CPU

time(s)/

Epoch

6.6510-2 2.910-2 2.7410-2

SD 2.15103 2.4510 3.1210

Accuracy

(%)
79.42 79.98 82.24

Failures 70 0 0

Table 1 shows that the proposed

algorithm (BPGD-AGAMAL) exhibit

excellent average performance in order

to reach the target error. Furthermore,

the accuracy of the proposed algorithm

is better compared to BPGD and BPGD-

AG. Moreover, the proposed algorithm

(BPGD-AGAMAL) needs 2052 epochs

to converge as opposed to the

conventional BPGD at about 8613

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 866-878
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 872

epochs, while BPGD-AG needs 2057

epochs to converge. Apart from speed of

convergence, the time required for

training the classification problem is

another important factor when analysing

the performance. The graph depicted in

Figure 1 clearly show that the proposed

algorithm (BPGD-AGAMAL)

practically outperformed conventional

BPGD with an improvement ratio, 10.2

seconds whilst BPGD-AG, the proposed

algorithm outperformed with an

improvement ratio nearly 2 seconds for

the total time of converged. Besides, the

BPGD did not perform well in this

dataset since 70% of simulation results

failed in learning the patterns.

Figure 1. Performance comparison of

BPGD-AGAMAL with BPGD-AG and

conventional BPGD on Glass Classification

Problem.

4.2 Soybean Classification Problem

The soybean data set was constructed to

classify 19 different diseases of

soybeans. The discrimination is done

based on a description of the bean (e.g.

whether its size and color are normal or

not) and the plant (e.g. the size of spots

on the leafs, whether these spots have a

halo, whether plant growth is normal

whether roots are rotted or not) and also

information regarding the history of the

plant‟s life (e.g. whether changes in crop

occurred in the last year or last two

years, whether seeds were treated or not,

the effect of the temperature

environment). The selected architecture

of the network is 35-5-19 and the target

error was set as 0.001. The best MC for

conventional BPGD and BPGD-AG is

0.1, meanwhile the best LR value for the

soybean dataset is 0.1 and 0.4. The MC

value for BPGD-AGAMAL is initialised

randomly in range  2.0,1.0 for MC and

 6.0,3.0 for LR value.

Table 2. Algorithm performance for Soybean

Classification Problem [17].

BPGD BPGD-AG

BPGD-

AGAMAL

Mean 3038 1271 1089

Total CPU

time (s) of

converge

311.47 91.92 78.63

CPU

time(s)/

Epoch

1.0210-1 7.2310-2 7.2210-2

SD 3.38103 1.92102 8.5810

Accuracy

(%)
94.23 91.08 94.82

Failures 8 0 0

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 866-878
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 873

Figure 2. Performance comparison of

BPGD-AGAMAL with BPGD-AG and

conventional BPGD on Soybean Classification

Problem.

Figure 2 proved that the proposed

algorithm (BPGD-AGAMAL) still

outperformed other algorithms in terms

of CPU time, number of epochs and

accuracy. The proposed algorithm

required 1089 epochs in 80.83 seconds

CPU times to achieve the target error by

94.82% accurate. Whereas BPGD-AG

required 1271 epochs in 91.92 seconds

CPU times with 91.08% accurate. At the

same time, BPGD needs 3038 epochs in

311.47 seconds CPU times and 94.23%

accurate. As we can see in Table 2, the

average number of learning iterations for

the BPGD-AGAMAL was reduced up to

2.8 and 1.2 faster as compared to BPGD

and BPGD-AG.

4.3 Breast Cancer Classification

Problem

This dataset was generated from

University of Wisconsin Hospitals,

Madison from Dr. William H. Wolberg

[18]. The input attributes are for instance

the clump thickness, the uniformity of

cell size, the uniformity of cell shape,

the amount of marginal adhesion, the

single epithelial cell size, frequency of

bare nuclei, bland chromatin, normal

nucleoli and mitoses. This problem tries

to diagnosis of Wisconsin breast cancer

by trying to classify a tumor as either

benign or malignant based on cell

description gathered by microscopic

examination. The selected architecture

of the network is 9-5-2 with target error

0.001. The best MC for conventional

BPGD and BPGD-AG for the breast

cancer dataset is 0.1 and LR is 0.4 whilst

BPGD-AGAMAL is randomly

initialised in range of  6.0,3.0 for MC

and  2.0,1.0 for LR value.

