

Model-based Web Components Testing: Prioritization Using MIDS

and Centrality Measures

Ahmed Al-Herz and Moataz Ahmed

Information and Computer Science Department,

King Fahd University of Petoleum and Minerals,

Dhaharan 31261, Saudi Arabia

{alherz, moataz}@kfupm.edu.sa

ABSTRACT

Web applications testing and verification is

becoming a highly challenging task. A

number of model-based approaches has been

proposed to deal with such a challenge.

However, there is no criteria that could be

used to aid practitioners in selecting

appropriate approaches suitable for their

particular effort. In this paper we present a

set of attributes to serve as criteria for

classifying and comparing these approaches

and provide such aid to practitioners. The

set of attributes is also meant to guide

researchers interested in proposing new

model-based Web application testing and

verification approaches. The paper

discusses a number of representative

approaches against the criteria. Analysis of

the discussion highlights some open issues

for future research. In response to one of the

issues, we present an approach for

prioritizing components for testing to

maximize confidence given a limited

number of test cases to be executed. Some

initial results are reported in the paper.

KEYWORDS

Web applications, model-based testing,

testing prioritization, Web verification.

1 INTRODUCTION

Web applications are becoming more

complex. As more and more services

and information are made available over

the Internet and intranets, Web sites

have become extraordinarily complex,

while their correctness is often crucial to

the success of businesses and

organizations. Although traditional

software testing is already a notoriously

hard, time-consuming and expensive

process, Web-site testing presents even

greater challenges. Complexity arises

due to several factors, such as a larger

number of hyperlinks, more complex

interaction, frequently changing Web

pages, and increased use of distributed

servers. Moreover, the environment of

Web applications is more complex than

that of typical monolithic or client-server

applications – Web applications interact

with many components, such as CGI

scripts, browsers, backend databases,

proxy servers, etc., which may increase

the risk of interoperability issues.

Furthermore, many Web applications

have a large number of users with no

training on how to use the application –

they are likely to exercise it in

unpredictable ways. Therefore, Web

sites that are critical to business

operations of an organization should be

tested thoroughly and frequently ‎9.

Modeling helps to manage the

complexity of these systems. Several

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 821

mailto:%7d@kfupm.edu.sa

papers in the literature have studied the

problem of web applications modeling

for the sake of managing the overall

development complexity. Modeling

support is essential to provide an abstract

view of the application. It can help

designers during the design phases by

formally defining the requirements,

providing multiple levels of detail as

well as providing support for testing

prior to implementation. Support from

modeling can also be used in later

phases to support verification. Different

models have been proposed, while others

have been adapted from existing

modeling techniques for other types of

software

[1][2][3][4][5][6][8][22][23][24][25][26]

[27][28][29][30][31][32][33].

In this paper we focus on Web

applications testing and verification and

study the different model-based

approaches for managing associated

complexity. In the domain of model-

based testing, it is generally understood

that the model is an abstraction or

simplification of the behavior of the

application to be tested. The model is

captured in a machine readable format

with the sole purpose of acting as both

test sequence (trace) generator and

oracle. There are many approaches to

proposing a model for the purpose of

Web application verification and testing.

This paper studies some models that are

currently applied in the field of

verification and testing of web

applications. Our literature survey

revealed that some approaches focuses

on testing the navigational aspects of

web applications. Others concentrate on

solving problems arising from user

interaction with the browser in a way

that affects the underlying process.

Others are interested in dealing with

static and dynamic behavior. In our bid

to carry out a critical survey of the

literature on using models for testing and

verification of Web applications, we

discovered that a common ground for

classifying and comparing existing

approaches is not available. This

motivated our research to come up with

a set of attributes serve as criteria for

classifying and comparing various

modeling approaches to Web application

testing and verification. This set of

attributes is presented in Section ‎2.

The analysis of a number of

representative approaches against the

criteria highlights some open issues for

future research as discussed later. An

issue of interest in this paper is that a

typical Web application consists of a

large number of components (i.e., front-

end pages and backend processing). A

Web page can be static—where content

is constant for all users—or dynamic—

where content changes with user input.

A typical Web application could also be

distributed. Accordingly, even

regression testing could take weeks to

test all of the test cases from a previous

version ‎13. Due to time and resources

constraints, it would be desirable to help

the tester prioritize the test cases in a

way that maximize confidence given a

limited number of test cases to be

executed. However, the problem of

prioritizing Web application components

for testing did not catch enough

researchers’ attention. In this paper we

propose an approach for an approach for

prioritizing components to be tested.

Such prioritization could then be used to

prioritize corresponding test cases.

The rest of paper is organized as

follows: Section ‎2 gives the comparison

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 822

and categorization criteria. Section ‎3

discusses different approaches found in

the literature in light of the criteria.

Section ‎4 presents an approach for

suggesting a prioritization as which

component to be tested first. Finally we

conclude and highlight some possible

future work in Section 5.

2 COMPARISON AND

CATEGORIZATION CRITERIA

System modeling is a new emerging

technology. System models are created

to capture different aspects of the system

behavior. Several modeling languages

have been developed to model state-

based software systems, e.g., State

Charts, Extended Finite State Machine

(EFSM) ‎14, and Specification

Description Language (SDL) ‎15.

