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ABSTRACT 

 

Resource/service discovery is a very 

vital issue in Internet based distributed 

systems such as Grid and Cloud 

computing. In this paper we address the 

RD issue in intergrid. We design a 

service discovery framework by 

integrating semantic technology, peer-to-

peer network and intelligent agents. The 

framework has two main components 

which are service description, and 

service registration and discovery 

models. The earlier consists of a set of 

ontologies that are used as a data model 

for service description and services to 

accomplish the description process. The 

service registration is based super-peer 

architecture to organize the nodes and on 

ontology to manage the node 

organization. In addition to that, we 

introduce intelligent agents to automate 

the discovery process. We evaluate the 

framework via simulation experiments, 

and the result confirms the effectiveness 

of the framework in satisfying the 

required RD features (interoperability, 

scalability, decentralization and 

dynamism). 
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1 INTRODUCTION 
 

Internet based distributed systems such 

as Grid [1] and Cloud[2] computing 

have become a vital resource sharing 

infrastructure for today’s scientific and 

business applications. One of the 

fundamental components of theses 

infrastructure is Resource/Service 

Discovery (RD) which is about the 

detection of suitable resource for a given 

task/application. This paper addresses 

the service discovery issue in the case of 

intergrid. Intergrid/Global grids ( in 

some literatures is also called multi-grid 

[3]) are known as a grid of grids, since 

they are a collection of small grids that 

cross organizational boundaries to create 

very large virtual systems that can be 

accessed from anywhere in the world. 

Generally, RD process entails 

description of the resource through its 

properties, registration/indexing  of the 

described resource in common 

registry(s), and discovering the 

registered resources that match with 

resource request specifications. These 

steps correspond to the main 

components of the RD system, which are 

Description, Registration and Discovery 

(which is composed of search and 

selection). Unfortunately, intergrid 

systems are normally associated with 

some complexities such as 

resources/services and users are 
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distributed across different locations; 

resources are heterogeneous in their 

platforms; status of the resources is 

dynamic (resources can join or leave the 

system without any prior notice); and 

use of multi-middleware. These 

complexities pose a challenge to the 

development of an efficient RD system 

to discover the resources and services. In 

fact, these complexities also yield some 

requirements that should be fulfilled by 

any developed RD. These requirements 

include high searchability 

(interoperability) to retrieve the relevant 

and precise resources and services, and 

high performance (scalability, 

decentralization, and dynamism) to 

make the RD system sustainable with the 

scale of the intergrid. In fact, there is a 

wealth of work on grid RD (e.g. Globus1, 

Condor2 , [4], [5], and [6] ) that we have 

currently but they have difficulties to 

attain these features. Therefore, In this 

paper, we introduce a new intergrid RD 

framework that can overcome the 

shortcoming of the current studies and 

meeting the above mentioned 

requirements. The framework contains 

two main components which are service 

description, and service registration and 

discovery models. The earlier consists of 

a set of ontologies and services. 

Ontologies are used as a data model for 

service description, whereas the services 

are to accomplish the description 

process, we detail that in section 2.  

The service registration is also based on 

ontology, where nodes of the services 

(service providers) are classified to some 

classes according to the ontology 

concepts, which means each class 

represents a concept in the ontology. 

Each class has an elected head. Head 

                                                 
1 http://www.globus.org/. 
2 http://www.cs.wisc.edu/condor/. 

plays the role of a registry in its class 

and communicates with the other heads 

of the classes in a peer to peer manner 

during the discovery process. We further 

introduce two intelligent agents to 

automate the discovery process which 

are Request Agent (RA) and Description 

Agent (DA). Each node is supposed to 

have both agents. DA describes the 

service capabilities based on the 

ontology, and RA carries the service 

requests based on the ontology as well. 

We design a service search algorithm for 

the RA that starts the service look up 

from the class of request origin first, 

then to the other classes, we detail that in 

section 3.  

We finally evaluate the performance the 

framework with extensive simulation 

experiments, the result of which 

confirms the framework effectiveness in 

satisfying the required RD features 

(interoperability, scalability, 

decentralization and dynamism), we 

detail that in section 4.  

In short, our main contributions are an 

interoperable semantic description RD 

component model for intergrid services 

metadata representation; a semantic 

distributed registry architecture for 

indexing service metadata; and an agent-

based service search and selection 

algorithm. 

 

2 SEMANTIC-BASED RESOURCE 

DESCRIPTION MODEL  
 

2.1 The Model Description  
 

In order to have a description model that 

meets RD requirements, we refine the 

intergrid system in such a way that 

makes full use of the resources and 

services when the semantic technology 

is applied. A common ontology is used 
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to formally represent the intergrid 

components.  