Table 3. Algorithm performance for Breast

Cancer Classification Problem [18].

BPGD BPGD-AG

BPGD-

AGAMAL

Mean 3136 590 526

Total CPU

time (s) of

converge

128.13 14.43 12.44

CPU

time(s)/

Epoch

4.0910-2 2.4510-2 2.3710-2

SD 1.95103 2.63102 3.1210

Accuracy

(%)
68.29 94.12 95.47

Failures 0 0 0

Figure 3. Performance comparison of BPGD-

AGAMAL with BPGD-AG and conventional

BPGD on Breast Cancer Classification Problem.

From Figure 3, it is worth noticing that

the performance of the

BPGD-AGAMAL is 83.23% faster than

BPGD and almost 10.9% faster than

BPGD-AG. Table 3 reveals that

BPGD-AGAMAL approximately took

2.3710
-2

per epoch to reach target error

as well as 95.47% accurate. While,

BPGD-AG took 2.4510
-2

 per epoch to

reach target error with 94.12% accurate

and BPGD took 4.0910
-2

 per epoch to

reach target error by 68.29% accurate.

Still, the proposed algorithm

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 866-878
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 874

(BPGD-AG) surpasses the BPGD and

BPGD-AG algorithm in terms of total

time of converge and accuracy to learn

the pattern.

4.4 Card Classification Problem

This dataset contained all the details on

the subject of credit card applications. It

predicted the approval or non-approval

of a credit card to a customer [19].

Descriptions of each attribute name and

values were not enclosed for

confidentiality reason. There were 690

instances, 51 inputs, and 2 outputs in this

dataset. The dataset classified whether

the bank granted the credit card or not.

The selected architecture of NN is 51-5-

2 while the target error and maximum

epoch were set as 0.001 and 10 000

respectively. The best momentum

coefficient value for conventional BPGD

and BPGD-AG is 0.4 meanwhile the

best learning rate value is 0.6. The best

momentum coefficient value for BPGD-

AGAMAL is found in the range

 4.0,1.0 and  8.0,4.0 for learning rate

value.

Table 4. Algorithm performance for Card

Classification Problem [19].

BPGD BPGD-AG

BPGD-

AGAMAL

Mean 8645 1803 1328

Total CPU

time (s) of

converge

547.1 47.19 22

CPU

time(s)/

Epoch

6.33x 10-2 2.61 x 10-2 1.66 x 10-2

SD 2.76 x 10-3 6.55 x 10-1 6.75 x 10-2

Accuracy

(%)
83.45 82.33 83.9

Failures 82 0 0

Figure 4. Performance comparison of

BPGD-AGAMAL with BPGD-AG and

conventional BPGD on Card Classification

Problem.

Table 4 reveals that BPGD needs 547

seconds with 8645 epochs to converge,

whereas BPGD-AG needs 47.2 seconds

with 1803 epochs to converge.

Conversely, the proposed algorithm

(BPGD-AGAMAL) performed

significantly better with only 41.1

seconds and required 1328 epochs to

converge. Figure 4, demonstrates that

the performance of the

BPGD-AGAMAL is almost 96% faster

than BPGD and 53.4% faster than

BPGD-AG.

4.5 Iris Classification Problem

This dataset was a classical classification

dataset made famous by Fisher, who

used it to illustrate principles of

discriminant analysis [20]. There were

75 instances, 4 inputs, and 3 outputs in

this dataset. The classification of Iris

dataset involves classifying the data of

petal width, petal length, sepal width,

and sepal length into three classes of

species, which are Iris Sentosa, Iris

Versicolor, and Iris Verginica.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 866-878
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 875

The selected network topology for Iris

classification problem is 4-5-3, which is

4 input nodes, 5 hidden nodes and 3

output nodes. 50 instances were

represented as training dataset and the

rest as testing dataset. The target error

was set as 0.001 and the maximum

epochs to 10 000. The best momentum

term and learning rate value for

conventional BPGD and BPGD-AG for

the Iris dataset is 0.4 and 0.6

respectively while BPGD-AGAMAL is

found in the interval  4.0,1.0 for the

best momentum coefficient value and

 8.0,4.0 for learning rate value.

Table 5. Algorithm performance for Iris

Classification Problem [20].

