

Evaluating Complexity of Task Knowledge Patterns through

Reusability Assessment

Cheah WaiShiang
1
, Edwin Mit

2
 and Azman Bujang Masli

3

Faculty of Computer Science & IT, UNIMAS 94300 Kota Samarahan Sarawak, Malaysia

{c.waishiang@gmail.com
1
, edwin@fit.unimas.my

2
}

ABSTRACT

Reusability assessment of patterns is needed

to help pattern designers and pattern

developers to check whether a pattern is

well-designed. Hence, the outcome from the

assessment can be used to improve the

current patterns and also to reveal the

potential of reusing the patterns in software

development. This paper presents the

reusability assessment of task knowledge

patterns through the proposed metrics. This

is a continuous effort to evaluate the

potential reuse of the proposed task

knowledge patterns for multi agent system

development. The reusability assessment

proposed in this paper further elaborates

reusable of pattern by synthesizing how to

evaluate the genericity and complexity of a

task knowledge pattern (aka. agent patterns)

and its similarity to other patterns in tackling

a particular problem. The hypothesis is that

a pattern is reusable when it is descriptive

and expressive. A case study is presented to

showcase that the outcome of the assessment

can help to improve the effort to design the

task knowledge patterns for reuse purposes.

Furthermore, the outcome of the assessment

allows the pattern developer to communicate

their patterns in quantitative manner. The

two main contributions of this paper are

first, to determine the design quality of agent

patterns and secondly, the introduction of a

novel designs metrics for agent patterns and

the process to assess the potential reuse of

task knowledge patterns.

KEYWORDS

Patterns, complexity analysis, agent,

metrics, validation.

1 INTRODUCTION

Agent patterns record the experience in

engineering agent oriented systems.

Agent patterns have aimed to promote an

agent based approach to the outside of

the agent community [1]. The use of

patterns in agent development can

reduce the development cost and time

[2], promote reuse and reduce the

complexity when developing

applications [3]. In addition, it allows the

novices to rely on expert knowledge and

solve the problem in a more systematic

and structured way [4] [5].

To support the adoption of agent patterns

for agent development, researchers are

working on pattern classification and

pattern template. The pattern

classification supports the ease of

accessibility of agent patterns by

arranging the collection of agent patterns

in a structured manner. The template

structure is used to record the agent

development experience in a structured

manner.

While various patterns have been

introduced, the potential usage of agent

patterns does not pay much attention in

the current literature. One possible

reason is that researchers are working on

various template forms and introducing

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

780

new agent patterns that are suitable with

their context.

This paper presents reusability

assessment of agent patterns through

metrics. We present how to estimate

potential reuse of the task knowledge

patterns through assessing the quality of

the patterns with the proposed design

metrics. The proposed metrics aimed to

conduct a complexity analysis on task

knowledge patterns of a similar kind to

determine the level of explicitness of a

particular pattern. Assessing the quality

of the agent patterns will provide answer

to the question, „How expressiveness of

patterns going to be?‟ From the

estimation value obtained by means of a

design metric, the pattern developer may

look at the early pattern description and

conduct further refinement to improve

the design of the pattern.

The task knowledge patterns are

reusable artifacts that are introduced for

agent oriented software development [6].

“What is knowledge? How is knowledge

represented?” The notion of knowledge

is defined and modelled in

CommonKADS [7], a knowledge

engineering methodology. In

CommonKADS, template knowledge

models are introduced and are viewed as

design patterns or “knowledge patterns”

for tasks [7]. It contains a predefined

knowledge that is represented in the

form of reusable model sets for

developers. Each of the template

knowledge models consists of the

following pattern elements:

 General characteristics: Description

of the features of a task like goals,

typical examples, terminology, input

and output.

 Default method: Description of the

task knowledge by modelling the

actions and control structures for the

task type through inference structure

and task specification, respectively.

 Method variation: Description of the

variation of the default method when

dealing with a real application.

 Typical domain schema: Description

of domain entities that will use for a

particular task type.

This paper consists of five sections.

Section 2 presents the background study

of this research. The effort in assessing

the software patterns which form the

background knowledge in this work is

described. Section 3 presents the

reusability assessment of task knowledge

patterns through metrics. We elaborate

the proposed metrics with a runthrough

example in accessing an information

finding pattern. Section 4 presents a case

study to reveal the potential reuse of the

task knowledge patterns of information

finding through the proposed metrics. In

the case study, we present a quantitative

value of the information finding pattern

and reveal our analysis result. To further

verify our hypothesis that a high

complexity or expressiveness of pattern,

the more reusable of the pattern is, an

empirical study is conducted. The study

reveals the important of the

expressiveness in driving the reuse of the

pattern in MAS development. The paper

concludes by Section 5.

