
 

 

Solving Small Sample Recipe Generation Problem with Hybrid 

WKRCF-PSO 

Mohd Ibrahim Shapiai
1
, Zuwairie Ibrahim

1
, Marzuki Khalid

1
, Lee Wen Jau

2
, Soon-Chuan 

Ong
2
 and Vladimir Pavlovich

3
 

1
Centre of Artificial Intelligent and Robotics (CAIRO), Universiti Teknologi Malaysia, 

Jalan Semarak, 54100, Kuala Lumpur, Malaysia.  
2
ATTD Automation (APAC) Pathfinding, Intel Technology Sdn. Bhd. Kulim, Penang, 

Malaysia  
3
Department of Computer Science, Rutgers University, NJ 08854, New Jersey, United 

States 

ibrahimfke@gmail.com, zuwairiee@fke.utm.my, marzuki.khalid@utm.my, 

wen.jau.lee@intel.com, soon.chuan.ong@intel.com and vladimir@cs.rutgers 

  

 

ABSTRACT 

 
The cost of the experimental setup during 

the assembly process development of a 

chipset, particularly the under-fill process, 

can often result in insufficient data samples. 

In INTEL Malaysia, for example, the 

historical chipset data from an under-fill 

process consist of only a few samples. As a 

result, existing machine learning algorithms 

for predictive modeling cannot be applied in 

this setting. Despite this challenge, the use 

of data driven decisions remains critical for 

further optimization of this engineering 

process. In the proposed framework, the 

original weighted kernel regression with 

correlation factor (WKRCF) is strengthened 

by normalizing the input parameters and 

employing the Particle Swarm Optimization 

(PSO) as weight estimator. It is found that 

PSO gives flexibility in defining the 

objective function as compared to the 

iteration technique of WKRCF. Thus, an 

assumption on noise contamination to the 

available training samples can be 

implemented. Even though only four 

samples are used during the training stage of 

the conducted experiment, the proposed 

approach is able to provide better prediction 

within the engineer’s requirements as 

compared with WKRCF. Thus, the proposed 

approach is beneficial for recipe generation 

in an assembly process development.    
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1 INTRODUCTION 

 

Recipe generation provides the key 

references needed by engineers to set up 

a new experiment for a new product and 

plays an important role in determining 

the success of product development. 

Currently, the ingredients chosen for the 

recipe mainly depend on the engineer’s 

knowledge. Optimizing the input 

parameters will facilitate the engineering 

decisions needed to fulfill certain 

requirements. As the assembly process 

for chipsets is rapidly progressing 

towards smaller scales and greater 

complexity, the accuracy and efficiency 

requirements are more vital. For 

example, a semiconductor process flow 

requires hundreds of fabrication 

operations steps with a lead-time of a 

few months. In addition, device 

fabrication and manufacturing costs 
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continue to escalate. In addition to the 

usual strategy of increasing the wafer 

size and shrinking devices to reduce the 

cost per transistor, automation and 

modeling are becoming more important. 

Fowler [1] revealed that the productivity 

improvement strategy of semiconductor 

manufacturing is based on operational 

improvement at the front-end of wafer 

fabrication; this strategy accounts for 

almost half of the total annual 

productivity improvement target. 

 

Figure 1.  Illustration of an under-fill process in 

an assembly process. 

 

Figure 2.  Illustration of an epoxy tongue that 

touch the keep out zone. 

The use of artificial intelligence 

techniques for process modeling during 

the downstream assembly and all the 

involved tests is expected to reduce the 

overall manufacturing cost. As artificial 

intelligence techniques have been 

successfully applied in various 

engineering applications [2-3], 

introducing intelligent modeling to the 

assembly process promises to accelerate 

the engineering decisions even at early 

stages when very few collected samples 

are available. Inherently, intelligent 

modeling can improve equipment and 

resource utilization. In general, the 

development of recipe generation for 

assembly processes has only limited 

samples. However, most of the current 

machine learning algorithms are 

hindered by the limited number of 

available samples. In other words, the 

performance of existing algorithms 

degrades because the sample size is 

insufficient [4]. 