Computing 

Intergrid system

Data Application 

Service

Storage Comput Files Database Science Engineering 

 
Fig. 1. Fragment of service grid domain ontology 

Computing 

Intergrid system

Data Application 

Service

Storage Comput Files Database Science Engineering 

Simulation Tool
useuseuse

 
Fig. 2.The extraction of application goals from the 

service grid domain ontology 

Subsequently, we merely rely on the 

latest grid system requirements that have 

been presented by the OGF3 [7] in 

defining the grid level and intergrid 

level. As a result, we treat grid level 

system as a service grid that is provided 

by a provider to consumers, and this 

service grid is assumed to be among the 

grid types (e.g. computing, data, and 

application). Therefore, an intergrid 

level system is a collection of service 

grids that have agreed to work 

cooperatively as consumers and 

providers. Consequently, a service grid 

may be a consumer as well as a provider. 

It becomes a consumer when it uses 

                                                 
3  Open Grid Forum: http://www.ogf.org/   

other service grids without providing 

any service to them, whereas it functions 

as a consumer/provider when other 

services are added to its own and at the 

same time it also provides a complete 

service to the end user. The capabilities 

of service grids are described by 

aggregating their local metadata content 

and then integrating them into a common 

information model. Ontology ([8] and 

[9]) is used for the common information 

model. We call this ontology as service 

grid domain ontology (SGDO). SGDO 

defines all the service grid types, 

attributes that are needed for each 

service grid, relationships between all 

the services, structure of the values of 

each attributes and so on (see Fig. 1). To 

reduce the user interaction with 

programming details with RD system in 

specifying the service grid requests, we 

introduce a mechanism that is called 

Goal-based Service Grid Request 

Description (GSGR). A goal refers to 

what a given consumer/end user wants to 

achieve by using the service grids. For 

example, if a user wants to simulate the 

weather condition of the earth so the 

simulation is his/her goal. Obviously, a 

goal requires a set of the grid services in 

order to be accomplished. For example, 

the simulation of weather condition of 

the earth requires computing service 

grid, satellite images data and 

temperature dataset which can be under 

the data service grid and so on. The 

SGDO, among other concepts of 

application service grid, includes all 

software applications that are available 

on the intergrid level system. In fact, 

these applications represent the goals 

that a user may want to achieve because 

application service grids are the only 

services that need one or more service 

grids to work on, as they cannot stand 
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alone. Thus, we can extract the goals 

from the SGDO. We introduce a relation 

so called “use” between the application 

service concepts and the other service 

grid concepts. The “use” relation is a 

binary relation between a particular 

application service concept and another 

service grid (e.g. data service). 

Indicating this application service 

requires the second service grid with 

which the relation is established (see 

Fig. 2).  

 

2.2 The Model Building Block 

 

Having described the fundamental 

components of the description model, in 

this section we illustrate the model 

building block. Fig. 3 shows the 

components of the model and their 

related subcomponents. The model is 

initially composed of Semantic 

Description Manager (SDM) and Service 

Grid Metadata Provider (SGMP). SDM 

generally is responsible of the global 

service grid description in the intergrid 

system, and a pool that accommodate the 

service grid metadata coming from 

SGMPs. Meanwhile, SGMP is 

responsible of managing local service 

grid metadata that belongs to a service 

grid provider. The reason for having 

SDM and SGMP in such architecture is 

that, SDM will provide all the needed 

information and data model management 

for a set of intergrid members. 

Therefore, interoperability can be 

ensured. In the meantime, SGMP 

provides autonomy to each service grid 

member as it handles the local 

information of the service grid. 

 

Semantic Description Manager 

Semantic 

Metadata 

Repository  Goal Template 

Pool  

Extraction & 

Update

 

Service Grid 

Ontology 

Service Grid Metadata Provider 

Local 

Information 

Service Service Grids 

Information

Aggregation &

Update 

Browsing , Querying, 

Instantiation, Registration  & 

Update

 
Fig. 3. The description of model 

building block 

 

2.3 The Description Process 
 

The description process includes 

description of a service that will be 

advertised, and service request 

formulation. The steps of the first case 

are as follows: 

 The user invokes the SGMP system. 

 The user browses/queries the service 

grid ontology through which all the 

available content of the ontology can 

be manipulated (e.g. using add and 

drag menu), and selects the concept 

that is relevant to his/her service grids. 

 The user gets an instance of the 

selected service grid concept using the 

service grid ontology tools. 

