

Semantic Technology and Super-peer Architecture for Internet Based

Distributed System Resource Discovery

Mahamat Issa Haasn

Department of Computer and Information Sciences

Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia

mahamat.hassan@petronas.com / mhtissa@gmail.com

ABSTRACT

Resource/service discovery is a very

vital issue in Internet based distributed

systems such as Grid and Cloud

computing. In this paper we address the

RD issue in intergrid. We design a

service discovery framework by

integrating semantic technology, peer-to-

peer network and intelligent agents. The

framework has two main components

which are service description, and

service registration and discovery

models. The earlier consists of a set of

ontologies that are used as a data model

for service description and services to

accomplish the description process. The

service registration is based super-peer

architecture to organize the nodes and on

ontology to manage the node

organization. In addition to that, we

introduce intelligent agents to automate

the discovery process. We evaluate the

framework via simulation experiments,

and the result confirms the effectiveness

of the framework in satisfying the

required RD features (interoperability,

scalability, decentralization and

dynamism).

KEYWORDS

Grid; Cloud; semantic technology;

intelligent agent; and peer-to-peer

network.

1 INTRODUCTION

Internet based distributed systems such

as Grid [1] and Cloud[2] computing

have become a vital resource sharing

infrastructure for today’s scientific and

business applications. One of the

fundamental components of theses

infrastructure is Resource/Service

Discovery (RD) which is about the

detection of suitable resource for a given

task/application. This paper addresses

the service discovery issue in the case of

intergrid. Intergrid/Global grids (in

some literatures is also called multi-grid

[3]) are known as a grid of grids, since

they are a collection of small grids that

cross organizational boundaries to create

very large virtual systems that can be

accessed from anywhere in the world.

Generally, RD process entails

description of the resource through its

properties, registration/indexing of the

described resource in common

registry(s), and discovering the

registered resources that match with

resource request specifications. These

steps correspond to the main

components of the RD system, which are

Description, Registration and Discovery

(which is composed of search and

selection). Unfortunately, intergrid

systems are normally associated with

some complexities such as

resources/services and users are

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 848

mailto:mahamat.hassan@petronas.com/
mailto:mhtissa@gmail.com

distributed across different locations;

resources are heterogeneous in their

platforms; status of the resources is

dynamic (resources can join or leave the

system without any prior notice); and

use of multi-middleware. These

complexities pose a challenge to the

development of an efficient RD system

to discover the resources and services. In

fact, these complexities also yield some

requirements that should be fulfilled by

any developed RD. These requirements

include high searchability

(interoperability) to retrieve the relevant

and precise resources and services, and

high performance (scalability,

decentralization, and dynamism) to

make the RD system sustainable with the

scale of the intergrid. In fact, there is a

wealth of work on grid RD (e.g. Globus1,

Condor2 , [4], [5], and [6]) that we have

currently but they have difficulties to

attain these features. Therefore, In this

paper, we introduce a new intergrid RD

framework that can overcome the

shortcoming of the current studies and

meeting the above mentioned

requirements. The framework contains

two main components which are service

description, and service registration and

discovery models. The earlier consists of

a set of ontologies and services.

Ontologies are used as a data model for

service description, whereas the services

are to accomplish the description

process, we detail that in section 2.

The service registration is also based on

ontology, where nodes of the services

(service providers) are classified to some

classes according to the ontology

concepts, which means each class

represents a concept in the ontology.

Each class has an elected head. Head

1 http://www.globus.org/.
2 http://www.cs.wisc.edu/condor/.

plays the role of a registry in its class

and communicates with the other heads

of the classes in a peer to peer manner

during the discovery process. We further

introduce two intelligent agents to

automate the discovery process which

are Request Agent (RA) and Description

Agent (DA). Each node is supposed to

have both agents. DA describes the

service capabilities based on the

ontology, and RA carries the service

requests based on the ontology as well.

We design a service search algorithm for

the RA that starts the service look up

from the class of request origin first,

then to the other classes, we detail that in

section 3.

We finally evaluate the performance the

framework with extensive simulation

experiments, the result of which

confirms the framework effectiveness in

satisfying the required RD features

(interoperability, scalability,

decentralization and dynamism), we

detail that in section 4.

In short, our main contributions are an

interoperable semantic description RD

component model for intergrid services

metadata representation; a semantic

distributed registry architecture for

indexing service metadata; and an agent-

based service search and selection

algorithm.

2 SEMANTIC-BASED RESOURCE

DESCRIPTION MODEL

2.1 The Model Description

In order to have a description model that

meets RD requirements, we refine the

intergrid system in such a way that

makes full use of the resources and

services when the semantic technology

is applied. A common ontology is used

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 849

http://www.globus.org/
http://www.cs.wisc.edu/condor/

to formally represent the intergrid

components.