In INTEL Malaysia, the under-fill 

process shown in Figure 1, which 

consists of six input parameters with a 

small and sparse data set, is considered. 

Those input parameters are die size 

(dimension of die), gap height, the 

number of bumps, dispense distance, 

dispense weight, and the output is the 

dispense tongue length. In practice, it is 

difficult to define the input-output 

relationship, and improperly determined 

input setting parameters frequently cause 

the yield to be ‘excess epoxy’, ‘epoxy on 

die’, or ‘insufficient epoxy’. Notably, the 

experiment usually involves large 

samples, and it is rather expensive to 

determine the recipe that prevents the 

tongue generated during the under-fill 

process from touching the keep out zone 

(KOZ), as illustrated in Figure 2. Hence, 

it is important to develop a cost-effective 

method to arrive at the optimal setting. 

The problem being solved can be 

categorized as of learning from small 

samples which has gained increasing 

attention in many fields, such as in 

assembly process for sparse prediction 

modeling [5-6], engine control modeling 

[7], medical problem [8], and pulp and 

paper industry [9]. In general, most of 

the existing techniques rely on the pre-

data processing technique, utilizing bias 
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data points, and artificial samples 

generation in solving the problem.  

Previously, WKRCF has proved to 

solve small sample with good accuracy 

for recipe generation problem [5] by pre-

processing the input parameters with 

respect to the calculated correlation 

factor. However, the selection of 

smoothing parameter, h, is not easy as it 

is subject to large value of the input 

parameters and the objective function is 

only limited to the closed-form solution 

problem. Therefore, the main objective 

of this study is to enhance WKRCF by 

normalizing the input parameters and 

introduced PSO as technique in 

estimating the weight parameters. Also, 

the study aims to provide more 

flexibility in modeling the recipe 

generation problem thus the established 

model can be employed later by 

engineers easily.    

The remainder of this paper is 

organized as follows. A brief review of 

the WKRCF is given in Section 2. A 

review of PSO is given in section 3. The 

proposed technique is presented in 

Section 4. Section 5 includes the 

implementation of the proposed 

technique and the experimental results. 

Finally, the conclusions are provided in 

Section 6. 

 

2 WEIGHTED KERNEL 

REGRESSION WITH 

CORRELATION FACTOR REVIEW 

 

In this section, we first review the basic 

algorithm of the WKRCF .The concept 

of the WKRCF is introduced in the 

following. Given training samples, 

 n

iii yx
1

,


, where n is the number of 

training samples, 
d

ix  is the input and 

iy is the target output. WKRCF is 

the technique to regress the output space 

by mapping the input space 
d to . In 

general WKRCF is a modified Nadaraya-

Watson kernel regression (NWKR) by 

expressing the weight based on the 

observed samples through a kernel 

function. The existing WKRCF relies on 

the Gaussian kernel function as given in 

Eq. (1) with subject to the correlation 

factor, pc
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where h is the smoothing parameter. As 

in NWKR, the selection of smoothing 

parameter, h, is important to compromise 

between smoothness and fitness [6]. As 

in existing WKRCF, Eq. (2) is employed 

to determine the value of h. 
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The correlation factor is introduced to 

adaptively set the smoothing parameter, 

h, of the Gaussian Kernel Function for 

WKRCF. Initially, the correlation 

coefficient for each input parameter 

must be calculated as follows 
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 (3) 

where yx p
r  is the correlation coefficient, 

px and px  are the input value of one 

particular dimension and the 

corresponding mean value of the set of 

px respectively y and y are the output 

value and the corresponding mean value 

of the set of y ,
px is the standard 

deviation of px  and y is the standard 

deviation of y . 
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Then, the correlation factor, pc , for 

each input parameter is then  can be 

defined as: 
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 The kernel matrix K= [Kij], where i = 

j = 1,..., n, with a generalised kernel 

matrix based on the adaptive Gaussian 

kernel, is given in Eq. (5). The matrix K 

transforms the linear observed samples 

to non-linear problems by mapping the 

data into a higher dimensional feature 

space.  
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In WKRCF, the most popular function 

for regression problems is used which to 

minimize the sum of squared error (SSE) 

to estimate the weight parameters, W. 