  The user populates the instance with 

the actual service grid information, 

which is an aggregated summary of 

the overall service grid information. 

 Finally, the user sends the service 

grids information to the respective 

SMR of the SDM node that is 

responsible of holding the metadata of 

the current service provider, and in 

turn, the SMR stores the semantic 
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information about the service grid for 

the discovery process. 

Meanwhile for the service request 

formulation is as follows: 

 The user invokes the SDM system. 

 The user browses/queries the available 

goals in the goal template manager, and 

selects the relevant goal. 

 The user then gets an instance of the 

selected goal and adds it to his/her 

local information system. 

 Since each goal requires one or a set of 

service grids, the user adds the concrete 

values of attributes of each service. For 

example, if among the required service 

is computing service, and one of the 

attributes is maximum number of   

computing nodes, the user may add a 

concrete number for such requirements. 

 Finally, the user sends the service grid 

request to the respective SDM, and the 

SMR of that SDM will generate a 

proper query statement for each service 

among the required service grids. 

 

2.4 Model Evaluation 
 

From the building block, it is clear that 

the model has introduced the use of 

semantic information in way that does 

not require the use of local information 

service, which exists currently in grid 

middleware.  For example, the intergrid 

participants (small grids) are able to use 

their local discovery system that would 

normally be possible through a keyword-

based RD system.  They just need to 

have one file that accommodates the 

summary of the overall capabilities of the 

service. As a result, this provides 

interoperability among the participants in 

the intergrid system. The model also 

reduces the cost of using semantic 

information in terms of processing time, 

as well as storage of the semantic 

information, since the semantic 

information is used at the intergrid level, 

and not at the grid level. Therefore, 

during the discovery we look up for a 

complete service grid, not components of 

it. Therefore, the model achieved the first 

RD requirement (high searchability).  
 

3 SEMANTIC REGISTRATION 

AND DISCOVERY MODEL    

 

Registration and discovery components in 

any RD system are very much related, as 

the routing of request is subjected to the 

registration architecture. For this reason, 

we address the issues in registration and 

discovery jointly. We design a model for 

the two components that integrates 

super-peer architecture, ontology and 

intelligent agent. Super-peer is used to 

grant distribution of the registry where 

the service grid metadata is located.  
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Description Agent

- ServiceGridInformation 

 - NodeInformation

+ locateClassNode()

+ sendServiceInformation( )

+ updateServiceInformation( )

Request  Agent

- SetOf ServiceRequests  

 - NodeInformation

+ formServiceRequest()

+ lookupforService( )

+ calculateSimDegree( )

 

Fig. 4. The proposed DA and RA agents 

 

3.1 The Model Components 

 

The model consists of three components, 

domain ontology, an intelligent agent 

model, and super-peer architecture. 

Ontology concepts are normally 

arranged hierarchically, therefore, 

whenever, we visit the concepts from the 

root concept, as we go down deeper into 

the subconcepts, we will move from a 

more general class of concepts to a more 

specific class of concepts, and vice 

versa. We use this feature to classify 

nodes into several classes, which 

produce registry architecture to the RD 

system. The ontology that supplies 

service grid taxonomies is called 

Dictionary Ontology (DO).  The DO 

may be the same as the service SGDO 

by omitting the relations that are out of 

the hierarchical relation such as the 

“use” relationship. Fig. 4 shows the 

proposed agent where DA is a static 

agent that carries some information; 

automatically performs some set of 

functions and belongs to a service grid 

provider node. RA is a mobile agent that 

carries some information; automatically 

performs some set of functions and 

belongs to a service grid node. 

 

3.2 The Model Description 

 

The registration and discovery model 

consists of three elements registry 

architecture, fault tolerance and load 

balancing strategy, and discovery 

algorithm. In this section we discuss all 

these elements. 

a) Registry architecture 

The registry architecture includes node 

class formulation, head appointment, 

node subscription. In class formulation, 

nodes are gathered together in a set of 

classes. This classification is based on 

the hierarchal relations among the 

service grids in the DO, which means 

their defined semantic relation on the 

DO. For example, nodes that provide 

service grids that belong to the 

computing concept in the DO can form a 

class of nodes called computing class. 

We design an algorithm to accomplish 

the class formulation. In head 

appointment, each class needs to have a 

head that will ease the communication 

between the different classes. In this 

process, we first need to define the 

headship features, for which a node 

needs to qualify to become a head. In the 

second step, a head appointment 

algorithm calculates the similarity 
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between the nodes and the predefined 

headship features, and selects the class 

head based on the degrees of similarity. 