Computing

Intergrid system

Data Application

Service

Storage Comput Files Database Science Engineering

Fig. 1. Fragment of service grid domain ontology

Computing

Intergrid system

Data Application

Service

Storage Comput Files Database Science Engineering

Simulation Tool
useuseuse

Fig. 2.The extraction of application goals from the

service grid domain ontology

Subsequently, we merely rely on the

latest grid system requirements that have

been presented by the OGF3 [7] in

defining the grid level and intergrid

level. As a result, we treat grid level

system as a service grid that is provided

by a provider to consumers, and this

service grid is assumed to be among the

grid types (e.g. computing, data, and

application). Therefore, an intergrid

level system is a collection of service

grids that have agreed to work

cooperatively as consumers and

providers. Consequently, a service grid

may be a consumer as well as a provider.

It becomes a consumer when it uses

3 Open Grid Forum: http://www.ogf.org/

other service grids without providing

any service to them, whereas it functions

as a consumer/provider when other

services are added to its own and at the

same time it also provides a complete

service to the end user. The capabilities

of service grids are described by

aggregating their local metadata content

and then integrating them into a common

information model. Ontology ([8] and

[9]) is used for the common information

model. We call this ontology as service

grid domain ontology (SGDO). SGDO

defines all the service grid types,

attributes that are needed for each

service grid, relationships between all

the services, structure of the values of

each attributes and so on (see Fig. 1). To

reduce the user interaction with

programming details with RD system in

specifying the service grid requests, we

introduce a mechanism that is called

Goal-based Service Grid Request

Description (GSGR). A goal refers to

what a given consumer/end user wants to

achieve by using the service grids. For

example, if a user wants to simulate the

weather condition of the earth so the

simulation is his/her goal. Obviously, a

goal requires a set of the grid services in

order to be accomplished. For example,

the simulation of weather condition of

the earth requires computing service

grid, satellite images data and

temperature dataset which can be under

the data service grid and so on. The

SGDO, among other concepts of

application service grid, includes all

software applications that are available

on the intergrid level system. In fact,

these applications represent the goals

that a user may want to achieve because

application service grids are the only

services that need one or more service

grids to work on, as they cannot stand

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 850

http://www.ogf.org/

alone. Thus, we can extract the goals

from the SGDO. We introduce a relation

so called “use” between the application

service concepts and the other service

grid concepts. The “use” relation is a

binary relation between a particular

application service concept and another

service grid (e.g. data service).

Indicating this application service

requires the second service grid with

which the relation is established (see

Fig. 2).

2.2 The Model Building Block

Having described the fundamental

components of the description model, in

this section we illustrate the model

building block. Fig. 3 shows the

components of the model and their

related subcomponents. The model is

initially composed of Semantic

Description Manager (SDM) and Service

Grid Metadata Provider (SGMP). SDM

generally is responsible of the global

service grid description in the intergrid

system, and a pool that accommodate the

service grid metadata coming from

SGMPs. Meanwhile, SGMP is

responsible of managing local service

grid metadata that belongs to a service

grid provider. The reason for having

SDM and SGMP in such architecture is

that, SDM will provide all the needed

information and data model management

for a set of intergrid members.

Therefore, interoperability can be

ensured. In the meantime, SGMP

provides autonomy to each service grid

member as it handles the local

information of the service grid.

Semantic Description Manager

Semantic

Metadata

Repository Goal Template

Pool

Extraction &

Update

Service Grid

Ontology

Service Grid Metadata Provider

Local

Information

Service Service Grids

Information

Aggregation &

Update

Browsing , Querying,

Instantiation, Registration &

Update

Fig. 3. The description of model

building block

2.3 The Description Process

The description process includes

description of a service that will be

advertised, and service request

formulation. The steps of the first case

are as follows:

 The user invokes the SGMP system.

 The user browses/queries the service

grid ontology through which all the

available content of the ontology can

be manipulated (e.g. using add and

drag menu), and selects the concept

that is relevant to his/her service grids.

 The user gets an instance of the

selected service grid concept using the

service grid ontology tools.

 The user populates the instance with

the actual service grid information,

which is an aggregated summary of

the overall service grid information.

 Finally, the user sends the service

grids information to the respective

SMR of the SDM node that is

responsible of holding the metadata of

the current service provider, and in

turn, the SMR stores the semantic

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 851

information about the service grid for

the discovery process.

Meanwhile for the service request

formulation is as follows:

 The user invokes the SDM system.

 The user browses/queries the available

goals in the goal template manager, and

selects the relevant goal.

 The user then gets an instance of the

selected goal and adds it to his/her

local information system.

 Since each goal requires one or a set of

service grids, the user adds the concrete

values of attributes of each service. For

example, if among the required service

is computing service, and one of the

attributes is maximum number of

computing nodes, the user may add a

concrete number for such requirements.

 Finally, the user sends the service grid

request to the respective SDM, and the

SMR of that SDM will generate a

proper query statement for each service

among the required service grids.