 
  2

minmin yKwWf 
 

 (6) 

Once the optimum weight is 

estimated, the model is ready to predict 

any unseen samples (test samples). The 

test samples can be predicted by using 

Eq. (7) 

 
 

  



 
































n

i

d

p

p

i

p

d

p

p

i

p
n

i

i

XXK

XXKw

WXy

1 1

11

,

,ˆ

ˆ,ˆ

 (7)

 

 

3 OVERVIEW OF PARTICLE 

SWARM OPTIMIZATION  

 

PSO is originally proposed by James 

Kennedy and Russell C. Eberhart [7] 

which is inspired by the social behavior 

of birds in nature. This population-based 

search algorithm initialized the 

population which called particles in 

problem space by random. Each particle 

flies in the problem space looking for the 

optimal solution according to its own and 

its companion’s flying experience. PSO 

is found to be a very popular choice to 

solve optimization problem which the 

decision variables are real number [8], 

easy to implement and computational 

efficient [9]. 

In PSO algorithm, every particle 

represents the possible solution in the 

problem space. As mentioned earlier, 

each particle will fly over d-dimensional 

problem space for searching the 

optimum solution by updating its own 

velocity,  tv di, , and position,   tp di,  

with respect to the fitness function . The 

current velocity of each particle is 

updated based on the personal best 

previous position found so far by every 
thi particle, pbest

dip ,
, and the global best 

previous position found so far by the 

swarm,
gbest

dp . The d
th

 dimensional of the 

velocity and position for 
thi  particle is 

updated using Eq. (8) and Eq. (9) 

respectively. 
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     11 ,,,  tvtptp dididi  (9)
 

where t is the iteration value, c1 and c2 

are the cognitive and social coefficients,  

r1 and r2 are random values in the range 

[0, 1] and k is the inertia weight. The 
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cognitive and social coefficients control 

the tendency of particles to move toward 

its own or the entire particles position. 

The random values provide 

randomness exploitation for particle in 

the problem space. Meanwhile, the 

inertia weight controls the exploration of 

particle in finding the optimum solution. 

Large inertia weight cause larger 

exploration of the problem space, while 

smaller inertia weight focuses the search 

in a smaller region. In PSO, the inertia 

weight is decreased overtime with 

typically large initial value and the 

equation is given below  

t

finalinit

init iteration
iteration

kk
kk 




 (10)
 

 

where kinit and kfinal are the predefined 

initial and final value of the inertia 

weight respectively, iteration is the 

maximum number of iteration while 

iterationt is a current iteration. 

 

4 THE PROPOSED WKRCF - PSO 

 

An overview of the proposed technique 

is given in Figure 3. The proposed 

technique requires a series of steps to 

develop the prediction model. As we 

mentioned before, the existing WKRCF 

does not require any pre-processing on 

the available dataset and the estimation 

technique is based on the iteration 

technique. 

In this section, we highlight all the 

employed features in constructing the 

WKR-PSO. Initially, the historical Intel 

dataset is subjected to the simple 

normalization as to avoid the difficulty 

in selecting the smoothing parameter, h.  

The normalization of the given input 

parameters is given in Eq. (11) 

 
 p

pinorm

pi
X

X
X

max

,
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 (11)

 

where norm

piX ,
is a normalized input 

parameter, piX , is the original input 

parameter and  
pXmax  is the 

maximum value of one particular 

dimension of the input parameter for all  

available training samples. Once all the 

input parameters are normalized, the 

smoothing  parameter   can  be    simply 

 

Figure 3.  Overview of the proposed technique, 

WKRCF-PSO. 

calculated based on Eq. (12). Initially, 

all the input parameters are arranged in 

ascending order of L2-norm values.  