2 BACKGROUND

Patterns consist of various pattern

elements that explicitly describe the

problem, solution and consequences in

clear structure. It encourages the

developer or designer to communicate

the ideas by explicitly presenting the

concepts within the pattern [11, 12]. One

way to reveal the potential reuse of the

patterns is to demonstrate how the

patterns support the maintainability of

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

781

software development within a

controlled experiment. Another way is to

assess the design quality of the agent

patterns as inspired by Araban and

Sajeeve [8].

The reusability assessment of software

components is introduced by Saeed

Araban at the University of Melbourne

[8]. The aim of the research is to

estimate the potential reuse of software

components. The outcome of this

research has lead to the improvement on

the effort of designing for reuse purposes

among the developers.

In the work [8], object oriented metrics

are used to measure the criteria to ease

reuse and design with reuse among two

object oriented software components.

The software components that have been

used for the reusability assessment are

the Java package and the Eiffel libraries.

From the analysis of the result, the

author concluded that Java has a better

design for reuse due to the minimum

number of children as compared to

Eiffel.

The object oriented metrics that have

been used are weighted method per class

(WMF), number of children (NOC),

coupling between object (CBO), just to

name a few. The summary of the

metrics used is as follow:

Weighted Methods per Class, WMF,

WMF is also known as the number of

methods by Harisson [9]. It is used to

calculate the number of methods

occurrences within a class.

Number of Attribute, NOA. The

number of attributes is referred to as the

total number of attributes that are

defined within a class.

Response For a Class, RFC. Response

for a class is used to measure the method

invocation after receiving a message. It

calculates the methods that are

potentially executed in response to a

message received by a class or object.

Also, it is used to measure the

connection of the potential

communication between the classes and

methods. The RFC [10] is defined as,

RFC= |RS|, where RS, the response set of

the class, is given by RS= Mi all j{Rij}

In which, the response set involves the

counting of M, the set of all methods in a

class, and Ri, the set of methods called

by method i in the class. Such methods

in R are positioned remotely. Li &

Henry [10] defined RFC as a coupling

measurement as RFC does not only

include the method directly involved by

a method but also the method called by

other methods in other classes.

Coupling between Objects, CBO.

Generally, coupling involves identifying

the frequency of connections between

the classes and types of connections

between the classes like interaction

coupling and content coupling. CBO is

one of the couplings metrics which is

used to determine the relationship

among classes. Measuring the CBO

happens when methods of one class use

the methods or attributes of the others.

CBO is also known as fan-out within the

traditional software metric. Fan-out is

defined as element like attribute or

method that the class depends on. The

CBO is defined below.

CBO = total number of other classes to

which it is coupled.

From the literature, OO metrics have

been used to evaluate quality

characteristics on various artifacts. They

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

782

are metrics for accessing the security

code [15], metrics for accessing design

pattern quality for games [13] and

software application, metrics for UML

modelling, metrics for evaluating aspect

oriented system, metrics for evaluation

XML documents [14], metrics for agent

systems.

Works have been done to introduce

metric suites for agent oriented models.

Franch [16] conducts a quantitative

analysis of agent oriented models

through evaluating dependencies in i*.

Weights are assigned to goals and

dependencies and a case study on how to

calculate the predictability of an i*

model is presented. Sarami et al. [17]

propose a complexity metric for agent

oriented models and conduct an

evaluation of the complexity of the

message model and Prometheus models.

The metrics are the magnitude of graph,

diversity of components in a model, the

magnitude of table, link density, and

TScore. Grossi et al. [18] propose

numerical analysis for the organizational

structure of MAS. The equations for

measuring the specific graph‟s

organizational structure are proposed.

They are completeness, univocity,

flatness, cover & chain, overlap, and

detour.

In this section, we summarized the

object oriented metrics that are used for

reusability assessment of software

components. Although assessing the

design quality of agent patterns is not

addressed in the current works, it is

worth surveying how people assess the

quality of the agent system. This will

turn into the terminology for our

proposed metrics. It is worth exploring

how those practices can be used to

introduce the reusability assessment of

agent patterns. In doing that, we should

treat the object oriented metrics

discussed as a baseline notion to

measure the agent oriented models in the

task knowledge patterns as described in

the following section. Since we deal

with agent models, object oriented

metrics are inadequate for measuring

them. It has been suggested that the

description of a metric should be

accompanied by its quality

characteristics and the description of the

metric‟s target group. Effort is needed to

demonstrate and support the usefulness

and significance of the set of proposed

metrics through empirical evaluation [9],

[19].

3 METRICS FOR TASK

KNOWLEDGE PATTERNS

In this section, metrics to measure the

complexity of agent models that are used

in describing task knowledge are

presented. When proposing the metrics,

determining the quality characteristic

and who will direct to is needed.