An algorithm to perform the head 

appointment is designed. Node 

subscription refers the procedure of 

assigning a new node to an existing class 

or set of classes that corresponds to its 

service concept. Subscription is done by 

the node subscription algorithm. In this 

algorithm, we assume that the new node 

has been given the information about the 

selected service grid concepts during the 

settings, and the new node sends a 

message that contains its service concept 

to any existing node (member/head). The 

algorithm takes the service concept of 

the new node, and calculates the 

similarity degree between the service 

concept and the related class heads. If 

the similarity degree attains the 

predefined threshold, the new node is 

added to the class of that head. Finally, 

the algorithm returns the list of heads, 

for which the node has been assigned to, 

if the new node has more than one 

service grids that belong to different 

concepts. More details about the three 

mentioned algorithms can be found in 

[10].  

b) The fault tolerance and load 

balancing strategy 

The fault tolerance and load balancing 

strategy address the issues of dynamicity 

of the service grid nodes status, and the 

management of the node of classes in 

terms of the number of classes and size 

of each class. We incorporated two 

approaches respectively. The first one is 

called class maintenance which deals 

with a situation of failure in a class head 

and failure of a class member. The 

approach replaces the respective failed 

node (head/member) with another node 

(detail about that can be found in [10]). 

In load balancing strategy, the classes of 

the service provider nodes are supposed 

to be managed by their respective heads 

(e.g. hosting the service grid metadata of 

the class members). This management 

process involves a huge amount of 

messages due to the intraclass and 

interclass communications. As a matter 

of fact, if we do not have optimization 

strategy to manage this tremendous 

amount of traffic, we will eventually be 

in a situation of bottle neck in the head. 

We use the idea of having few hundreds 

of nodes to be managed by one head. 

Therefore, we can define a variable 

called max number of nodes (µ) in a 

class to control the number of nodes in 

the class. The number of classes in a 

given intergrid starts by selecting the 

most general concepts in the DO, then 

when the nodes under a particular class 

(concept) has reached µ, we split the 

concept by selecting a number of more 

specific subconcept. This will ensure 

that every class can grow smoothly with 

a balanced management in the heads. 

c) The discovery algorithm 

By assembling the above framework 

components, we will have an intergrid 

that has a set of nodes assigned to some 

classes with their heads. The collection 

of heads forms a head node layer, 

whereas the collection of classes and 

members forms the member node layer.   

Each node has two agents (DA and RA), 

and implements the SGMP element to 

describe their service grid information. 

Communication between the nodes will 

be through the exchange of messages 

between the agents. In addition to 

service SGMP, heads implement the 

SDM element to assist members to 

describe and register their services. 

Neighboring nodes in each class 

exchange information about their 
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services so that each node will have 

local information. Each head will hold 

the entire information of its class service 

as they are sent by the member nodes. In 

addition to that head is supposed to have 

some information about the other heads 

which includes their classes’ concept. 

The discovery algorithm addresses the 

search of the intergrid services on the 

network based on the cached 

information and dynamic matching. The 

cached information is the presence of a 

particular service in a node, which is got 

through the information exchange. 

Dynamic matchmaking is the similarity 

calculation between agents that represent 

service provider and requester, using the 

similarity function. The algorithm works 

as follows: 

a) Based on the goals that are stored in 

the service goal template of the semantic 

description manager or the head of that 

user’ node, the user selects the preferred 

goal and obtains instance of the goal. 

The user then adds the actual values of 

the service capabilities, which enable the 

RA to form a service request vector(s), 

say 6 services.                
 

Input: NodeInformation, ServiceRequest, Threshold; 

Output: ListOfNodes List; 

Step 1: 

Get GoalInstance 

Add ConcreteValue to ServiceRequest   

Get NodesInformation Form DA 

Step 2:  

IF (NodeInformation  neighboringNode) THEN DO 

For (  neighboringNode  requstedServices) 

Get Sim(RA, DA) 

IF (Sim(RA, DA)  Thrashold) THEN DO 

ADD(neighboringNode, list) 

ELSE Send ServiceRequest to ClassHeads 

FOR(  ClassHeads  Class    

requstedServiceConcept)  

  IF (  ClassNode  requstedServices) 

THEN DO 

/*send the service request to all the heads that are 

available in the current head local info and 

associated the service request concepts*/ 

       FOR ( ClassNode  requstedServices)  

Get Sim(RA, DA) 

IF Sim(RA, DA)  Thrashold THEN DO 

ADD(ClassNode, lisT); 

Step3: 

Return List; 

END; 