Train Samples 

Normalizing Input 

Parameters 

Estimating Smoothing 

Parameter 

 

Calculating the 

Correlation Factor 

 

Prediction Model 

Training Phase 

Find Kernel Matrix 

 

Weight Estimation with 

PSO 

 

Test Samples 

 

Normalizing Input 

Parameters 

 

Testing Phase 
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The correlation factor and the kernel 

matrix are calculated based on Eq. (4) 

and Eq. (5) respectively. In WKRCF [5], 

the weight parameters are estimated 

based on the iteration technique and 

subject to Eq. (6) . However, the existing 

WKRCF is only capable to solve closed 

form solution problem with a good 

accuracy. As PSO has the capability in 

solving non-closed form solution 

problem, the fitness function of the 

proposed technique is defined as in Eq. 

(13) by assuming that the available 

dataset set is imperceptibly corrupted by 

noise.  

 
1

2
minmin wyKwWf fitness 

 (13)
 

where 𝜆 is a positive constant value, K is 

the kernel matrix, y is the target output 

and w is the weight parameters to be 

estimated. The 𝜆 value is usually 

determined based on the knowledge of 

the corrupted noise.  In PSO, there are 

few parameters to be predefined before 

executing the algorithm. As the problem 

space corresponds to the continuous 

value of the estimated weight 

parameters, the selection of kinit and kfinal 

values is more crucial. In this study, the 

value of kinit is purposely chosen to be 

large and the kfinal value is chosen not to 

be very small as each particle is allowed 

to explore in wider problem space. This 

is to ensure the found solution represents 

the mostly likely solution.  

 

Table 1.  The normalized historical DOE data set; x and y is dimension size, gh is gap height, nb is number 

of bumps, dd is distance dispense, sw is amount of epoxy and output is length of tongue. 

x y gh nb dd sw output 

0.8583 0.7817 0.9044 1.0000 0.8462 1.0000 256305.3 

1.0000 1.0000 0.9338 1.0000 1.0000 0.8000 166709.3 

0.3579 0.3579 0.9154 0.0977 0.6154 0.2800 114980.7 

0.9671 0.9492 1.0000 0.9460 0.9231 1.0000 250800.1 

0.8583 0.7817 0.9044 1.0000 0.8462 0.8000 237581.9 

1.0000 1.0000 0.9338 1.0000 1.0000 0.9000 243672.4 

0.9671 0.9492 1.0000 0.9460 0.9231 0.8000 215971.4 

0.9671 0.9492 1.0000 0.9460 0.8462 1.0000 246692.0 

0.8583 0.7817 0.9044 1.0000 0.8462 0.6600 199574.8 

0.8583 0.7817 0.9044 1.0000 0.8462 0.9400 251815.5 

 

Table 2.  Parameter settings for each of the function approximation algorithms 
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Technique Parameter Settings 

WKRCF first) reached is (whichever 1000 iteration  ,
1

2
22







 



n

i

i XXh  

WKRCF-PSO 
 n-kwhere   XXh normnorm

kk
11   max

22

1






 

 , 
Swarm Size = 100, 

Iteration = 500, c1 = c2 = 1.4, kinit = 2.5, kfinal = 0.4 and 𝜆 = 0.0001 

 

Once the weight parameters are 

estimated, the test samples have to be 

normalized subject to  
pXmax  before 

translating into kernel space. Finally, all 

test samples can be predicted using Eq. 

(7).  

 

4 EXPERIMENT AND RESULTS 

 

4.1 Experiment Setup  

 

In this investigation, the historical data 

set obtained from INTEL Malaysia [10] 

is employed in the experiment. Firstly 

the dataset is normalized by using Eq. 

(11) and it is shown in Table 1. The total 

number of available samples is ten and 

only four samples are used as training 

samples. The first four rows are chosen 

since those training samples cover the 

minimum and the maximum range of the 

input and output values. This is a 

relevant assumption as the problem 

becomes an interpolation problem based 

on the observed samples. The remaining 

samples are then used to measure the 

performance of the proposed model.  

Initially, all the parameter settings for 

each predictive modeling algorithm are 

predefined. The parameter settings are 

summarised in Table 2.  

 

4.2 Performance Measure  

 

A simple but useful concept from [11] is 

used to evaluate the performance of the 

prediction based on the error of the 

acceptance rate, E, as given in Eq. (14)  

 

%100
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
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ii
i

predict

actualpredict
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(14)
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Figure 4.  Convergence property of the proposed algorithm for the given problem from 100 iterations to 

the final iteration. 