Metrics‟ definition must not be

ambiguity or over emphasis; facilitate

effort in data collecting from the raw

data; demonstrating and supporting the

usefulness and significance of the set of

proposed metric through empirical

evaluation [9] [21][22]. In other words,

the metrics must pursue with clear goal;

theoretical and empirical validation is

needed to show the usefulness of the

metrics and needs for automatic

extraction for data collection in ease of

metrics calculation. Also, the validation

will demonstrated the metric could be

useful to predict external quality

characteristics like modifiability,

understandability, analyzability and so

on [23]. For example, Chowdhury[20]

proposes security metric for source code

level. The goal of the proposed metrics

is used to bring improvement in the code

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

783

structure and preventing any attack. One

of the metric had been inspired by CK

metrics of RFC and adopted it with a

suitable security concern in proposing

coupling corruption metric. Case study

had been conducted to demonstrate the

applicability of the metric within two

pieces of Eclipse plug-in and

observations had been presented.

Taken the suggestion together with

evaluation studies, the metrics that are

proposed in this research is aimed to

conduct the complexity analysis of task

knowledge patterns. The complexity

reflects the level of expressiveness of the

patterns. In the following sections, we

first present the metrics through

adoption from OO metrics. Two case

studies to conduct the analysis of task

knowledge patterns are presented next.

An analysis of information finding

patterns is presented. This will follow by

the analysis of information integration

pattern. We further conduct the

validation of our analysis result through

empirical study, as shown in Section 4.

As is described in Section 2, metrics

have been adopted in assessing the

reusability of agent models. Since we

have modelled the patterns by agent

oriented models, we can measure the

complexity of agent patterns through

metrics. The metrics that proposed in

this paper serves as one evaluation

method of the patterns. The design

metrics that are proposed in this paper

focus on the models that have been used

to describe the task knowledge. In this

case, the proposed sets of metrics are

dedicated to measure the goal model,

role model and domain model for the

entire task knowledge pattern.

In our view, the explicitness of a task

knowledge pattern is reflected by the

complexity of the agent models used for

representing the pattern. In order to

introduce reusability assessment of task

knowledge patterns, we refined the

common object oriented metrics like

weighted methods per class, size

metrics, response for a class, and

coupling between objects. The

refinement is needed because pure object

oriented metrics like the numbers of

classes, dependencies between classes,

and so on are not adequate for measuring

agent models.

Altogether, we propose the following

five metrics for complexity analysis:

weighted goals per goal model, number

of responsibilities, number of domain

entities, number of associations per goal,

and goal coverage. These design metrics

are described below.

Overall goals per goal (OG)

Definition: OG = number of goals +

quality goals.

We defined the overall goals per goal as

the total number of goals that are

required to be achieved in order to solve

a particular problem. In a goal model,

goals, sub-goals and quality goal model

an overall achievement of the goal. To

fulfil a goal requires fulfilling the sub-

goals as well as the quality goal given.

The minimum number of OG is one. The

OG includes the count of an initiate goal

(e.g. root goal or sub-root goal) as the

root goal contributes to the overall

achievement of the goals. The OG can

be measured for a particular sub-goal

regardless of whether it is a root goal,

sub-goal or quality goal and regardless

of the hierarchy and sequence of goal

arrangement.

Having a higher value of OG introduces

a complexity of the pattern. However, it

increases the explicitness of the pattern

by explicitly describing the goals that are

required to be achieved for task

accomplishment. In fact, a higher value

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

784

of OG increases the likelihood for reuse.

According to Araban & Sajeev [8],

software components that are measured

with a higher value of weighted method

per class, WMC are easier to reuse. The

WMC is the number of functionalities in

a class. The higher the value of WMC is,

the higher the number of functions that

are useful for application development

also is.

Number of responsibilities (NoR)

Definition: NoR = The number of

responsibilities.

This metric involves counting the

number of responsibilities listed for a

particular role in its role model. The

higher value of responsibilities may

increase the reusability of the pattern as

it explicitly lists the subtasks required to

be performed in order to achieve the

goal(s) that the role is related to.

Number of domain entities (NoD)

Definition: NoD = The number of

domain entities.

This metric involves counting the

number of domain entities within a

domain model. Domain entities

explicitly describe the knowledge items

that are required for fulfilling the

responsibilities and achieving the goals

directly or indirectly related to them. As

a result, the higher the value of NoD is,

the more likely the reuse of the

knowledge embodied in domain entities

also is.

Number of quality goals per goal

(NoQ)

Definition: NoQ = The number of

quality goals that are related to a goal.

Harrison et. al [9] propose the “number

of associations per class” metric as an

inter-class coupling metric. In our work,

the number of associations per goal is

redefined as the number of quality goal

that are associated with a particular goal,

either directly or through its parent

goals. A quality goal describes a non-

functionality requirement in relation to a

goal.

Response for Goal (RFG)

Definition: RFG = the number of goals +

the number of quality goals + the

number of roles for a goal.