System modeling is very popular for

modeling state-based systems, e.g.,

computer communications systems,

industrial control systems, etc. System

models are used in the development

process, e.g., in partial code generation,

or in the testing process to design test

cases. Over the years, several model-

based test generation ‎14‎16‎17 and test

suite reduction ‎18 techniques have been

developed.

Modeling can be viewed from three

different perspectives: the objective

problem (security, testing etc.), the

particular problem at hand (a specific

case with its own characteristics e.g.,

ecommerce application), and finally the

model type (e.g. FSM, SDL, etc.). There

is still much uncertainty as to which

model-based approach suits which type

of Web application testing and/or

verification effort. Assessing a model-

based approach, in our own view, should

not only be based on the underlying

model expressiveness, but also on

characteristics of the overall approach.

We address this type of uncertainty by

proposing a set of attributes to allow for

classification and comparison of

approaches. These assessment attributes

offer more, beyond their usefulness in

carrying out comparison of approaches.

They can also serve as guidance to

researchers attempting to develop

model-based Web application testing

and verification approaches. We discuss

these attributes in the sequel.

Aspects Coverage: This attribute

considers the Web application aspects

that are being modeled by the models.

These aspects are classified into three

categories namely, static, dynamic and

interaction aspects.

Static aspects: Static aspects of web

applications include static HTML pages

and the hyper links that connect the

static pages with other static HTML

pages. When the user clicks on a static

link, a request is sent to the server to

retrieve the target page.

Dynamic aspects: These aspects of web

application include dynamic HTML

pages that contain dynamic content and

links. Dynamic contents and links are

generated by backend processing based

on inputs obtained from users or other

supporting software.

Interaction aspects: These aspects take

into consideration the user interaction

with the web application. User

interactions may include back page,

switching to another page by typing the

URL in the browser, opening multiple

pages at the same time. Models can

capture these types of user interactions

and represent the effect on the content,

behavior or the navigation.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 823

Underlying Model: Web applications

components are represented using

different conceptual models, for

example, some uses object relation

diagram others use finite state machines

model.

Perspective of Modeling: Web

application models can be analyzed from

different perspectives, like navigation,

and behavior. These perspectives can be

static or dynamic.

Objectives of the Model: Web

application models have different

objectives, some models objective is

testing, other models objectives are

implementation or design verification

and model verification against a set of

properties.

Source Code Requirement: Verification

or testing can be a white box or a black

box testing or verification. If white box

testing is used by a model then the

source code is required while, the black

box testing requires test cases only.

Tool Support: Some models are

supported by tools for automatic model

generation, verification or testing, while

other models are still not supported.

Expressiveness: Some models represent

and convey structural, behavioral and

functional aspects of web applications

components for both external and

internal view of the component more

effectively in this case the

expressiveness would be high, while

other models may represent only the

structural aspect or the behavioral

aspect. Some models represent the

external relations between components

only.

Complexity: This attribute determines

the complexity of the models, some

models needs complex model to

represent the components in term of the

size and the attribute needed to represent

entities and relations.

3 CRITICAL SURVEY

In this section, we present a summary

discussion of some representative works

based on our set of attributes. The list of

considered approaches in our study is

not exhaustive, but we gave attention to

those works we considered

representative with regard to the subject

under discussion. We also discuss the

shortcomings associated with the

different approaches considered. It is

worth noting here that we used

subjective ratings in evaluating the

different approaches, e.g., high

expressiveness and low complexity.

Future work will investigate applying

more quantitative objective ratings.

3.1 Model Checking-based

Verification of Web Application

Miao et al. [1] focus on automated

verification of Web applications by

using model checking method. The

approach involves two models, the

design model and the implementation

model of a Web application. To verify if

an implemented Web application

performs in accordance with its design,

the approach analyzes the design model

to generate properties in temporal logic

formulas that are model checked on the

implementation model. Their work

focuses on black-box automated

verification of a Web application by

using model checking method. The

approach involves two formal models: a

design model denoted by WAD, from

which the temporal logic properties for a

Web application are derived, and an

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 824

implementation model, denoted by WAI,

which is model checked in order to

verify those derived properties. An

Object Relation Diagram (ORD) is

employed to represent the design

structure of a Web application, i.e.,

design model. Aiming at the verification

of the external behavior of a Web

application from client’s point of view,

WAD is intended to describe Web pages,

software components interacting directly

with the Web pages, and their

relationships. The Kripke structure used

for model checking is employed to

model the implementation of a Web

application, it is a type of state transition

graph consisting of nodes representing

the reachable states of the system and

edges representing the state transitions

of the system. All properties generated

from WAD are model checked on WAI

by using model checker SMV (Symbolic

Model Verifier). SMV will provide a

diagnostic sequence in the stack

whenever a violation of the property is

detected.

With regard to the tool support, this

approach offers a prototype which

automatically analyzes the design model

to build the properties in CTL and

delegates the task of property

verification to the existing model

checker SMV where the implementation

model is typed in manually.

The model’s level of expressiveness is

considered to be moderate. While it

provides a way to describe the

components and the relation between

them and the external view of the model

very effectively, the model does not

describe the low-level details and the

internal behavior of each component.

The approach is considered to be of

moderate complexity; the directed graph

describes the external relation between

components.