2.4 Model Evaluation

From the building block, it is clear that

the model has introduced the use of

semantic information in way that does

not require the use of local information

service, which exists currently in grid

middleware. For example, the intergrid

participants (small grids) are able to use

their local discovery system that would

normally be possible through a keyword-

based RD system. They just need to

have one file that accommodates the

summary of the overall capabilities of the

service. As a result, this provides

interoperability among the participants in

the intergrid system. The model also

reduces the cost of using semantic

information in terms of processing time,

as well as storage of the semantic

information, since the semantic

information is used at the intergrid level,

and not at the grid level. Therefore,

during the discovery we look up for a

complete service grid, not components of

it. Therefore, the model achieved the first

RD requirement (high searchability).

3 SEMANTIC REGISTRATION

AND DISCOVERY MODEL

Registration and discovery components in

any RD system are very much related, as

the routing of request is subjected to the

registration architecture. For this reason,

we address the issues in registration and

discovery jointly. We design a model for

the two components that integrates

super-peer architecture, ontology and

intelligent agent. Super-peer is used to

grant distribution of the registry where

the service grid metadata is located.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 852

Description Agent

- ServiceGridInformation

 - NodeInformation

+ locateClassNode()

+ sendServiceInformation()

+ updateServiceInformation()

Request Agent

- SetOf ServiceRequests

 - NodeInformation

+ formServiceRequest()

+ lookupforService()

+ calculateSimDegree()

Fig. 4. The proposed DA and RA agents

3.1 The Model Components

The model consists of three components,

domain ontology, an intelligent agent

model, and super-peer architecture.

Ontology concepts are normally

arranged hierarchically, therefore,

whenever, we visit the concepts from the

root concept, as we go down deeper into

the subconcepts, we will move from a

more general class of concepts to a more

specific class of concepts, and vice

versa. We use this feature to classify

nodes into several classes, which

produce registry architecture to the RD

system. The ontology that supplies

service grid taxonomies is called

Dictionary Ontology (DO). The DO

may be the same as the service SGDO

by omitting the relations that are out of

the hierarchical relation such as the

“use” relationship. Fig. 4 shows the

proposed agent where DA is a static

agent that carries some information;

automatically performs some set of

functions and belongs to a service grid

provider node. RA is a mobile agent that

carries some information; automatically

performs some set of functions and

belongs to a service grid node.

3.2 The Model Description

The registration and discovery model

consists of three elements registry

architecture, fault tolerance and load

balancing strategy, and discovery

algorithm. In this section we discuss all

these elements.

a) Registry architecture

The registry architecture includes node

class formulation, head appointment,

node subscription. In class formulation,

nodes are gathered together in a set of

classes. This classification is based on

the hierarchal relations among the

service grids in the DO, which means

their defined semantic relation on the

DO. For example, nodes that provide

service grids that belong to the

computing concept in the DO can form a

class of nodes called computing class.

We design an algorithm to accomplish

the class formulation. In head

appointment, each class needs to have a

head that will ease the communication

between the different classes. In this

process, we first need to define the

headship features, for which a node

needs to qualify to become a head. In the

second step, a head appointment

algorithm calculates the similarity

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 853

between the nodes and the predefined

headship features, and selects the class

head based on the degrees of similarity.

An algorithm to perform the head

appointment is designed. Node

subscription refers the procedure of

assigning a new node to an existing class

or set of classes that corresponds to its

service concept. Subscription is done by

the node subscription algorithm. In this

algorithm, we assume that the new node

has been given the information about the

selected service grid concepts during the

settings, and the new node sends a

message that contains its service concept

to any existing node (member/head). The

algorithm takes the service concept of

the new node, and calculates the

similarity degree between the service

concept and the related class heads. If

the similarity degree attains the

predefined threshold, the new node is

added to the class of that head. Finally,

the algorithm returns the list of heads,

for which the node has been assigned to,

if the new node has more than one

service grids that belong to different

concepts. More details about the three

mentioned algorithms can be found in

[10].

b) The fault tolerance and load

balancing strategy

The fault tolerance and load balancing

strategy address the issues of dynamicity

of the service grid nodes status, and the

management of the node of classes in

terms of the number of classes and size

of each class. We incorporated two

approaches respectively. The first one is

called class maintenance which deals

with a situation of failure in a class head

and failure of a class member. The

approach replaces the respective failed

node (head/member) with another node

(detail about that can be found in [10]).

In load balancing strategy, the classes of

the service provider nodes are supposed

to be managed by their respective heads

(e.g. hosting the service grid metadata of

the class members). This management

process involves a huge amount of

messages due to the intraclass and

interclass communications. As a matter

of fact, if we do not have optimization

strategy to manage this tremendous

amount of traffic, we will eventually be

in a situation of bottle neck in the head.

We use the idea of having few hundreds

of nodes to be managed by one head.

Therefore, we can define a variable

called max number of nodes (µ) in a

class to control the number of nodes in

the class. The number of classes in a

given intergrid starts by selecting the

most general concepts in the DO, then

when the nodes under a particular class

(concept) has reached µ, we split the

concept by selecting a number of more

specific subconcept. This will ensure

that every class can grow smoothly with

a balanced management in the heads.

c) The discovery algorithm

By assembling the above framework

components, we will have an intergrid

that has a set of nodes assigned to some

classes with their heads. The collection

of heads forms a head node layer,

whereas the collection of classes and

members forms the member node layer.