Just like the response for class RFC in

object oriented metrics, the RFG

identifies the coverage of a particular

goal. The RFG metric indicates various

aspects of the problem (i.e., subgoals)

that have been modelled for a goal

together with the associations that

support the achieving of the goal. The

metric indicates the achieving of the

subgoals together with the achievement

of the parent goal. The RFG metric also

includes the relevant quality goals and

the roles that are required for achiving

the goal. All in all, the value of RFG

expresses the number of aspects of a

problem that have to be considered for

achieving the goal.

Figure 1 shows an example of measuring

the overall goals per goal for a task

knowledge pattern of information

finding. In Figure 1, the value of OG for

the overall goal model is 11. It includes

the sub-goals of organizing result,

accepting user request as query, and

collecting result. The latter has been

further divided into the sub-goals of

locating information sources, conducting

search, producing relevant result, and

displaying result, and the quality goal of

high user satisfaction. On the other hand,

we can obtain for the subgoal „Collect

result‟ the value of OG 7. This value of

OG is calculated based on the goal of

collecting result, sub-goals of locating

information sources, conducting search,

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

785

producing relevant result, traversing on

information sources, and matching

information source, and the quality goal

of high user satisfaction. The latter

applies to the highest-level goal

“Manage information finding” and all its

subgoals.

The value of NoQ for any goal included

by the goal model in Figure 1 is 1. In the

figure, achieving the goal „Manage

information finding‟ is characterized

with the quality goal „High user

satisfaction‟. This quality goal explicitly

represents an extra effort that is required

to be considered for achieving the goal

„Manage information finding‟. A higher

number of NoA increases the likelihood

for reuse because the corresponding goal

model explicitly describes the additional

and “softer” knowledge elements that

are required to be considered in solving

the problem. From Figure 1, we can

calculate that the RFG for the root goal

„Manage information finding‟ is 14. We

can interpret this value so that achieving

the goal „Manage information finding‟ is

responded to by its subgoals and by the

roles that relied upon to achieve the

given goal. As another example, the

RFG for the subgoal „Collect result‟ is

11, expressing that fulfilling the goal

requires fulfilling the subgoals of

locating information sources, conducting

search on information sources, and

producing relevant result, and the quality

goal „High user satisfaction‟ and also

requires the involvement of the Finder,

User, and ResourceManager roles.

4 VALIDATING TASK

KNOWLEDGE PATTERNS

Several patterns for the same problem

may exist due to the differences of

patterns proposed by different people.

This research has drafted several

examples that model the task knowledge

through agent models. Each of the

examples models the shared experience

through the goal model, role model,

organization model, and domain model.

The challenges are how to measure the

quality of various versions of the

patterns and how to show the differences

among those patterns. The answer is

through reusability assessment. In other

words, the quality of patterns can be

measured through the proposed metrics.

In this section how a pattern developer

can estimate the reuse potential of a task

knowledge pattern will be demonstrated.

Two case studies on analyzing task

knowledge patterns are presented. In the

case study I, we present the analysis

result of the information finding

patterns. On the other hands, the case

study II presents the analysis result of

the information integration pattern.

4.1 Case Study I: Analysis of

Information Finding Patterns

In the following description, analysis of

information finding patterns is

presented. A detailed elaboration on the

information finding patterns is presented

in [24] and [25].

To assess the pattern, the estimation

value can be obtained through adopting

the metrics presented in section 3. They

are overall goals per goal (OG), a

response for goal (RFG), number of

quality goals (NoQ), number of

responsibilities (NoR), and number of

domains (NoD). We can pinpoint the

reuse potential of a task knowledge

pattern by first indicating that the pattern

consists of a certain number of goals,

response for goal, number of

responsibilities, number of domains, and

number of associations. Then, we can

estimate the reuse potential based on

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

786

those values. In the following

description, we present the reusability

assessment of the task knowledge

pattern that is modelled in [24]. This is

followed by the reusability assessment

of eight task knowledge patterns of

information finding as presented in [25].

Further elaboration of the estimation

values is given at the end of this section.

The values have been calculated as

follows:

The NoR
= Number of responsibilitiesinformationFinding

= Number of responsibilities for the role of

InformationFinder +

 Number of responsibilities for the role of

QueryFormulator

 = 8 + 8

= 16

The NoD
= Number of domains(D)informationFinding

 = D1:Query + D2:RelevantContent +

D3:Information Sources +

D4:Criteria+D5:Domain + D6:User

= 6

The RFG
 = Number of goals(G)informationFinding + Quality

goal(QG)informationFinding + Role(R)informationFinding
= G1:Manage Info finding + G2:Produce query +