3.2 Testing Web Applications by

Modeling with FSMs

In this approach the authors builds

hierarchies of Finite State Machines

(FSMs) that model subsystems of the

web applications ‎2. This approach

proceeds in two phases. Phase 1 builds a

model of the web application. This is

done in four steps: (1) the web

application is partitioned into clusters,

(2) logical web pages are defined, (3)

FSMs are built for each cluster, and (4)

an Application FSM is built to represent

the entire web application. Phase 2 then

generates tests from the model defined in

Phase 1.

Tool support: They developed a research

prototype in Java. It has a graphical

editor to input the FSMs and the

constraint descriptions. It also generates

expected outputs in the form of the next

state (LWP) to serve as a simple test

oracle. Path generation includes edge

coverage and roundtrip. Input selection

is based on using an input value

database. The resulting sequences of test

inputs are made executable by

transforming them into an Evalid script.

With regard to the level of

expressiveness, it is high in the lowest

level and low in the highest level of the

hierarchy. The low level details of

operations and interconnection can be

observed and described; at the higher

level in the hierarchy, however, the

model becomes more abstract, and some

of details become invisible.

The approach is considered to be of high

complexity in the lowest level and low

complexity in the highest level of the

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

825

hierarchy. At the low level of the

hierarchy, details of operations and

interconnection are modeled by FSM

which require many and complex

interactions but in the higher level in the

hierarchy the model becomes more

abstract and simpler.

3.3 An Object-Oriented Web Test

Model for Testing Web

Applications

Kung et al. in ‎3 propose a model that

extends traditional test models, such as

control flow graph, data flow graph, and

finite state machines to web applications

for capturing their test-related artifacts.

Based on the proposed test model, test

cases for validating web applications can

be derived automatically. In this

methodology, both static and dynamic

test artifacts of a web application are

extracted to create a Web Test Model

(WTM) instance model. Through the

instance model, structural and behavioral

test cases can be derived systematically

to benefit test processes. Test artifacts

are represented in the WTM from three

perspectives: the object, the behavior,

and the structure.

From the object perspective, entities of a

web application are represented using

object relation diagram (ORD) in terms

of objects and inter-dependent

relationships.

In particular, an ORD = (V, L, E) is a

directed graph, where V is a set of nodes

representing the objects, L is a set of

labels representing the relationship

types, and (E ⊆ V x V x L) is a set of

edges representing the relations between

the objects, There are three types of

objects in WTM: client pages, server

pages, and components, to accommodate

the new features of web applications,

new relationship types are introduced in

addition to those in the object-oriented

programs. The new relationship types,

navigation, request, response, and

redirect are used to model the

navigation, HTTP request/ response, and

redirect relations introduced by web

applications, respectively. Thus, in the

ORD, the set of labels L = I, Ag, As, N,

Req, Rs, Rd, where I: inheritance, Ag:

Aggregation, As: association.

From the behavior perspective, a page

navigation diagram (PND) is used to

depict the navigation behavior of a web

application. The PND is a finite state

machine (FSM). Each state of the FSM

represents a client page. The transition

between the states represents the

hyperlink and is labeled by the URL of

the hyperlink. The PND of a web

application can be constructed from an

ORD. To deal with the dynamic

navigation (the construction of client

pages can be dynamic at runtime based

on the data submitted along with the

HTTP requests or the internal states of

the application. Hence, the same

navigation hyperlink may lead to

different client pages). To model this

behavior a guard condition enclosed in

brackets is imposed on the transition in

the PND. The guard condition specifies

the conditions of the submitted data or

internal system states that must be true

in order to fire the transition. To detect

the errors related to navigation behavior

a navigation test tree is employed. A

navigation test tree is a spanning tree

constructed from a PND, by analyzing

the tree; they can check some properties,

such as reachability and deadlock, of the

navigation behavior. At the same time, a

set of object state diagrams (OSDs) are

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 826

used to describe the state behavior of

interacting objects. It can represent the

state-dependent behavior of an object in

a web application. The state-dependent

behavior for an aggregate object then

can be modeled by a composite OSD

(COSD) of the corresponding OSDs.

The structure perspective of the WTM is

to extract both control flow and data

flow information of a Web application.

To capture control flow and data flow

information, the Block Branch Diagram

(BBD) and Function Cluster Diagrams

(FCD) are employed in the WTM. The

BBD is similar to a control flow graph.

It is constructed for each individual

function of a Web application to

describe the control and data flow

information, including the internal

control structure, variables used/defined,

parameter list, and functions invoked, of

a function. Therefore, the BBD can be

used for traditional structural testing of

each individual function; the FCD is a

set of function clusters within an object.

Each function cluster is a graph G =

(V,E), where V is a set of nodes

representing the individual functions and

E ⊆ V × V, is a set of edges representing

the calling relations between the nodes.

The approach offers a very high level of

expressiveness. Different models are

used to describe external, behavioral and

internal aspects of components which

can express the model effectively.

The approach is considered to be of very

high complexity. Many models are used

to describe the internal, behavioral and

external structure of components so the

overall system model is very complex.