Each node has two agents (DA and RA),

and implements the SGMP element to

describe their service grid information.

Communication between the nodes will

be through the exchange of messages

between the agents. In addition to

service SGMP, heads implement the

SDM element to assist members to

describe and register their services.

Neighboring nodes in each class

exchange information about their

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 854

services so that each node will have

local information. Each head will hold

the entire information of its class service

as they are sent by the member nodes. In

addition to that head is supposed to have

some information about the other heads

which includes their classes’ concept.

The discovery algorithm addresses the

search of the intergrid services on the

network based on the cached

information and dynamic matching. The

cached information is the presence of a

particular service in a node, which is got

through the information exchange.

Dynamic matchmaking is the similarity

calculation between agents that represent

service provider and requester, using the

similarity function. The algorithm works

as follows:

a) Based on the goals that are stored in

the service goal template of the semantic

description manager or the head of that

user’ node, the user selects the preferred

goal and obtains instance of the goal.

The user then adds the actual values of

the service capabilities, which enable the

RA to form a service request vector(s),

say 6 services.

Input: NodeInformation, ServiceRequest, Threshold;

Output: ListOfNodes List;

Step 1:

Get GoalInstance

Add ConcreteValue to ServiceRequest

Get NodesInformation Form DA

Step 2:

IF (NodeInformation neighboringNode) THEN DO

For (neighboringNode requstedServices)

Get Sim(RA, DA)

IF (Sim(RA, DA) Thrashold) THEN DO

ADD(neighboringNode, list)

ELSE Send ServiceRequest to ClassHeads

FOR(ClassHeads Class

requstedServiceConcept)

 IF (ClassNode requstedServices)

THEN DO

/*send the service request to all the heads that are

available in the current head local info and

associated the service request concepts*/

 FOR (ClassNode requstedServices)

Get Sim(RA, DA)

IF Sim(RA, DA) Thrashold THEN DO

ADD(ClassNode, lisT);

Step3:

Return List;

END;

Fig. 5. The Discovery Algorithm

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 855

b) If there is local information about

some neighbouring nodes that has been

given by their DAs, RA sends a request

to any neighbouring node ni that is

associated with all or part of the 6

requested services and the threshold of

the similarity degree.

c) Based on the description of services

in RA and DA, the similarity degree of

the two agents sim(RA, DA) concerning

the service properties of the requested

service and provided service is

calculated.

d) If the similarity degree of sim(RA,

DA) reaches a user defined threshold

value, then the node ni is selected; and

the check is done whether there are still

remaining requested services to be

searched.

e) If there are remaining service

request, steps c and d are repeated until

none of the nodes in the class is any

longer associated with the requested

service.

f) If so, then the remaining requested

services are sent to a class head ci.

g) From the head information, head ci

sends the service request to another

class head/heads cj that may have the

remaining requested service based on

the concepts.

h) For each head, the steps (b), (c), (d)

and (e) are performed until all the 6

requested services are found.

Fig. 5 illustrates the discovery algorithm.

It should be noted that, the above steps

that represent the invocation of the new

RD system.

4 RESULTS AND DISCUSSION

In this section we present a

comprehensive quantitative evaluation

with respect to the overall performance

of the proposed RD framework. We

have chosen one of the P2P simulators

called PeerfactSim.KOM [11] to

simulate the intergrid environment with

the application of the proposed system.

The evaluation of the system is based on

some common performance metrics

found in the literature [12] and [5]. This

includes the percentage of the

discovered services in a given goal

request (Request/query hit), and the

response time for the service request to

be answered. These metrics are

calculated in different settings of the

nodes and service requests. Therefore,

we start with a few numbers of nodes,

and scale them gradually to simulate the

increase of the services in the actual

intergrid system. We also vary the rate

of service requests from small number of

requests to bigger number to simulate

the increase of users in the intergrid

system. We analyze the results of the

different settings by highlighting the

causes of the effects of the different

setting to the results.

4.1 Experimental setup

We build an intergrid system that

consists of n nodes. The size of the

nodes n is scaled from 100 to 1000 with

scale of 100 and 200. Since the creation

of service grid domain ontology and

dictionary ontology are out of our scope,

we simulate these ontologies by

representing them numerically. Where

the concepts of the ontology are

simulated by positive integer values such

as 1, 2, …k, and each concept has

subconcepts/properties which are some

predefined set of values. Based on that,

the concepts are representing the

services’ concepts and the predefined

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 856

values are representing the services

themselves. Each of the nodes has a set

of the services. The number of these

services is varied between 1 and 6

services. The reason of having this

range of numbers is that our RD system

is based on aggregating the service grid

resources and services metadata

information, which obviously reduces

the range of services in the intergrid

system. The allocation of the size of

services in each node is random, which

is the same as the assignment of

concepts to node. This is to simulate the

fact that in intergrid system we may not

be able to neither express precisely the

number of the services in each node nor

the type or the concept to which these

services belong, but surely we can define

the concepts in the first place. During the

simulation of class formulation, each of

these nodes will be joining a particular

class based on the randomly assigned

concept. The number of class is based

on the number of concepts (if the

selected concepts for the overall nodes

are five, the corresponding number of

the classes is also five). The selection of

concepts is proportional to the size of the

intergrid system. This is in

correspondence to the super-peer

architecture where the number of super

peers is based on the size of the network.