G3:Analyze query language +G4:Matching rule

interpretation + G5:Handle query expansion

+ G6:Handle domain + G7:Conductinterpretation

+ G8:Organize result + G9:Obtain request

+ G10:Awaiting query + G11:Obtain result

+ G12:Obtain relevant references +G13:Conduct

search + G14:Traversing & extract content

+ G15:Matching + G16:Display result

+ QG: High user satisfaction + R1: Finder

+ R2:Initiator + R3:QueryFormulator

= 16G+ 1QG + 3R

= 20

The OG
= Number of goals(G)information Finding

+ Quality goal(QG)informationFinding

= G1:Manage Info finding + G2:Produce query

+ G3:Analyze queryLanguage

+ G4:Matching rule interpretation + G5:Handle

query expansion

+ G6:Handle domain

+ G7:Conduct interpretation + G8:Organize

result + G9:Obtain request

+ G10:Awaiting query + G11:Obtain result

+ G12:Obtain relevant references

+G13:Conduct search + G14:Traversing

&extract content + G15:Matching

+ G16:Display result

+ QG:High user Satisfaction

 = 16G + 1QG

 = 17

The NoQ

 = Number of quality goals informationFinding

 = QG:High user satisfaction

 = 1

 The number of responsibilities for the

task type (NoR) is 16. The number of

domain entities (NoD), which have been

explicitly modeled in the pattern is 6.

The overall goals per goal (OG) is 17.

This value expresses that expanding or

reformulating a user query to increase

the number of relevant results returned

may be required for information finding.

In addition, the user should be allowed

to provide his/her preferences other than

the solution given as well as the returned

documents should be arranged

accordingly. The response for the root

goal (RFG) is 20. Two roles have been

shown to be important when conducting

the task of information finding. These

roles are managing the finding, which

involve handling of queries, conducting

search, ranking, and combining results,

and supporting query interpretation

and expansion. The number of quality

goals (NoQ) for this type of taskis 1.

Achieving the quality of the goal; user

satisfaction is important in information

finding. Hence, the solution must be able

to return a collection of relevant results

either according to the user preferences

or within a certain degree of relevance.

For example, when performing a query,

efficiency of the retrieval should be

considered. In such a case, the time

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

787

required for returning the results

becomes an aspect to the solution.

Table 1 presents the metrics that

characterize the task knowledge patterns

of information finding: if1, if2, if3, if4,

if5, if6, if7, if8 and TKP. This is the

outcome based on the reusability

assessment through the proposed design

metrics.

 Once the result is obtained, the

explicitness and comprehensiveness of

the patterns can be determined through

the following guidelines.

1. A pattern is claimed to be explicit and

comprehensive if it has the best score on

each of the metrics listed in the Section

3.

2. An agent will play a role and serve its

responsibilities towards achieving the

goal(s). If the pattern has explicitly

described the goals and responsibilities

in detail, the pattern is claimed to be

explicit and comprehensive.

3. A pattern that scores well in RFG but

scores low for NoA, NoR and NoD as

compared to others pattern is claimed to

be explicit due to the reason that having

a higher number of RFG has indicated

the explicitness of the goals and the

person in charge (i.e. role) in achieving

the goals. This is important as goals and

role are important elements for agent

paradigm as mentioned in the previous

guideline.

Presented in Table 1, the highest values

of the metrics OG, RFG, NoD, NoQ, and

NoR characterize the pattern modeled in

Figure 2 of [24]. This finding indicates

the explicitness of the task knowledge

pattern (TKP). This is a comprehensive

task knowledge pattern because it has

been derived from various articles. This

confirms our initial assumption that the

TKP pattern is more reusable as

compared to the others because it takes

into consideration more sub-goals and

other elements. This finding complies

with the claim that having a higher

number of methods in an OO class leads

to more reusability of the corresponding

software component [8]. A further

observation from the results presented in

Table 1 is that the next pattern in terms

of comprehensiveness and explicitness is

the if3. This is because if3 pattern has

scored slightly less number of goals and

response for goal as compared to TKP.

Other than that, the pattern of if3 has

scored well as compared to the others.

The three remaining groups of people,

if1, if7 and if8 have produced slightly

less comprehensive task knowledge

patterns. These patterns are if1, if7 and

if8 accordingly. Finally, the level of

explicitness for the rest of the patterns

can be arranged accordingly: the pattern

that described at if2 to the pattern that

described from if5, if6 and if4. Adopted

from the guideline 3, the RFG for if5 is

higher than if4 and if6 although if6

scored 10 in NoR. As a result, we claim

that the pattern of if5 is more explicit as

compared to if6.

In this section, estimating potential reuse

of the task knowledge patterns is

explained. Based on the estimation

value, we may improved our task

knowledge pattern (TKP) that is

modeled in Figure 2 of [24] with an

additional quality goal (appropriate

manner), additional responsibilities (e.g.,

monitoring and recording

troubleshooting cases) and additional

domain entities (e.g. error) that have

been derived from the patterns if1, if2,

and if3 modeled. The improvement is

needed to reduce the level of explicitness

on a particular element within the

pattern. In addition, the improvement is

required to make our TKP pattern more

comprehensive and explicit which we

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

788

believe will lead to better reusability of

the pattern.