3.4 Formal Verification of Web

Applications Modeled by

Communicating Automata

Haydar et al. in ‎4 devise an algorithm to

convert the observed behavior, which

they called a browsing session, into an

automata based model. In case of

applications with frames and multiple

windows that exhibit concurrent

behavior, the browsing session is

partitioned into local browsing sessions,

each corresponding to the

frame/window/frameset entities in the

application under test. These local

sessions are then converted into

communicating automata. They did an

implementation for a framework which

includes the following steps: The user

defines some desired attributes through a

graphical user interface prior to the

analysis process. For example,

reachability properties, and the

checking for frame errors , frames

having same name are not active

simultaneously. These attributes are used

in formulating the properties to verify on

the application. A monitoring tool

intercepts HTTP requests and responses

during the navigation of the Web

Application Under Test (WAUT). The

intercepted data are fed to an analysis

tool, which continuously analyzes the

data in real time (online mode),

incrementally builds an internal data

structure of the automata model of the

browsing session, and translates it into

XML-Promela. The XML-Promela file

is then imported into aSpin, an extension

of the Spin model checker. ASpin then

verifies the model against the properties,

furthermore the model checking results

include counterexamples that facilitate

error tracking.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 827

The approach is supported with a

framework that is composed of; GUI to

collect desirable properties from the

user, network monitoring tool to

intercept HTTP request and response,

analysis tool that builds the

communicating automata based on the

received data. The model is fed into

aSpin for verification.

The approach offers a low level of

expressiveness, as the model describes a

session or multiple sessions, which may

not give a full description of the

complete model of the system; it

depends on how the user will interact

with the application.

The approach is considered to be of high

complexity; based on the user input the

FSM can get complex.

3.5 Verifying Interactive Web

Programs

Licata et al. in ‎5 describe a model

checker designed to identify errors in

web software. A technique for

automatically generating novel models

of web programs from their source code

was presented. These models include

the additional control flow enabled by

user operations. They presented a

powerful base property language that

permits specification of useful web

properties, along with several property

idioms that simplify specification of the

most common web properties. The

authors model a web program P by its

web control-flow graph (WebCFG). The

WebCFG is an augmented control-flow

graph (CFG). User interaction control

flows are being added to the model to

build a sound verification tool. The

authors reduce user operations to

primitive user operations proposed by

Graunke et al. ‎8. All traditional browser

operations can be expressed in this

calculus; they just account for switch

and submit. Then they construct the

WebCFG completely automatically from

the source of a web program using a

standard CFG construction technique

followed by a simple graph traversal to

add the post-web-interaction nodes and

the web-interaction edges. The resulting

model and properties are checkable by

language containment. This work

doesn’t address the concurrency issues

resulting from multiple simultaneous

accesses to a server by different clients.

With regard to tool support, the authors

implemented their own model checker

tool to support their approach.

The approach models are meant to prove

properties of interactive web sites by

discovering user operation- related bugs,

as well as providing a method for

verifying all-paths properties of

interactive web sites.

The approach offers high level of

expressiveness. CFGraph describe

details of behaviors of components and

how these interact with each other. In

addition, adding the user operations to

the model makes the model describe the

behavioral aspect based on the user

operations.

The approach is considered to of very

high complexity; CFGraph is very

complex, especially when the user

operation is involved in the model.

3.6 Web Site Analysis: Structure

and Evolution

Ricca et al. in ‎6 adapts an approach to

analyze, test, and restructure web

application based on a reverse

engineering paradigm. They didn’t

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 828

propose models and formalisms to

support the design of web applications;

instead, based on the assumption that a

web application already exists, they

investigate different well established

methods for the analysis, testing and re-

structuring of traditional software

systems, adapting them to the case of

Web applications. In [6] web

application is modeled as a graph; nodes

and edges are split into different subsets.

Nodes subsets are a set of all web pages;

a set of frames for one web page; and a

set of all frames.

Edges are also split into three subsets

according to the kind of target node; a

set of hyperlinks between pages or a

relation showing the composition of web

page into frames; a set of the relations

between frames and pages; as they show

which page in which frame is loaded;

and a set of relations showing the

loading of a page into a particular frame.

The name of the frame is given as a label

next to the link. This model is

implemented in ReWeb. The ReWeb ‎7

tool consists of three modules: a Spider,

an Analyzer and a Viewer. The Spider

downloads all pages of a target web site,

starting from a given URL and providing

the input required by dynamic pages,

and then it builds a model of the

downloaded site. The Analyzer uses the

UML model of the web site and the

downloaded pages to perform several

analyses. Since the structure of a Web

application can be modeled with a graph,

several known analysis, working on

graphs, such as flow analysis and

traversal algorithms can be applied. The

Viewer provides a Graphical User

Interface (GUI) to display the Web

application view as well as the textual

output (reports) of the analyses.

With regard to supportability, the

approach is supported by the ReWeb

tool. The ReWeb tool can periodically

download the entire set of pages in a

site. Results of the analyses are then

provided to the user, by exploiting

different visualization techniques. Colors

are employed in the history view, while

structural and system views are enriched

with powerful navigation facilities. Pop-

up windows associated to nodes are used

to show the textual results of the

structural analyses.

The level of expressiveness is low; the

model described by directed graph only.

The approach is considered to be of low

complexity; only a directed graph is

involved in the model.

3.7 Summary

Table 1 shows the summary of the 6

different methods described.