Fig. 5. The Discovery Algorithm 
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b) If there is local information about 

some neighbouring nodes that has been 

given by their DAs, RA sends a request 

to any neighbouring node ni that is 

associated with all or part of the 6 

requested services and the threshold of 

the similarity degree. 

c) Based on the description of services 

in RA and DA, the similarity degree of 

the two agents sim(RA, DA) concerning 

the service properties of the requested 

service and provided service is 

calculated.   

d) If the similarity degree of sim(RA, 

DA) reaches a user defined threshold 

value, then the node ni is selected; and 

the check is done whether there are still 

remaining requested services to be 

searched.  

e) If there are remaining service 

request, steps c and d are repeated until 

none of the nodes in the class is any 

longer associated with the requested 

service. 

f) If so, then the remaining requested 

services are sent to a class head ci.    

g) From the head information, head ci 

sends the service request to another 

class head/heads cj  that may have the 

remaining requested service based on 

the concepts. 

h) For each head, the steps (b), (c), (d) 

and (e) are performed until all the 6 

requested services are found.  

 

Fig. 5 illustrates the discovery algorithm. 

It should be noted that, the above steps 

that represent the invocation of the new 

RD system.  

 

4 RESULTS AND DISCUSSION 

 

In this section we present a 

comprehensive quantitative evaluation 

with respect to the overall performance 

of the proposed RD framework. We 

have chosen one of the P2P simulators 

called PeerfactSim.KOM [11] to 

simulate the intergrid environment with 

the application of the proposed system. 

The evaluation of the system is based on 

some common performance metrics 

found in the literature [12] and [5].  This 

includes the percentage of the 

discovered services in a given goal 

request (Request/query hit), and the 

response time for the service request to 

be answered. These metrics are 

calculated in different settings of the 

nodes and service requests. Therefore, 

we start with a few numbers of nodes, 

and scale them gradually to simulate the 

increase of the services in the actual 

intergrid system. We also vary the rate 

of service requests from small number of 

requests to bigger number to simulate 

the increase of users in the intergrid 

system. We analyze the results of the 

different settings by highlighting the 

causes of the effects of the different 

setting to the results. 

 

4.1 Experimental setup 

 

We build an intergrid system that 

consists of n nodes. The size of the 

nodes n is scaled from 100 to 1000 with 

scale of 100 and 200. Since the creation 

of service grid domain ontology and 

dictionary ontology are out of our scope, 

we simulate these ontologies by 

representing them numerically. Where 

the concepts of the ontology are 

simulated by positive integer values such 

as 1, 2, …k, and each concept has 

subconcepts/properties which are some 

predefined set of values. Based on that, 

the concepts are representing the 

services’ concepts and the predefined 
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values are representing the services 

themselves. Each of the nodes has a set 

of the services. The number of these 

services is varied between 1 and 6 

services.  The reason of having this 

range of numbers is that our RD system 

is based on aggregating the service grid 

resources and services metadata 

information, which obviously reduces 

the range of services in the intergrid 

system. The allocation of the size of 

services in each node is random, which 

is the same as the assignment of 

concepts to node. This is to simulate the 

fact that in intergrid system we may not 

be able to neither express precisely the 

number of the services in each node nor 

the type or the concept to which these 

services belong, but surely we can define 

the concepts in the first place. During the 

simulation of class formulation, each of 

these nodes will be joining a particular 

class based on the randomly assigned 

concept.  The number of class is based 

on the number of concepts (if the 

selected concepts for the overall nodes 

are five, the corresponding number of 

the classes is also five). The selection of 

concepts is proportional to the size of the 

intergrid system. This is in 

correspondence to the super-peer 

architecture where the number of super 

peers is based on the size of the network. 

In [13] the number of  super-peer node is 

implemented to be 5% of the nodes that 

have very high capacity to handle 

queries. We have adopted the same 

percentage so as to systemize the 

distribution of the node to classes in way 

that allows us to conveniently discuss 

the performance of the system. 

Therefore, an intergrid system that has a 

size of 1000 nodes will have 10 classes. 

For simplicity, during the simulation, 

nodes that have high capacity which are 

supposed to be the heads of classes will 

join the network first and declare 

themselves. 

 

 

 

4.2 Performance of the new 

framework 

 

We conducted 16 (this number 

corresponds to the variation of service 

request generation and TTL values) 

independent experiments for different 

service request portions and intergrid 

sizes. In each experiment, the 

mechanisms and algorithms that we have 

designed mentioned above are 

simulated. We first start our evaluation 

with the first performance metric, which 

is the service request hit. Fig. 6-9 show 

the simulation results for service 

requests generated by the nodes in 

percentages of   25%, 50%, 75% and 

100% of the actual size of the intergrid. 