4.2 Case Study II: Analysis of

Information Integration Pattern

Result of the reusability assessment for

the information integration pattern that

presented in Appendix C is shown in this

section. The pattern is the best scores

among the others patterns for the similar

problem. The values show the

measurements of the overall goal model,

role model, and domain model of the

TKP pattern. The values have been

calculated as follows:

The NoR

= Number of responsibilitiesintegration

= Number of responsibilities for the role of Inter-

operator

+ Number of responsibilities for the role of

AccessController

+ Number of responsibilities for the role of User

+ Number of responsibilities for the role of

ResourceManager

= 5 + 1 + 2 +1

= 9

The NoD

= Number of domains(D)integration

= D1:Task + D2:Service

+ D3:Resource + D4:User+D5:Constraint

= 5

The RFG

= Number of goals(G)integration

+ Quality goal(QG)integration + Role(R)integration

= G1:RegisterService... + G2:ReceiveService

+ G3:ReformulateTask...

+ G4:HandleTransaction...+ G5:GenerateResult

+ QG:Secure

+ R1:Client/User +R2:AccessController

+ R3:Inter-operator +R4:ResourceManager

= 19G+ 1QG + 4R

= 24

The OG

= Number of goals(G)integration

+ Quality goal(QG)integration

= = G1:RegisterService... + G2:ReceiveService

+ G3:ReformulateTask...

+ G4:HandleTransaction...+ G5:GenerateResult

+ QG:Secure

= 19G +1QG

= 20

The NoQ

 = Number of quality goals integration

 = QG:secure

 = 1

5 EMPIRICAL EVALUATION OF

INFORMATION INTEGRATION

PATTERN

Section 4.1 and 4.2 present the results of

the patterns in a quantitative manner. We

present the best scores among the

information patterns and integration

patterns. In other words, the TKP of [24]

and pattern in Appendix C are

comprehensive and expressiveness as

compared with the other patterns.

Indirectly, those patterns are reusable.

To further validate the analysis result, an

empirical study is conducted.

The empirical study is needed to validate

the usefulness of metrics in determining

the quality attributes of reusability.

A questionnaire was prepared for

conducting the study. The questionnaire

was designed to assess the content of the

patterns that had been expressed by

agent-oriented models and assess the

learnability and usefulness of the

patterns. A survey was conducted with

two Master‟s students at Tallinn

University of Technology, Estonia, who

were both novices in agent-oriented

software development. Those students

were respectively required to develop an

agent-oriented recommendation system

and an agent-oriented interoperability

system for their Masters Theses projects.

At the beginning of completing these

projects, the students explored agent-

oriented modelling. After that, the

students were presented with task

knowledge patterns for agent-oriented

development. One of the students is

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

789

working on information integration

pattern. The other is working on

recommendation pattern as described in

[25]. They were required to study the

patterns before they started to design

agent-based systems for their respective

application areas. The students had

approximately two months for designing

agent-oriented software systems

facilitated by task knowledge patters.

Upon completion of the project, the

students were provided with

questionnaires to evaluate the task

knowledge patterns that were adopted by

them. The answer for the questionnaire

form that was employed is listed below.

Question: Does the pattern provide

sufficient information for you to

accomplish a task given or solve a

particular problem? Why?

Just about right. I always like when the

pattern includes a sample

implementation of itself in the real life

context (such as how it could be

implemented/used/applied in a concrete

problem solving). This was missing from

the pattern description and would be

valuable addition. It helps to better

comprehend how the pattern could be

implemented / used.

Question: Is the pattern given able to

work across various application

domains?

Yes. The pattern is not related to

problem domain, its related to how to

solve a certain system requirement such

as interoperability between different

parties and resources.

Question: How useful do you find the

emerging task knowledge patterns in

agent oriented software development?

Easy

Question: Is it preferable for you to

refer to task knowledge patterns prior to

agent oriented software development or

do you prefers to use another method?

I suppose it depends on the requirements

and problem at hand. With agent

oriented system, I‟m definitely more

inclined to use the patterns meant for

agent oriented software development.

The results of the survey are described in

the previous description. We can

interpret the results in the following

way. In general, novice users (e.g.,

students) seem to be satisfied with the

usage of task knowledge patterns that

have been expressively described. The

students agree that the task knowledge

patterns were useful when developing

multi-agent systems and were easy to

learn. According to the surveys, the

patterns were easily able to

communicate ideas and concepts behind

task knowledge patterns and both

students preferred to adopt the patterns

also for future multi-agent system

development. In other words, task

knowledge patterns facilitated solving

the problem at hand for both students.