Table 1. Summary of Findings

Method Aspect type Model Perspective Objective Source

code

Tool Support Expressiveness Complexity

Miao et al. Static +

dynamic

ORD Navigation +

behavior

Implementation

verification
against design

Yes Prototype Moderate Moderate

Andrwes et al. Static +

dynamic

FSM, AFSM Navigation +

behavior

Testing No Prototype Low Low

Kung et al. Static +

dynamic

ORD, PND,

OSD, BBD,
FCD

Behavior +

navigation

Testing Yes None Very High Very High

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 829

Haydar et al. Static +

dynamic
Communicating
automata

Navigation +
behavior

Model
verification

against defined

properties

No GUI +
network

monitoring

tool +
analysis tool

Low High

Licata et al. Interaction WebCFG Interaction

behavior

Model

verification
against

interactive

properties

Yes Implement a

model
checker

High Very High

Ricca et al. Static Directed graph Navigation Original design

verification
during

evolution and

Testing

Yes ReWeb Low Low

4 COMPONENTS TESTING

PRIORITIZATION

From Table 1 we can see that methods

discussed are lacking ways to prioritize

Web application components for testing.

This untreated aspect is very important

especially when we know that

development and deployment cycles of

Web applications are dramatically

becoming short, and testing is often

considered a cost-intensive and time-

consuming process. Here, we give

several suggestions which could be

investigated more thoroughly in future

works. First solution is to apply an

algorithm to find the minimum

independent dominating set on the graph

based model, then we can consider these

set as the highest priority components to

test. The rationale here is that these

dominating components can be regarded

as super components because they are

connected to many other components.

Also the components in this way are

either dominating or dominated by

others; so, all components that may lead

to other components can be tested.

Another suggestion is to rank

components based on several graph

centrality measures which have been

used extensively in social and biological

networks to find important nodes

[36][38][39]. In this research, we use

three basic centrality measures namely

the degree centrality measure, the

betweeness centrality measure and the

closeness centrality measure. The

degree centrality measure suggests that

an important node is involved in a large

number of interactions. For directed

networks, there are two notions of

degree centrality: one based on fan in-

degree and the other on fan out-degree.

A node with high fan in-degree or fan

out-degree is ranked higher than those of

less degree; since high degree means that

most probably many components will

leads to this component or a component

may use many services from the others.

Betweeness centrality measure can be

used to rank components. The measure

reflects the intuition that an important

node will lie on a high proportion of

paths between other nodes in the

network. Closeness centrality measures

can be applied to a graph based model to

rank components [34]. The rationale

behind such a ranking is that the

components that are close to many

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 830

components is important and greatly

affect the overall system behavior.

In the sequel, we apply these methods on

an ORD model design (Figure 1) to test

their suitability. To conclude, we give

analyses of their corresponding

performance.

4.1 Minimum Independent

Dominating Set Method (MIDSM)

A dominating set D of a graph G(V, E)

is a subset of V in which each vertex v ∈

(V – D) is adjacent to at least one vertex

u ∈ D, i.e., (v, u) ∈ E. An independent

dominating set is a dominating set

(where D is independent, i.e., (u, v) ∉ E,

for all u, v ∈ D). Since finding the

minimum independent dominating set is

NP-Complete problem ‎21, we will use a

greedy algorithm to find a set that is as

minimum as possible. First, we will find

the minimum independent dominating

set by using a greedy algorithm which

can be applied on undirected graph and

it will choose a node with maximum

degree and delete the neighbors. So, the

first step is to convert the model to an

undirected graph, the result can be seen

in Figure 2.

Figure 1. An ORD design model[1].

If we apply the greedy algorithm we will

choose node H which corresponds to the

grade web page as the first node because

it has degree of four which is the

maximum and delete all neighbors. Now

we can select either node A or node D

since they have the highest degree which

is two, let us select A assuming there is

no any other criteria for selection. Now

we can select node D and then select

node K. So, the final set is H, A, D and

K.

A C

B D F H

E G

K

I

J

Figure 2. The undirected graph of the ORD

model.

Analysis

The grade web page is used and uses

more components than the other nodes

so it is indeed an important page. The

main page was selected as an important

page but it is not since it only contains

links to two pages so it is static. Student

check component is important since it

check for the validity of the user. The

grade list web page is selected as an

important page but it is not since it only

contains the final results which depend

on the get grade component which is

more important. In addition, the method

missed by two pages which is more than

that of the other components. The

weakness of this approach is when there

is more than one node with the same

degree; in this case, which one to select?

We could define more criteria for

selection like the type of the node and

the type of the edge which can impact

the selection. Another weakness is not

considering the importance of the

direction which may impact the

importance of the components. Also, if

we delete the neighbors, we might

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 831

actually delete an important component

or page.

4.2 The Degree Centrality (DC)

Measure

The degree centrality measure is perhaps

the simplest centrality measure, though it

is often a highly effective measure of the

influence or importance of a node [35].

The idea behind using the degree

centrality measure of importance in a

network is the following: An important

node is involved in a large number of

interactions. Formally, for an undirected

graph G, the degree centrality of a node

u V(G) is given by DC(u) = deg(u) ‎19.

For directed networks, there are two

notions of degree centrality measure:

one is based on fan in-degree and the

other one is based on fan out-degree.