In [13] the number of super-peer node is

implemented to be 5% of the nodes that

have very high capacity to handle

queries. We have adopted the same

percentage so as to systemize the

distribution of the node to classes in way

that allows us to conveniently discuss

the performance of the system.

Therefore, an intergrid system that has a

size of 1000 nodes will have 10 classes.

For simplicity, during the simulation,

nodes that have high capacity which are

supposed to be the heads of classes will

join the network first and declare

themselves.

4.2 Performance of the new

framework

We conducted 16 (this number

corresponds to the variation of service

request generation and TTL values)

independent experiments for different

service request portions and intergrid

sizes. In each experiment, the

mechanisms and algorithms that we have

designed mentioned above are

simulated. We first start our evaluation

with the first performance metric, which

is the service request hit. Fig. 6-9 show

the simulation results for service

requests generated by the nodes in

percentages of 25%, 50%, 75% and

100% of the actual size of the intergrid.

We control the forwarding of the request

message from the requester node to the

provider by the TTL values since we

implement the super-peer architecture in

our registry.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 857

Fig. 6. Discovered Services for generated

requests equivalent to 25% of the intergrid size

with different TTL values

Fig. 7. Discovered Services for generated

requests equivalent to 50% of the intergrid size

with different TTL values

Fig. 8. Discovered Services for generated

requests equivalent to 75% of the intergrid size

with different TTL values

Fig. 9. Discovered Services for generated

requests equivalent to 100% of the intergrid size

with different TTL values

It appears from the Fig. 6-9 that the rate

of discovered services is low when the

TTL is equal to 2. This is because the

scope of service request forwarding is

limited to within the classes only, or

between the heads if it happens that the

head node itself generated the request. It

is also very clear that the rate of

discovered services becomes smaller

with the increase of request rate and

intergrid size. This can lead to an

increase in the overall number of pages.

For example, in Fig. 6 the rate of the

discovered services achieves 25%

initially, and then drops gradually until

15.62% in Fig. 9. This is because as the

service requests increase, the portion of

the requests that is sent out of the

requester node classes may be higher.

This may also happen when the size of

the intergrid system is scaled up. Also

the four figures unambiguously indicate

that the increase of TTL will allow the

discovery of more services. For instance,

the discovered service rate reaches its

highest value 95.83% for an intergrid

system consisting of 400 nodes.

However, the cases of intergrid size 600

and 800 nodes appear to be different as

the rate of discovered services decreases

gradually until it reaches the lowest

value at size of 800 nodes. The reason

behind that is due to the implementation

of the load balancing algorithm. In fact,

the initial idea of the load balancing

mechanism is to split the concept from

general to a more specific concept so

that we get more classes when a class

reaches the maximum predefined size.

However, this is hard to be simulated

with the simulator as the creation of the

nodes, services, and concepts is

supposed to be before the intergrid join

process starts. Therefore, we simulate

the load balancing algorithm by creating

new classes during the join process. In

this case, if a head of class gets 100

hundred nodes in its class it will reject

any new node that wants to join the

system. When this happens, the rejected

node will create a new class of the same

concept and accept other nodes that want

join the intergrid and have the same

service concepts. Therefore, in the case

of intergrid size 600, there are few

classes that created, and there are more

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 858

in the case of size 800 nodes. So these

nodes cannot reach the services that are

available beyond the TTL of value 4 for

instance. As can be observed in all of

the figures the rate of the discovered

services starts increasing at TTL of value

5. To further investigate that

observation, we increase the TTL value

up to 6. As indicated in Fig. 9 the rate of

the discovered services is slightly

increased at the 800 intergrid size.

Meanwhile, it achieves the highest rate

with the small intergrid sizes such as 100

and 200 nodes. In addition to that, the

rate of discovered services also increases

with intergrid size of 1000 nodes. This

could possibly be because the created

new classes have more number of nodes,

which influences the rate of the local

discovered services to be higher.

All in all, it is observed that providing

more TTL value causes the discovery of

more services. However, one may argue

that the increase of the TTL may inherit

high traffic in the intergrid network.