BPGD BPGD-AG

BPGD-

AGAMAL

Mean 1081 721 533

Total CPU

time (s) of

converge

12.29 5.89 4.26

CPU

time(s)/

Epoch

1.14 x 10-2 8.17 x 10-3 7.99 x 10-3

SD 1.4 x 102 4.09 x 102 2.45 x 102

Accuracy

(%)
91.9 90.3 93.1

Failures 2 0 0

Figure 5. Performance comparison of

BPGD-AGAMAL with BPGD-AG and

conventional BPGD on Iris Classification

Problem.

Table 5 shows that the proposed

algorithm (BPGD-AGAMAL) still

outperforms other algorithms in terms of

CPU time and number of epochs. The

proposed algorithm (BPGD-AGAMAL)

needs only 533 epochs to converge as

opposed to the conventional BPGD at

about 1081 epochs while BPGD-AG

needs 721 epochs to converge. Apart

from speed of convergence, the time

required for training the classification

problem is another important factor

when analysing the performance. The

results in Figure 5 clearly show that the

proposed algorithm (BPGD-AGAMAL)

outperforms conventional BPGD with an

improvement ratio, nearly 2.9 seconds

while BPGD-AG, the proposed

algorithm outperformed 1.38 seconds for

the total time of converge. Furthermore,

the accuracy of BPGD-AGAMAL is

much better than BPGD and BPGD-AG

algorithm.

The results show that the

BPGD-AGAMAL perform considerably

better as compared to BPGD and

BPGD-AG. Moreover, when comparing

the proposed algorithm with BPGD and

BPGD-AG, it has been empirically

demonstrated that the proposed

algorithm (BPGD-AGAMAL)

performed highest accuracy than BPGD

and BPGD-AG algorithm. This

conclusion enforces the usage of the

proposed algorithm as an alternative

training algorithm of BP algorithm.

5 CONCLUSIONS

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 866-878
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 876

Although BP algorithm is widely

implemented in the most practical NN

applications and performed relatively

well, this algorithm still needs some

improvements. We have proposed a

further improvement on the current

working algorithm proposed by Nazri et

al. [15]. The proposed algorithm

adaptively changes the gain parameter of

the activation function together with MC

and LR to hasten up the convergence

behaviour as well as slide the network

through shallow local minima. The

effectiveness of the proposed algorithm

has been compared with the

conventional Back Propagation Gradient

Descent (BPGD) and Back Propagation

Gradient Descent with Adaptive Gain

(BPGD-AG) [15]. The three algorithms

had been verified by means of

simulation on five classification

problems including glass dataset with an

improvement ratio 10.2 seconds for the

BPGD and nearly 2 seconds better for

the BPGD-AG in terms of total time to

converge. Meanwhile, for soybean

dataset, BPGD-AGAMAL was reduced

up to 2.8 and 1.2 faster as compared to

BPGD and BPGD-AG. While breast

cancer dataset indicates that

BPGD-AGAMAL is 83.23% faster than

BPGD and almost 10.9% faster than

BPGD-AG respectively. Whereas card

almost 96% and 53.4% faster than

BPGD and BPGD-AG respectively.

Whilst Iris improved nearly 2.9 seconds

than BPGD and improved 1.38 seconds

than BPGD-AG for the total time of

converged. The results show that the

proposed algorithm (BPGD-AGAMAL)

has a better convergence rate and

learning efficiency as compared to

conventional BPGD and BPGD-AG.

6 REFERENCES

1. Haykin, S. S., Neural Networks and Learning

Machines. New Jersey: Prentice Hall. (2009).

2. Yu, L., Wang, S. and Lai, K., An Adaptive BP

Algorithm with Optimal Learning Rates and

Directional Error Correction for Foreign Exchange

Market Trend Prediction, in Advances in Neural

Networks - ISNN 2006. Springer Berlin /

Heidelberg. p. 498-503. (2006).

3. Nazri, M. N., Ransing, R. S., Najib, M. S. M.,

Rozaida, G. and Norhamreeza, A. H., An Improved

Back Propagation Neural Network Algorithm on

Classification Problems, in Database Theory and

Application, Bio-Science and Bio-Technology,

Zhang, Y., Cuzzocrea, A., Ma, J., Chung, K.-i.,

Arslan, T. and Song, X., Editors. Springer Berlin

Heidelberg. p. 177-188. (2010).