Considering the ORD model design

(Figure 1), let us rank the components

based on the fan in-degree and fan out-

degree. On the one hand, the Get

Student component and the ―Grade‖

page‖ have fan in-degree of value 2

which is the highest degree. The News,

Login, Login Fail, Student View,

Student Info, Grade List pages, and the

Student Check component with degree

of value 1. The Main page has the

lowest degree with degree of value 0.

On the other hand, the Main, Student

View and Grade pages, and the Student

Check component have fan out-degree

of value 2 which is the highest degree.

The results are depicted in Figure 3 and

Figure 4.

Figure 3. The in degree centrality measures of

the ORD model components.

Figure 4. The out degree centrality measures of

the ORD model components.

Analysis

The result of the fan-in degree centrality

show better ranking of importance

because if the components which have

high fan in-degree fail then many other

components will fail to get the services.

Get student and grades page are used by

more components than the other

components, so any failure in these

components will make the other

component fail. The issue is that we

might have many components with same

degree, the question is how we can

prioritize these with same degree; we

might add more criteria like the

component type and the fan in-edges

types. Considering the results of the out

degree centrality measure, we can see

good ranking from another perspective,

though it is less effective than the fan-in

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 832

degree centrality measure. Components

with high fan out degree acts as main

hubs that allow a service or a user to use

or transfer to many components, if such

components fail then all other connected

components and services cannot be

reached. Returning to our example,

main page will direct the user to either

news or login components, while news

components has fan out degree of value

0, which means it does not use or lead to

any services so it is less important,

therefore it should have lower testing

priority.

4.3 Betweeness Centrality (BC)

Formally, for distinct nodes, u, v, w

V(G), let σuv be the total number of

shortest paths between u and v and

σuv(w) be the number of shortest paths

from u to v that pass through w. Also,

for w V(G), let V (u) denote the set of

all ordered pairs, (u, v) in V(G) V(G)

such that u, v, w are all distinct. Then,

the betweenness measure of w, BC(w),

is given by

BC(w) = ‎20. (1)

It is in most cases only an approximation

to assume that information flows along

shortest paths; normally it will not, and

variations of betweenness centrality such

as ―flow betweenness‖ and ―random

walk betweenness‖ have been proposed

to allow for this. In many practical cases

however, the simple (shortest path)

betweenness centrality gives quite

informative answers. ‎35

Now let us use the betweeness measure

to rank the importance of the

components. First, all shortest paths

between any pairs of components in the

model are found. Then we will go over

all components and see on which paths

they exist. The Main page and the News

page do not come between any other

components in a path so their BC is 0.

Login exists on 8 paths so its BC is 8.

Student Check comes between 14

components on different shortest paths

so its BC is 14. Student view’s BC is

15. Get student comes between 4

components on different shortest paths

so its BC is 4. Student info page’s BC is

3. Grade component’s BC is 13. Get

grade component exists on 7 paths so its

BC is 7. The grade list page is not

between any other pages so its BC is 0.

From the results we can see that student

view page has the highest BC then

student check component and then the

grade page, after that login, get grade,

and get grade and student info page. The

result is shown in Figure 5.

Figure 5. The betweeness centrality measures of

the ORD model components.

Analysis

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

Measure

Betweenness centrality ‎20‎36‎37 is a

fundamental measurement concept for

the analysis of networks. The book by

Hage and Harary (1991) shows some of

its many descriptive and predictive uses

[40].

The idea behind this measure is the

following: An important node will lie

on a high proportion of shortest paths

between other nodes in the network.

 833

The results show good ranking because

if any components which comes between

many other components fail, then the

other components will fail to reach the

other component, which means those

components with high BC are bottle

nicks so they are important and their

priority in testing should be high. The

weakness in this approach is that we

might have components with the same

BCs, the question is which components

is more important within these

components, so we need to add more

attributes like the type of components,

and the type of edges in these

components.

4.4 Closeness Centrality (CC)

Measure

The basic idea behind this type of

measures is the following: An important

component is typically close to, and can

communicate quickly with, the other

components in the network. Sabidussi in

‎34 defined the term closeness centrality

of node CC(u) as follows:

CC(u) = . (2)

where d(u, v) is the distance between

node u and node v; V is the set of all

nodes; is the average distance between

u and the other nodes. For directed

networks, the centrality is called output

closeness centrality when d(u, v) is

defined as the path length from u to v.

Also, some vertices may not be

reachable from vertex u—two vertices

can lie in separate ―components‖ of a

network, with no connection between the

components at all. In this case, closeness

as described above is not well defined.

The usual solution to this problem is

simply to define closeness to be the

average geodesic distance to all

reachable vertices, excluding those to

which no path exists ‎35.

Let’s rank the components in Figure 1

using the closeness centrality measure.

Consider the Main page, the summation

of all shortest distances is 34 and the

average is 3.4, so the CC (Main page) is

0.294118. On the other hand, the

closeness centrality measure of the News

component is 0 since it does not lead to

another component. In addition, the

closeness centrality measure of the Get

Grade component is 1 which the highest

measure since it leads to one component

and the distance is 1. It should be noted

that the highest possible value is 1 which

is attainable when the distances between

a node and all reachable node are one.

The measures of all components can be

found in Figure 6.

Figure 6. The closeness centrality measures of

the ORD model components.