Nevertheless, in our case, the forwarding

of service requests takes place only if the

request has some semantic relation with

the provider, if this not the case then the

service request will be forwarded to all

neighbors of the head node. Obviously,

this will reduce the traffic in the

intergrid system and the increase of the

TTL value will not cause overhead on

the network. Our second point of

discussion is on the service request

Fig. 10. Service Request Response Time for

generated requests equivalent to 25% of the

intergrid size with different TTL values

Fig. 6. Service Request Response Time for

generated requests that equivalent to 50% of the

intergrid size with different TTL values

Fig. 7. Service Request Response Time for

generated requests equivalent to 75% of the

intergrid size with different TTL values

Fig. 8. Service Request Response Time for

generated requests equivalent to 100% of the

intergrid size with different TTL values

response time of the proposed RD

framework. In fact, we use the simulator

timer to measure the time between the

generation of service request by the

requester node until when an answer is

given to the requester node. For

example, a node may generate a request

at time 180000000 (simulation time) and

a response may be given at the time of

180017503, therefore the response time

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 859

is 17503 millisecond (ms). We

calculated the average value of the

response time in each set of generated

service requests percentage. Fig. 10-13

illustrate these values. It is apparent

from all the figures that the increase of

service request generation will increase

the response time. This also happens

when we increase TTL value. For

example in Fig. 10, the average response

time for generated service request

equivalent to 25% of intergrid size of

100 nodes and TTL value 5 is 33486ms.

The value becomes considerably higher

(35569ms) in Fig. 13 when the service

request rate is equivalent to 100% of

intergrid nodes. However, the increase

of intergrid size does not affect the

request response time much, as the curve

of the response time fluctuates in all four

figures (10-13). Clearly, this indicates

that the increase of the response time is

not linearly related to the size of the

intergrid nodes. This due to the

decentralization of service requests

processing as each head processes the

service requests that are directed to it

only. This ensures that the scale of the

intergrid size will not cause performance

degradation to the proposed RD system,

which ensures sustainability of the

system irrespective of the scale of the

intergrid users as well as service grids.

Another aspect that is much related to

the response time is the average number

of hops that are crossed during the

discovery process, which is supposed to

be as low as possible with regard to the

Fig. 14. Average Hops for generated requests

equivalent to 25% of the intergrid size with

different TTL values

Fig. 9. Average Hops for generated requests

equivalent to 50% of the intergrid size with

different TTL values

Fig. 10. Average Hops for generated requests

equivalent to 75% of the intergrid size with

different TTL values

Fig. 11. Average Hops for generated requests

equivalent to 100% of the intergrid size with

different TTL values

set TTL value. Fig. 14-17 show the

average hops of the generated requests.

Generally, the average hops values are

slightly smaller than their respective

defined TTL values, regardless of the

number of generated service requests.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 860

For example the average hops in TTL 5

has a minimum value of 3.97, as shown

in Fig. 14, for the intergrid size of 400

nodes and the request rate is 25%; then

it fluctuates to 4.36 as the intergrid size

is scaled up to 1000 . However, in all

the cases the corresponding rate of the

discovered services is good. Therefore,

we deduce that having a TTL between 4

to 5 and an intergrid size of 400-1000

nodes will give an acceptable

performance to our RD system. A

further note on the average hop values

when the TTL value is 2 or 3 clearly

indicate that the curve of the average

hop is quite stable while scoring a poorer

service request hits. This happens in the

four cases (Fig. 14 – 17). For example,

in figure 17 the average hop value for

TTL 2 starts with a value of 2.93 and

maintains almost the same value to

finally end with the value of 2.98 where

the size of the intergrid is set to 1000

nodes. Therefore, we can deduce that our

RD system can have good performance

with TTL values such as 2 or 3 only if

the number of concepts is reduced to

three or four concepts and the intergrid

size is limited to between 100-300

nodes. With this result, it is convincing

that the proposed RD system is able to

meet the performance requirements for

the intergrid RD system. This includes

scalability, decentralization and

dynamism. The service request hit rates

obtained from different intergrid sizes

shows that the proposed RD system can

scale with the intergrid system as well.

The response time has no linear

dependency on the scale of the intergrid

size which proved the decentralization

feature. Lastly, the dynamism feature

has been achieved by the fault tolerance

mechanism. It worth to mention that, the

framework complexity is linear, which

renders the system as capable of

providing high performance.

4.3 Comparative Study

Since the aim of the study is to provide

an advance progress beyond the state-of-

art in this field, a comparative study to

proof that is therefore needed.

Consequently, we compare the proposed

RD system with the most promising

scalable RDs that we have found in the

literature. The most scalable RD systems

are the super-peer based RDs [14] and

[15] systems, which we have identified

as the good candidate for the intergrid

level. In fact, our RD system is also an

extension of the super-peer model with

the addition of the semantic technology

into the architecture and optimized

discovery algorithm. Therefore, our

comparative simulation is done by

simulating the same system with and

without the use of semantic technology.