Consequently, our hypothesis on the

higher level of expressiveness able to

introduce the reusable of agent pattern is

valid.

6 CONCLUSIONS

A novel reusability assessment method

for task knowledge patterns is

introduced in this paper to estimate the

quality of the patterns. Estimating the

potential reuse of the patterns is needed

to help the pattern designer or pattern

developer to check if the pattern is well-

designed. The reusability assessment

proposed in this paper further elaborates

reusability assessment by synthesizing

how to evaluate the complexity and

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

790

hence after expressiveness of a task

knowledge pattern and its similarity to

other patterns in tackling a particular

problem. Several design metrics are

introduced to measure the complexity of

the task knowledge patterns. With the

help of the metrics, the values received

from measurements can be used to

improve the patterns. As a continuation

from this work, we are working on

extending our assessment method to

others agent patterns. As mentioned

before, knowing the design quality of

agent patterns is important. In fact, we

believe that by understanding the

potential reuse of the patterns will better

improve the adoption of agent

technology to wider software

practitioners, in which there is much

more to explore in future.

7 REFERENCES

1. Weiss, M. A pattern language for motivating

the use of agents. 5th International Bi-

Conference Workshop of Agent oriented

Information System. Melbourne, Australia:

142-157 (2004).

2. Jureta, I., M. Kolp, et al. Patterns for Agent

Oriented e-Bidding Practices. 9th

International Conference of Knowledge-

Based Intelligent Information and

Engineering Systems. Melbourne, Australia.

3682: 814-820 (2005).

3. Lima, E. F. A., P. D. L. Machado, et al.

(2004). "An approach to modelling and

applying mobile agent design patterns."

ACM SIGSOFT Software Engineering

Notes 29(3): 1-8 (2004).

4. Mouratidis, H., P. Giorgini, et al. Security

patterns for agent systems. Proceedings of

the Eighth European Conference on Pattern

Languages of Programs (EuroPLoP), Wiley,

New York (2003).

5. De Wolf, T. and T. Holvoet. A catalogue of

decentralised coordination mechanisms for

designing self-organising emergent

applications. Technical Report, Department

of Computer Science, K.U. Leuven (2006).

6. WaiShiang C., L. Sterling, Taverter K.. Task

knowledge patterns reuse in multi-agent

system development. Proceedings of the 13th

International Conference on Principles and

Practice of Multi-Agent Systems, Kolkata,

India, November (2010).

7. Schreiber, G. Knowledge engineering and

management: the CommonKADS

methodology, MIT press (2000).

8. Araban, S. and A. S. M. Sajeev. Reusability

Analysis of Four Standard Object-Oriented

Class Libraries. International Conference on

Software Engineering Research,

Management and Applications, SERA 3647:

171-186 (2006).

9. Harrison, R., S. Counsell, et al. An overview

of object-oriented design metrics.

Proceedings on Eighth IEEE International

Workshop on incorporating Computer Aided

Software Engineering: 230-234 (1997).

10. Li, W. and S. Henry. Object-oriented

metrics that predict maintainability. Journal

of systems and software 23(2): 111-122

(1993).

11. Beck, K., R. Crocker, et al. Industrial

experience with design patterns.

Proceedings of the 18th international

conference on Software engineering, IEEE

Computer Society: 103 – 114 (1996).

12. Chung, E. S., J. I. Hong, et al. Development

and evaluation of emerging design patterns

for ubiquitous computing. Proceedings of

the 5th conference on Designing interactive

systems: processes, practices, methods, and

techniques ACM New York, NY, USA:

233-242 (2004).

13. Cutumisu, M., et al. Evaluating pattern

catalogs: the computer games experience. in

Proceedings of the 28th international

conference on Software engineering: ACM

New York, NY, USA (2006).

14. Klettke, M., L. Schneider, and A. Heuer.

Metrics for XML document collections. in

XMLDM Workshop, Czech Republic.

(2002).

15. Chowdhury, I., B. Chan, and M. Zulkernine.

Security metrics for source code structures.

in Proceedings of the fourth international

workshop on Software engineering for

secure systems: ACM New York, NY, USA

(2008).

16. Franch, X. On the quantitative analysis of

agent-oriented models. 18th International

Conference Advanced Information Systems

Engineering. Luxembourg. 4001: 495-509

(2006).

17. Saremi, A., M. Esmaeili, et al. Evaluation

complexity problem in agent based software

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

791

development methodology. International

Conference on Industrial and Information

Systems, ICIIS (2007).

18. Grossi, D., F. Dignum, et al. Structural

aspects of the evaluation of agent

organizations. International Workshop of

Coordination, Organizations, Institutions,

and Norms in Agent Systems. 4386: 3-18

(2007).