Analysis

The Get Grade component has the

highest closeness centrality measure,

which contradict the previous measures

we found, this is because the closeness

centrality measure takes only the

reachable components into consideration

and ignores those components that

cannot be reached. If we discard the Get

Grade component we will see a

reasonable ranking with the Grade

component as the highest ranked

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 834

component and then the Student View

component which are indeed important.

Therefore, the closeness centrality

measure will give better result if the

component model does not contain

single sequential links or we can

eliminate those components from the

process of ranking. As we mentioned

before, adding more attributes to the

ranking process may lead to better

results, however adding attributes will be

less effective since most results are

distinct and not like the previous

measure where we have similar results.

5 CONCLUSION AND FUTURE

WORK

In this paper we proposed set of

attributes for classifying and comparing

model-based Web applications testing

and verification approaches. We

discussed six different representative

analysis models that are currently

applied in the field. We summarized our

discussion in Table 1 which reveals that

the methods discussed are lacking ways

to prioritize web application components

for testing. We suggested four methods

to allow for prioritizing components:

MIDSM in addition to three centrality

measures namely degree (DC),

betweeness (BC) and closeness

centrality (CC) measures. We illustrated

the suggested methods on an ORD

design model. The results show that the

MIDSM has some shortcomings and

may miss important components and

consider not important components. The

fan in-DC measure and BC measure

show better results than the out-DC

measure and the CC measure, with some

issues. The issues can be addressed by

incorporating more attributes and criteria

for selections like the type of the

components, and the edges, these

attributes in addition to others can be

investigated in future work. Also, we

plan to investigate combining the DC

measure and BC measure together to

rank the components by assigning a

percentage for each measure in future

work as well. The percentage can be

learned from experience, and using

machine learning methods to find the

best percentage. It is worth noting here

though that in this paper we only

demonstrated the approach using an

illustrative example; in future work, we

will conduct more rigorous analysis of

the different methods.

Acknowledgements. The authors wish

to acknowledge King Fahd University of

Petroleum and Minerals (KFUPM) for

utilizing the various facilities in carrying

out this research.

6 REFERENCES

1. Miao, H., Zeng, H.: Model Checking-based

Verification of Web Application.

Proceedings of 12th IEEE International

Conference on Engineering Complex

Computer Systems. pp. 47--55 (2007).

2. Andrews, A., Offutt, J., Alexander, R.:

Testing Web Applications by Modeling with

FSMs. Software Systems and Modeling. vol.

4, no.3. pp. 326--345 (2005).

3. Kung, D. C., Liu, C. H., Hsia, P.: An

Object-Oriented Web Test Model for

Testing Web Applications. In: Proceedings

of the 1st Asia-Pacific Conference on Web

Applications, pp. 111--120. IEEE Press,

New York (2000).

4. Haydar, M., Petrenko, A., Sahraoui, H.:

Formal Verification of Web Applications

Modeled by Communicating Automata. In:

Proceedings of the 24
th

 IFIP International

Conference on Formal Techniques for

Networked and Distributed Systems, pp.

115-132. Madrid, Spain (2004).

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 835

5. Licata, D. R., Krishnamurthi, S.: Verifying

interactive web programs. In: Proceedings of

the IEEE International Conference on

Automated Software Engineering, pp. 164--

173. IEEE Computer Society (2004).

6. Ricca, F., Tonella, P.: Web site analysis:

Structure and evolution. In: Proceedings of

the International Conference on Software

Maintenance, pp. 76--86 (2000).

7. Ricca, F., Tonella, P.: Building a tool for the

analysis and testing of Web applications:

Problems and solutions. In: Proceedings of

the Tools and Algorithms for the

Construction and Analysis of Systems

Genova. vol. 2031. pp. 373--388. Italy

(2001).

8. Graunke, P. T., Findler, R. B.,

Krishnamurthi, S., Felleisen, M.: Modeling

web interactions. In: Pierpaolo Degano,

editor, Proceedings of the Programming

Languages and Systems, 12th European

Symposium on Programming, ESOP 2003,

Held as Part of the Joint European

Conferences on Theory and Practice of

Software, ETAPS 2003, Warsaw, Poland,

April 7-11, 2003. LNCS. vol. 2618. pp. 238-

-252. Springer (2003).

9. Benedikt, M., Freire, J., Godefroid, P.:

VeriWeb: Automatically Testing Dynamic

Web Sites. In: Proceedings of 11th

International World Wide Web Conference

(2002).

10. Sampath, S., Bryce, R., Viswanath, G.,

Kandimalla, V., Koru, A.G.: Prioritizing

User-Session-Based Test Cases for Web

Application Testing. In: Proceedings of

IEEE Int’l Conf. Software Testing,

Verification, and Validation, pp. 141--150

(2008).

11. Bryce, R. C., Sampath, S., Memon, A. M.:

Developing a Single Model and Test

Prioritization Strategies for Event-Driven

Software. IEEE Transactions On Software

Engineering. vol. 37, no. X, XXXXXXX

(2011).

12. Korel, B., Tahat, L. H., Harman, M.: Test

Prioritization Using System Models. In:

Proceedings of the 21st IEEE International

Conference on Software Maintenance

(2005).

13. Rothermel, G., Untch, R. H., Chu, C.,

Harrold, M. J.: Prioritizing Test Cases for

Regression Testing. IEEE Trans. Software

Eng.. vol. 27, no. 10. pp. 929--948 (2001).