As such, in order to have a fair

comparison between the two situations,

we set the intergrid size in the range of

100 – 600 nodes as the stable range

where the load balancing mechanism has

no much effect on the performance,

which will easy the discussion about the

scalability of the systems. The random

distribution of services to the nodes, the

assignment of the number of services in

any nodes, and the random generation of

the service request for any given node

are same in the two situations. The total

number of service requests that should

be generated by the nodes is equal to

their sizes. Fig. 18-20 show the results of

the two models in term of service

request hit, average response time and

average request forward hops.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 861

Fig. 18. Discovered Services for generated

requests equivalent to 100% of the intergrid

obtained with the super-peer model and the

semantic RD model

Fig. 12. Average Response Time with the super-

peer model and the semantic RD model

Fig. 20. Average Hops obtained with the super-peer model and the semantic RD model

It is clear from Fig. 18 that the semantic

RD system has a better request hit rate

compared to the super-peer model in all

the intergrid sizes. This is because in

super-peer model the services in the

classes are not organized in a particular

relation, instead they are based on their

joining time to the network, which

makes it difficult to reach every node in

the network. Meanwhile, the average

response time of semantic RD model is

also slightly higher most of time

compared to the super-peer model. This

because as the semantic RD model

achieves high service request hit rate, it

consumes more time. The average

number of the hops of semantic is also a

bit higher compared the super-peer. This

is due to the discovery algorithm of the

semantic RD, which optimizes the

forwarding of messages in the network

so that the service request can reach

more nodes while scoring high service

request rate. In short, based on the

results of the comparative study on the

intergrid of 100, 200, 400 and 600 nodes

the semantic RD has a better

performance than the super-peer model,

but we cannot go as far as to generalize

these findings because further

investigation involving larger intergrid

size than what we have used is needed.

5 RELATED WORK

Currently, there is a wealth of work on

grid RD (e.g. Globus4, Condor5 , [4], [5],

and [6]) which can be classified into

two classes based on the description

component, which are keyword-based

RD systems and semantic-based RD

systems. Keyword-based system uses

syntactic information and data models

such as directories [16] and special

4 http://www.globus.org/.
5 http://www.cs.wisc.edu/condor/.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 862

http://www.globus.org/
http://www.cs.wisc.edu/condor/

databases to describe and discover the

resources and services. Unfortunately,

syntactic information and data models

are not efficient in describing resources

at intergrid level. This is because

resources and services are initially

described by using multi information

services that belong to different grid

middlewares. As a matter of fact, much

of the efforts in keyword-based RD

systems have been focused on achieving

the high performance requirement;

staring from introducing centralized

registration models such as Globus

MDS-1 [17], R-GMA6 [18] and

Hawakeye [19]; then followed by

hierarchical registration models [20],

[21] and [22], and lastly peer-to-peer

(P2P) registration models [23], [24], [6]

and [25]. Keyword-based RD systems

that are based on P2P registration

models have achieved high performance

compared to the centralized and

hierarchical models, but we cannot go

far as to say that they have achieved full

scalability. Moreover, their use of

syntactic description, especially at the

intergrid level, prevents them from

fulfilling the high searchability

requirement. Semantic-based RD

systems, on the other hand, use semantic

information and data models (ontology

and ontology languages) [9] to describe

and discover the resources and services.

Although, there is a considerable amount

of work on semantic-based RD systems

(e.g. [26], [27]), most of the existing

approaches fail to achieve high

searchability. This is due to the lack of a

proper use of semantic description

mechanism as the semantic technology

is initially imported from the semantic

web [28]. Actually, we have argued in

6 Relational Grid Monitoring Architecture: http://www.r-
gma.org/index.html

an earlier study [29] that the main

obstacle that leads to the continuous

existence of this issue is the ad hoc

research nature of these semantic-based

RD studies (different research

communities doing the same thing by

different ways).

6 CONCLUSIONS

In this paper we presented a new RD

framework. The framework has a

conceptual model for semantic

description that treats the small grids of

the intergrid system as services (service

grids) and their semantic representation

has been based on that; a semantic

registry architecture that specifies

semantically the distribution of the

service grids metadata directories and

their management with regard to

scalability and dynamism of the service

grids metadata; and an agent based

discovery algorithm that exploits the

description model and the registry

architecture to search and select the

service grids on behalf of the intergrid

user. We have shown the effectiveness

of the framework through some

discussions and analysis, and an

extensive simulation work which has

confirmed the effectiveness of the

framework.

7 REFERENCES

1. Foster, I., and C. Kesselman The Grid 2:

Blueprint for a New Computing

Infrastructure. (Morgan Kaufman, San

Francisco; 2003).

2. Buyya, R., Yeo, C.S., Venugopal, S.,

Broberg, J. & Brandic, I. Cloud computing

and emerging IT platforms: Vision, hype,

and reality for delivering computing as the

5th utility. Future Generation Computer

Systems 25, 599-616 (2009).

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 863

http://www.r-gma.org/index.html
http://www.r-gma.org/index.html

3. Chao-Tung, Y., Wen-Jen, H. & Kuan-Chou,

L. in Proceedings of the 9th International

Conference on Algorithms and Architectures

for Parallel Processing (Springer-Verlag,

Taipei, Taiwan; 2009).