We control the forwarding of the request 

message from the requester node to the 

provider by the TTL values since we 

implement the super-peer architecture in 

our registry.  
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Fig. 6. Discovered Services for generated 

requests equivalent to 25% of the intergrid size 

with different TTL values 

Fig. 7.  Discovered Services for generated 

requests equivalent to 50% of the intergrid size 

with different TTL values 

  

Fig. 8. Discovered Services for generated 

requests equivalent to 75% of the intergrid size 

with different TTL values 

Fig. 9. Discovered Services for generated 

requests equivalent to 100% of the intergrid size 

with different TTL values 

It appears from the Fig. 6-9 that the rate 

of discovered services is low when the 

TTL is equal to 2. This is because the 

scope of service request forwarding is 

limited to within the classes only, or 

between the heads if it happens that the 

head node itself generated the request. It 

is also very clear that the rate of 

discovered services becomes smaller 

with the increase of request rate and 

intergrid size. This can lead to an 

increase in the overall number of pages.  

For example, in Fig. 6 the rate of the 

discovered services achieves 25% 

initially, and then drops gradually until 

15.62% in Fig. 9. This is because as the 

service requests increase, the portion of 

the requests that is sent out of the 

requester node classes may be higher. 

This may also happen when the size of 

the intergrid system is scaled up. Also 

the four figures unambiguously indicate 

that the increase of TTL will allow the 

discovery of more services. For instance, 

the discovered service rate reaches its 

highest value 95.83% for an intergrid 

system consisting of 400 nodes. 

However, the cases of intergrid size 600 

and 800 nodes appear to be different as 

the rate of discovered services decreases 

gradually until it reaches the lowest 

value at size of 800 nodes. The reason 

behind that is due to the implementation 

of the load balancing algorithm. In fact, 

the initial idea of the load balancing 

mechanism is to split the concept from 

general to a more specific concept so 

that we get more classes when a class 

reaches the maximum predefined size. 

However, this is hard to be simulated 

with the simulator as the creation of the 

nodes, services, and concepts is 

supposed to be before the intergrid join 

process starts. Therefore, we simulate 

the load balancing algorithm by creating 

new classes during the join process. In 

this case, if a head of class gets 100 

hundred nodes in its class it will reject 

any new node that wants to join the 

system. When this happens, the rejected 

node will create a new class of the same 

concept and accept other nodes that want 

join the intergrid and have the same 

service concepts. Therefore, in the case 

of intergrid size 600, there are few 

classes that created, and there are more 
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in the case of size 800 nodes. So these 

nodes cannot reach the services that are 

available beyond the TTL of value 4 for 

instance.  As can be observed in all of 

the figures the rate of the discovered 

services starts increasing at TTL of value 

5.  To further investigate that 

observation, we increase the TTL value 

up to 6.  As indicated in Fig. 9 the rate of 

the discovered services is slightly 

increased at the 800 intergrid size. 

Meanwhile, it achieves the highest rate 

with the small intergrid sizes such as 100 

and 200 nodes. In addition to that, the 

rate of discovered services also increases 

with intergrid size of 1000 nodes. This 

could possibly be because the created 

new classes have more number of nodes, 

which influences the rate of the local 

discovered services to be higher. 

All in all, it is observed that providing 

more TTL value causes the discovery of 

more services. However, one may argue 

that the increase of the TTL may inherit 

high traffic in the intergrid network. 

Nevertheless, in our case, the forwarding 

of service requests takes place only if the 

request has some semantic relation with 

the provider, if this not the case then the 

service request will be forwarded to all 

neighbors of the head node. Obviously, 

this will reduce the traffic in the 

intergrid system and the increase of the 

TTL value will not cause overhead on 

the network. Our second point of 

discussion is on the service request  

  

Fig. 10. Service Request Response Time for 

generated requests equivalent to 25% of the 

intergrid size with different TTL values 

Fig. 6. Service Request Response Time for 

generated requests that equivalent to 50% of the 

intergrid size with different TTL values 

  

Fig. 7. Service Request Response Time for 

generated requests equivalent to 75% of the 

intergrid size with different TTL values 

Fig. 8. Service Request Response Time for 

generated requests equivalent to 100% of the 

intergrid size with different TTL values 

response time of the proposed RD 

framework. In fact, we use the simulator 

timer to measure the time between the 

generation of service request by the 

requester node until when an answer is 

given to the requester node. For 

example, a node may generate a request 

at time 180000000 (simulation time) and 

a response may be given at the time of 

180017503, therefore the response time 
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is 17503 millisecond (ms). We 

calculated the average value of the 

response time in each set of generated 

service requests percentage. Fig. 10-13 

illustrate these values. It is apparent 

from all the figures that the increase of 

service request generation will increase 

the response time. This also happens 

when we increase TTL value. For 

example in Fig. 10, the average response 

time for generated service request 

equivalent to 25% of intergrid size of 

100 nodes and TTL value 5 is 33486ms.  