The acceptance rate is bounded by the 

guard band, B, as given in Eq. (15) in 

order to evaluate the coverage accuracy, 

C 

 BE   (15) 

The coverage accuracy determines the 

quality of the prediction with respect to 

the predefined B value as given in Eq. 

(16) 

%100
ictser of predtotal numb

ptser of accetotal numb
C

(16)

 

In this study, we introduce new 

performance criterion, sum of error, S, to 

compare the prediction quality of the 

proposed technique with the existing 

techniques as given in Eq. (17) 

 




n

i

iES
1  (17) 

4.3 Results 

 

The proposed technique is successfully 

trained by using PSO in estimating the 

weight parameters. Normalizing the 

input parameters avoids the difficulty in 

selecting smoothing parameter, h, and 

hence facilitates the training stage. In 

this study, the training is executed based 

on the predefined iteration where the 

algorithm reaches the convergence state 

as shown in Figure 4. Introducing the 

inertia weight, k, by selecting an 

appropriate kinit and kfinal is important in 

estimating the weight parameters which 

are real number for high-dimensional 

problems. The selected kinit and kfinal 

values are found to be the best 

combination for the given problem. 

The presented results in Table 3 show 

the coverage accuracy, C, and the sum of 

error, S, of the two techniques for three 
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different guard band values. The WKR-

PSO achieves better quality of prediction 

as compared to the existing WKRCF 

based on the calculated sum of error. 

Implicitly, WKRCF-PSO is successfully 

lower down the average of acceptance 

rate error for the entire prediction. 

However, the coverage accuracy of the 

proposed technique is equivalent to the 

WKRCF. 

  

 

Table 3.  The coverage accuracy of the presented techniques 

Technique Coverage Accuracy, C (%) Sum of Error, S 

B=8% B=12% B=15% 

WKRCF 50 100 100 46.38 

WKRCF-PSO 50 100 100 38.15 

 

Table 4.  Calculated correlation factor of the Intel Dataset 

 
1c  2c  3c  4c  5c  6c  

Correlation Factor 0.1762 0.1570 0.0955 0.1983 0.1364 0.2365 

As in WKRCF, introducing the 

correlation factor signifies the particular 

input relationship against the output by 

contributing more weight in predicting 

the output. The proposed normalization 

technique does not change the input(s) 

and the output relationship of the 

dataset. Thus the calculated correlation 

factor remains the same as in WKRCF 

as shown in Table 4. In logical sense, it 

is agreed with the nature of the dataset 

where the length of the tongue from the 

under fill process is highly correlated 

with the amount of the dispensed epoxy. 

Explicitly, the calculated coverage 

accuracy also agrees with the 

assumption on the correlation factor.  

Finally, the chosen guard band values 

provide an indicator to engineer to set up 

a new experiment for a new product at 

certain confidence of level. As a result, 

the conducted experiment for the under 

fill process will fully utilizes the 

resources and indirectly reduces the cost 

by referring the recipe from the proposed 

model.  

 

5 CONCLUSIONS 

 

Because of limited information, learning 

from small samples is extremely 

difficult, especially for the under-fill 

process of an assembly process. This 

study shows that the modified version of 

WKRCF, namely WKRCF-PSO is better 

than the existing technique. Introducing 

the normalization technique successfully 

avoids the difficulty in choosing 

smoothing parameter and alleviates the 

training process. The proposed 

normalization technique also does not 

change the dataset relationship and 
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hence the assumption on the dataset 

dependencies remains the same as in 

WKRCF. This assumption is important 

especially in the region where there are 

no training samples available. 

Employing PSO as the weight estimator 

allows the non-closed form solution 

fitness function to be chosen in 

estimating the weight parameters. Thus 

an assumption of weak noise 

contamination on the available training 

samples can be introduced to the 

proposed technique. In general, it shows 

the flexibility of PSO in estimating the 

weight parameters as compared to the 

iteration technique. In the future, a 

technique to incorporate prior 

knowledge will be investigated to 

improve the prediction of the model.  
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