4. Lamnitchi, A.L. in Department of Computer

Science, Vol. PhD 1-1 (The Univercity of

Chicago, Illinois; 2003).

5. Mastroianni, C., D. Talia, and O. Verta A

super-peer model for resource discovery

services in large-scale Grids. Future

Generation Computer Systems 21, 1235-

1248 (2005).

6. Shen, H. A P2P-based intelligent resource

discovery mechanism in Internet-based

distributed systems. Journal of Parallel and

Distributed Computing 69, 197-209 (2009).

7. Subramaniam, R. et al. in GFD-I.145 (Open

Grid Forum, 2009).

8. Gruber, T.R. Toward principles for the

design of ontologies used for knowledge

sharing. International Journal of Human-

Computer Studies 43, 907-928 (1995).

9. Chandrasekaran, B., J. R. Josephson, and V.

R. Benjamins What are ontologies, and why

do we need them? IEEE Intelligent Systems

14, 20-26 (1999).

10. Hassan, M.I., and A. Abdulah A New

Resource Discovery Framework. The

International Arab Journal of Information

Technology (IAJIT) 8 20-28 (2011).

11. Kovacevic, A., Kaune, S., Mukherjee, P.,

Liebau, N. & Steinmetz, R. Benchmarking

Platform for Peer-to-Peer Systems , vol. 46,

no. 3, 2007. . it - Information Technology

(Methods and Applications of Informatics

and Information Technology) 49, 312-319

(2007).

12. Mastroianni, C., D. Talia, and O. Verta

Designing an information system for Grids:

Comparing hierarchical, decentralized P2P

and super-peer models. Parallel Computing

34, 593-611 (2008).

13. Yatin, C., Sylvia, R., Lee, B., Nick, L. &

Scott, S. in Proceedings of the 2003

conference on Applications, technologies,

architectures, and protocols for computer

communications (ACM, Karlsruhe,

Germany; 2003).

14. Mastroianni, C., Talia, D. & Verta, O. A

super-peer model for resource discovery

services in large-scale Grids. Future

Generation Computer Systems 21, 1235-

1248 (2005).

15. Mastroianni, C., Talia, D. & Verta, O.

Designing an information system for Grids:

Comparing hierarchical, decentralized P2P

and super-peer models. Parallel Computing

34, 593-611 (2008).

16. Tuttle, S., A. Ehlenberger, R. Gorthi, J.

Leiserson, R. Macbeth, N. Owen, S.

Ranahandola, M. Storrs, C. Yang

Understanding LDAP Design and

Implementation. (IBM, 2004).

17. Fitzgerald, S., I. Foster, C. Kesselman, G.

von Laszewski, W. Smith, and S. Tuecke in

6th IEEE Symposium on High Performance

Distributed Computing 365–375 (IEEE

Computer Society Press, 1997).

18. Cooke, A. et al. in On The Move to

Meaningful Internet Systems 2003: CoopIS,

DOA, and ODBASE, Vol. 2888 462-481

(Springer Berlin / Heidelberg, 2003).

19. Zanikolas, S. & Sakellariou, R. A taxonomy

of grid monitoring systems. Future

Generation Computer Systems 21, 163-188

(2005).

20. Steven, F. in Proceedings of the 10th IEEE

International Symposium on High

Performance Distributed Computing (IEEE

Computer Society, 2001).

21. Schopf, J.M. et al. Monitoring the grid with

the Globus Toolkit MDS4. Journal of

Physics: Conference Series 46, 521 (2006).

22. Ruay-Shiung, C. & Min-Shuo, H. A

resource discovery tree using bitmap for

grids. Future Generation Computer Systems

26, 29-37 (2010).

23. Trunfioa, P., D. Taliaa, H. Papadakisb, P.

Fragopouloub, M. Mordacchinic, M.

Pennanend, K. Popove, V. Vlassovf, and S.

Haridi Peer-to-Peer resource discovery in

Grids: Models and systems. Future

Generation Computer Systems 23, 864–878

(2007).

24. Marzolla, M., Mordacchini, M. & Orlando,

S. Peer-to-peer systems for discovering

resources in a dynamic grid. Parallel

Computing 33, 339-358 (2007).

25. Brocco, A., Malatras, A. & Hirsbrunner, B.

Enabling efficient information discovery in

a self-structured grid. Future Generation

Computer Systems 26, 838-846 (2010).

26. Ludwig, S.A., and S. M. S. Reyhani

Introduction of semantic matchmaking to

grid computing. Journal of Parallel and

Distributed Computing 65, 1533-1541

(2005).

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 864

27. Said, M.P., and I Kojima S-MDS: Semantic

Monitoring and Discovery System. Journal

of Grid Computing 7, 205-224 (2009).

28. Berners-Lee, T., Hendler, J. & Lassila, O.

The Semantic Web. Scientific American

284, 34-43 (2001).

29. Hassan, M.I. & Abdullah, A. in 2010

International Symposium in Information

Technology (ITSim), Vol. 3 1286-1296

(IEEE Xplore, 2010).

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 848-865
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 865