4. Nazri, M. N., Najib, M. S. M. and Rozaida, G., The

Development of Improved Back-Propagation

Neural Networks Algorithm for Predicting Patients

with Heart Disease, in Information Computing and

Applications, Zhu, R., Zhang, Y., Liu, B. and Liu,

C., Editors. Springer Berlin / Heidelberg. p. 317-

324. (2010).

5. Sabeti, V., Samavi, S., Mahdavi, M. and Shirani,

S., Steganalysis and payload estimation of

embedding in pixel differences using neural

networks. Pattern Recogn. 43(1): p. 405-415.

(2010).

6. Mandal, S., Sivaprasad, P. V., Venugopal, S. and

Murthy, K. P. N., Artificial neural network

modeling to evaluate and predict the deformation

behavior of stainless steel type AISI 304L during

hot torsion. Applied Soft Computing. 9(1): p. 237-

244. (2009).

7. Subudhi, B. and Morris, A. S., Soft computing

methods applied to the control of a flexible robot

manipulator. Applied Soft Computing. 9(1): p.

149-158. (2009).

8. Lee, K., Booth, D. and Alam, P., A comparison of

supervised and unsupervised neural networks in

predicting bankruptcy of Korean firms. Expert

Systems with Applications. 29(1): p. 1-16. (2005).

9. Sharda, R. and Delen, D., Predicting box-office

success of motion pictures with neural networks.

Expert Systems with Applications. 30(2): p. 243-

254. (2006).

10. Lera, G. and Pinzolas, M., Neighborhood based

Levenberg-Marquardt algorithm for neural network

training. IEEE Transaction on Neural Networks.

13: p. 1200-1203. (2002).

11. Ng, W. W. Y., Yeung, D. S. and Tsang, E. C. C.

Pilot Study on the Localized Generalization Error

Model for Single Layer Perceptron Neural

Network. in Machine Learning and Cybernetics,

2006 International Conference on. (2006).

12. Wang, X. G., Tang, Z., Tamura, H., Ishii, M. and

Sun, W. D., An improved backpropagation

algorithm to avoid the local minima problem.

Neurocomputing. 56: p. 455-460. (2004).

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 866-878
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 877

13. Otair, M. A. and Salameh, W. A. Speeding Up

Back-Propagation Neural Networks. in Proceeding

of the 2005 Informing Science and IT Education

Joint Conference. Flagstaff, Arizona, USA. (2005).

14. Ji, L., Wang, X., Yang, X., Liu, S. and Wang, L.,

Back-propagation network improved by conjugate

gradient based on genetic algorithm in QSAR study

on endocrine disrupting chemicals. Chinese

Science Bulletin. 53(1): p. 33-39. (2008).

15. Nazri, M. N., Ransing, R. S. and Ransing, M. S.,

An Improved Conjugate Gradient Based Learning

Algorithm for Back Propagation Neural Networks.

International Journal of Information and

Mathematical Sciences. 4(1): p. 46-55. (2008).

16. Evett, I. W. and Spiehler, E. J., Rule induction in

forensic science, in Knowledge Based Systems.

Halsted Press. p. 152-160. (1988).

17. Michalski, R. S. and Chilausky, R. L., Learning by

Being Told and Learning from Examples: An

Experimental Comparison of the Two Methods of

Knowledge Acquisition in the Context of

Developing an Expert System for Soybean Disease

Diagnosis. International Journal of Policy Analysis

and Information Systems. 4:2. (1980).

18. Mangasarian, O. L. and Wolberg, W. H., Cancer

diagnosis via linear programming. SIAM News.

23(5): p. 1-18. (1990).

19. Quinlan, J. R., C4.5: Programs for Machine

Learning (Morgan Kaufmann Series in Machine

Learning). Morgan Kaufmann. (1993).

20. Fisher, R. A., The use of multiple measurements in

taxonomic problems. Annals of Eugenics. 7(2): p.

179-188. (1936).

21. Ye, Y. C., Application and Practice of the Neural

Networks. Taiwan: Scholars Publication. (2001).

22. Maier, H. R. and Dandy, G. C., The effect of

internal parameters and geometry on the

performance of back-propagation neural networks:

an empirical study. Environmental Modelling and

Software. 13(2): p. 193-209. (1998).

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 866-878
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

878