14. Cheng, K., Krishnakumar, A.: Automatic

Functional Test Generation Using The

Extended Finite State Machine Model. In:

Proceedings of ACM/IEEE Design

Automation Conf., pp. 86--91 (1993).

15. Dssouli, R., Saleh, K., Aboulhamid, E., En-

Nouaary, A., Bourhfir, C.: Test

Development For Communication

Protocols: Towards Automation. Computer

Networks, 31, pp. 1835--1872 (1999).

16. Dick, J., Faivre, A.: Automating the

Generation and Sequencing of Test Case

from Model-Based Specification. In:

Proceedings of International Symposium on

Formal Methods, pp. 268--284 (1992).

17. Vaysburg, B., Tahat, L., Korel, B.:

Dependence Analysis in Reduction of

Requirement Based Test Suites. In

Proceedings of ACM International

Symposium on Software Testing and

Analysis, pp. 107--111 (2002).

18. Korel, B., Tahat, L., Vaysburg, B.: Model

Based Regression Test Reduction Using

Dependence Analysis: In: Proceeding of

IEEE International Conf. on Software

Maintenance, pp. 214--223 (2002).

19. Nieminen, J.: On centrality in a graph.

Scandinavian Journal of Psychology 15, pp.

322--336 (1974).

20. Freeman, C.: A set of measures of centrality

based on betweenness. Sociometry 40,

pp.35--41 (1977).

21. Garey, M. R., Johnson, D. S.: Computers

and intractability. A guide to the theory of

NP-completeness. W. H. Freeman, San

Francisco (1979).

22. Conallen, J.: Modeling web application

architectures with UML. Communications

of the ACM. vol. 42, no. 10. pp. 63--71

(1999).

23. de Alfaro, L.: Model checking the world

wide web. In: Gerard Berry, Hubert Comon,

and Alain Finkel, editors, Proceedings of the

Computer Aided Verification, 13th

International Conference, CAV 2001, Paris,

France. LNCS. vol. 2102. pp. 337--349.

Springer (2001).

24. Alpuente, M., Ballis, D., Falaschi, M.: A

rewriting-based framework for web sites

verification. Electr. Notes Theor. Comput.

Sci. vol. 124, no. 1. pp. 41--61 (2005).

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 836

25. Chen, J., Zhao, X.: Formal models for web

navigations with session control and

browser cache. In: ICFEM. pp. 46--60

(2004).

26. Bordbar, B., Anastasakis, K.: MDA and

analysis of web applications. In: Dirk

Draheim and Gerald Weber, editors,

Proceedings of the Trends in Enterprise

Application Architecture. LNCS. vol. 3888.

pp. 44--55. Springer (2005).

27. Winckler, M., Palanque, P.: Statewebcharts:

A formal description technique dedicated to

navigation modelling of web applications.

In: DSV-IS. pp. 61--76 (2003).

28. Han, M., Hofmeister, C.: Modeling and

verification of adaptive navigation in web

applications. In: ICWE. pp. 329--336

(2006).

29. Di Sciascio, E., Donini, F., Mongiello, M.,

Piscitelli, G.: Web applications design and

maintenance using symbolic model

checking. In: Proceedings of the European

Conference on Software Maintenance and

Reengineering, pp. 63--72. IEEE Computer

Society (2003).

30. Castelluccia, D., Mongiello, M., Ruta, M.,

Totaro, R.: Waver: A model checking-based

tool to verify web application design. Electr.

Notes Theor. Comput. Sci.. vol. 157 no. 1.

pp. 61--76 (2006).

31. Bellettini, C., Marchetto, A., Trentini, A.:

Webuml: reverse engineering of web

applications. In: SAC, pp. 1662--1669

(2004).

32. Wu, Y., Outt, J.: Modeling and testing web-

based applications. Technical report, George

Mason University (2002).

33. Syriani, J., Mansour, N.: Modeling web

systems using SDL. In: Adnan Yazici and

Cevat Sener, editors, Proceedings of the

Computer and Information Sciences - ISCIS

2003, 18th International Symposium,

Antalya, Turkey, November 3-5, 2003.

LNCS. vol. 2869. pp. 1019--1026. Springer

(2003).

34. Sabidussi,G.: The centrality index of a

graph. Psychometrika, 31, 58–603 (1966).

35. Newman M.E.J.: Mathematics of networks.

In The New Palgrave Encyclopedia of

Economics, 2
nd

 edition. Palgrave Macmillan,

Basingstoke, (2007).

36. Freeman, C.: Centrality in social networks.

1. Conceptual clarification. Social Networks

1: 215-239, (1979).

37. Freeman, C.: The gatekeeper, pair-

dependency and structural centrality.

Quantity and Quality 14:585-592, (1980).

38. Ma, H. W., Zeng, A. P., The connectivity

structure, giant strong component and

centrality of metabolic networks.

Bioinformatics, 19, 1423–1430, (2003).

39. Jeong, H., Mason, S. P., Barabasi, A. L.,

Oltvai, Z. N., Lethality and centrality in

protein networks. Nature, 411, 41–42,

(2001).

40. Hage, P. and Harary,F.: Exchange in

Oceanea: A Graph Theoretic Analysis.

Oxford: Clarendon Press (1991).

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 821-837
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

837