The value becomes considerably higher 

(35569ms) in Fig. 13 when the service 

request rate is equivalent to 100% of 

intergrid nodes. However, the increase 

of intergrid size does not affect the 

request response time much, as the curve 

of the response time fluctuates in all four 

figures (10-13). Clearly, this indicates 

that the increase of the response time is 

not linearly related to the size of the 

intergrid nodes. This due to the 

decentralization of service requests 

processing as each head processes the 

service requests that are directed to it 

only.  This ensures that the scale of the 

intergrid size will not cause performance 

degradation to the proposed RD system, 

which ensures sustainability of the 

system irrespective of the scale of the 

intergrid users as well as service grids. 

Another aspect that is much related to 

the response time is the average number 

of hops that are crossed during the 

discovery process, which is supposed to 

be as low as possible with regard to the  

  

Fig. 14. Average Hops for generated requests 

equivalent to 25% of the intergrid size with 

different TTL values 

Fig. 9. Average Hops for generated requests 

equivalent to 50% of the intergrid size with 

different TTL values  

  

Fig. 10. Average Hops for generated requests 

equivalent to 75% of the intergrid size with 

different TTL values  

Fig. 11. Average Hops for generated requests 

equivalent to 100% of the intergrid size with 

different TTL values  

set TTL value. Fig. 14-17 show the 

average hops of the generated requests. 

Generally, the average hops values are 

slightly smaller than their respective 

defined TTL values, regardless of the 

number of generated service requests. 
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For example the average hops in TTL 5 

has a minimum value of 3.97, as shown 

in Fig. 14,  for the intergrid size  of 400 

nodes and the request rate is 25%;  then 

it fluctuates to 4.36 as the intergrid size 

is scaled up to 1000 .  However, in all 

the cases the corresponding rate of the 

discovered services is good. Therefore, 

we deduce that having a TTL between 4 

to 5 and an intergrid size of 400-1000 

nodes will give an acceptable 

performance to our RD system. A 

further note on the average hop values 

when the TTL value is 2 or 3 clearly 

indicate that the curve of the average 

hop is quite stable while scoring a poorer 

service request hits. This happens in the 

four cases (Fig. 14 – 17). For example, 

in figure 17 the average hop value for 

TTL 2 starts with a value of 2.93 and 

maintains almost the same value to 

finally end with the value of 2.98 where 

the size of the intergrid is set to 1000 

nodes. Therefore, we can deduce that our 

RD system can have good performance 

with TTL values such as 2 or 3 only if 

the number of concepts is reduced to 

three or four concepts and the intergrid 

size is limited to between 100-300 

nodes. With this result, it is convincing 

that the proposed RD system is able to 

meet the performance requirements for 

the intergrid RD system. This includes 

scalability, decentralization and 

dynamism. The service request hit rates 

obtained from different intergrid sizes 

shows that the proposed RD system can 

scale with the intergrid system as well. 

The response time has no linear 

dependency on the scale of the intergrid 

size which proved the decentralization 

feature. Lastly, the dynamism feature 

has been achieved by the fault tolerance 

mechanism. It worth to mention that, the 

framework complexity is linear, which 

renders the system as capable of 

providing high performance.  

 

4.3 Comparative Study  

 

Since the aim of the study is to provide 

an advance progress beyond the state-of-

art in this field, a comparative study to 

proof that is therefore needed. 

Consequently, we compare the proposed 

RD system with the most promising 

scalable RDs that we have found in the 

literature. The most scalable RD systems 

are the super-peer based RDs [14] and 

[15] systems, which we  have identified 

as the good candidate for the intergrid 

level. In fact, our RD system is also an 

extension of the super-peer model with 

the addition of the semantic technology 

into the architecture and optimized 

discovery algorithm. Therefore, our 

comparative simulation is done by 

simulating the same system with and 

without the use of semantic technology. 

As such, in order to have a fair 

comparison between the two situations, 

we set the intergrid size in the range of 

100 – 600 nodes as the stable range 

where the load balancing mechanism has 

no much effect on the performance, 

which will easy the discussion about the 

scalability of the systems. The random 

distribution of services to the nodes, the 

assignment of the number of services in 

any nodes, and the random generation of 

the service request for any given node 

are same in the two situations. The total 

number of service requests that should 

be generated by the nodes is equal to 

their sizes. Fig. 18-20 show the results of 

the two models in term of service 

request hit, average response time and 

average request forward hops.  
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Fig. 18. Discovered Services for generated 

requests equivalent to 100% of the intergrid 

obtained with the super-peer model and the 

semantic RD model 

Fig. 12. Average Response Time with the super-

peer model and the semantic RD model 

 

Fig. 20. Average Hops obtained with the super-peer model and the semantic RD model 

It is clear from Fig. 18 that the semantic 

RD system has a better request hit rate 

compared to the super-peer model in all 

the intergrid sizes. This is because in 

super-peer model the services in the 

classes are not organized in a particular 

relation, instead they are based on their 

joining time to the network, which 

makes it difficult to reach every node in 

the network. Meanwhile, the average 

response time of semantic RD model is 

also slightly higher most of time 

compared to the super-peer model. This 

because as the semantic RD model 

achieves high service request hit rate, it 

consumes more time. The average 

number of the hops of semantic is also a 

bit higher compared the super-peer. This 

is due to the discovery algorithm of the 

semantic RD, which optimizes the 

forwarding of messages in the network 

so that the service request can reach 

more nodes while scoring high service 

request rate. In short, based on the 

results of the comparative study on the 

intergrid of 100, 200, 400 and 600 nodes 

the semantic RD has a better 

performance than the super-peer model, 

but we cannot go as far as to generalize 

these findings because further 

investigation involving larger intergrid 

size than what we have used is needed.     

 

5 RELATED WORK 

 

Currently, there is a wealth of work on 

grid RD (e.g. Globus4, Condor5 , [4], [5], 

and [6] ) which can be classified  into 

two classes based on the description 

component, which are keyword-based 

RD systems and semantic-based RD 

systems. Keyword-based system uses 

syntactic information and data models 

such as directories [16]  and special 

                                                 
4 http://www.globus.org/. 
5 http://www.cs.wisc.edu/condor/. 
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databases to describe and discover the 

resources and services. Unfortunately, 

syntactic information and data models 

are not efficient in describing resources 

at intergrid level. This is because 

resources and services are initially 

described by using multi information 

services that belong to different grid 

middlewares. As a matter of fact, much 

of the efforts in keyword-based RD 

systems have been focused on achieving 

the high performance requirement; 

staring from introducing centralized 

registration models such as Globus 

MDS-1 [17], R-GMA6  [18] and 

Hawakeye [19]; then followed by 

hierarchical registration models [20], 

[21] and [22], and lastly peer-to-peer 

(P2P) registration models [23], [24],  [6] 

and [25]. Keyword-based RD systems 

that are based on P2P registration 

models have achieved high performance 

compared to the centralized and 

hierarchical models, but we cannot go 

far as to say that they have achieved full 

scalability.  Moreover, their use of 

syntactic description, especially at the 

intergrid level, prevents them from 

fulfilling the high searchability 

requirement. Semantic-based RD 

systems, on the other hand, use semantic 

information and data models (ontology 

and ontology languages) [9] to describe 

and discover the resources and services. 

Although, there is a considerable amount 

of work on semantic-based RD systems 

(e.g. [26], [27]), most of the existing 

approaches fail to achieve high 

searchability. This is due to the lack of a 

proper use of semantic description 

mechanism as the semantic technology 

is initially imported from the semantic 

web [28]. Actually, we have argued in 

                                                 
6 Relational Grid Monitoring Architecture: http://www.r-
gma.org/index.html 

an earlier study [29] that the main 

obstacle that leads to the continuous 

existence of this issue is the ad hoc 

research nature of these semantic-based 

RD studies (different research 

communities doing the same thing by 

different ways). 

 

6 CONCLUSIONS 

 

In this paper we presented a new RD 

framework. The framework has a 

conceptual model for semantic 

description that treats the small grids of 

the intergrid system as services (service 

grids) and their semantic representation 

has been based on that; a semantic 

registry architecture that specifies 

semantically the distribution of the 

service grids metadata directories and 

their management with regard to 

scalability and dynamism of the service 

grids metadata; and  an agent based 

discovery algorithm that exploits the 

description model and the registry 

architecture to search and select the 

service grids on behalf of the intergrid 

user. We have shown the effectiveness 

of the framework through some 

discussions and analysis, and an 

extensive simulation work which has 

confirmed the effectiveness of the 

framework. 
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