19. Genero, M., M. Piattini-Velthuis, et al.

(2004). Metrics for UML models. UML and

Model Engineering 5(1): 43.12.

20. Chowdhury, I., B. Chan, and M. Zulkernine.

Security metrics for source code structures.

in Proceedings of the fourth international

workshop on Software engineering for

secure systems: ACM New York, NY, USA

(2008).

21. Genero, M., et al., Metrics for UML Models.

UML and Model Engineering, 5(1): p. 43

(2004).

22. Genero, M., D. Miranda, and M. Piattini.

Defining and validating metrics for UML

statechart diagrams. in In 6th International

ECOOP Workshop on Quantitative

Approaches in Object-Oriented Software

Engineering.

23. Yi, T., F. Wu, and C. Gan. A comparison of

metrics for UML class diagrams. in ACM

SIGSOFT Software Engineering Notes.

(2005).

24. WaiShiang C., Mit E., Reusability

assessment of task knowledge patterns

through metrics, The 2nd International

conference on software engineering and

computer system, (ICSECS 2011) 27-29 Jun

2011, Universiti Malaysia Pahang, Kuantan,

Malaysia (2011).

25. WaiShiang C. (2010). Patterns for Agent

oriented software development, The

Melbourne University. PhD.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

792

APPENDIX A

Manage Info.

finding

Finder

Collect result Display result

High user

satisfaction
User

Traversing on

information

sources

Organize

result

Locate info.

sources

ResourceManager

Match info.

source

Conduct search

on info. sources

Accept user

request as query

Produce relevant

result

Figure 1: OGroot = 11, OG’organizeQuery’ = 7 for the task type of „information finding‟

APPENDIX B

Pattern OG RFG NoQ NoR NoD

TKP 17 20 1 16 6

if1 10 12 3 12 7

if2 4 6 1 8 4

if3 12 16 0 19 5

if4 5 7 0 5 4

if5 6 8 0 5 2

if6 4 7 0 10 4

if7 8 10 0 12 3

if8 8 11 1 13 4

Table 1: The values of metrics for the task knowledge patterns of information finding

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

793

APPENDIX C:

Information Integration pattern

Intent:

The purpose of this task type is to handle the accessibility of information across various

information sources.

Also known as:

MOMIS, IBHIS

Context / Applicability:

Use this pattern when

 -you want to perform operation (e.g. execution of task or sending a query) across the

environment ranging from diverse operating system, programming system [in1],

platform, resources, vendor related (e.g. various travel agent system, various payment

system, various hotel management system, car rental system and so on.

Problem: Dealing with task type to integrate or support accessibility among people and

computer systems in large, geographically resources.

Forces: Describes the constraints that are relevant to a particular problem based on the

context of the problem. The following agent concepts are introduced as sub-elements to

the Forces element.

Goal: The solution given must focus on the accessibility issue in handling the

interoperability. Normally, the system will range from various resources as well as

processing involved in task execution. In this case, a task will require to perform certain

operation on other platforms, applicationor various resources form. User query must

able to communicate across a wide range of services transparently. The solution given

will support query handling easily regardless of platform or vendor specify instruction

from one task to the other. The solution given will maintain the availability or

activation of service provided.

 Quality goal: Ensure the accessibility does not breaking through any protection given.

 Role: Four roles have been designed in dealing with this task type. They are role played

as client that required information or perform certain operation, resourceManager to

provide the information or preparing the execution environment and role like

interoperator and accessController to control and arrange the accessibility level.

 Resource: This task type requires domain entities of task, constraint, user, service and

resource.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

794

Solution:

Manage

interoperability

Register

service
Reformulate

task

Receive service

operation

request

Interoperator

Handle

session

Generate result

view

Secure

AccessController

Client

Communicate

with data

source

Handle

 content

Obtain

capability

description

Obtain

constraints

Obtain

access

control

Produce

subtask

Determine

interoperator

Message

translation

Enforce access

control

Maintain

transaction

state

Execute task
Produce

result

ResourceManager

Handle

transaction

Figure< Goal Model>. Goal model for task type of interoperability

Table <Role model>. Role model for task type of interoperability

Role name Inter-operator

Description Support accessibility across wide range of application, vendor specify

application.

Responsibilities setting up the interoperability environment

- support service registration by waiting on incoming service registration

or updating.

-problem reformulation

working on the interoperability operation

-handling proxy

-handling content layer: resource handling and operation handling by

casting the application according to the service registration form; query

translation and result transformation.

 -generate diverse view or result

Constraints -The service must exist.

Role name AccessController

Description Handle access control on the vendor specify function or module to prevent

the violation of the system operation within an application.

Responsibilities Enforce access control according to service requested.

Constraints -Service registration must provide with access right if needed.

Role name User/Owner/Initiator

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

795

Description Handle service request and response.

Responsibilities -Handle service to do by sending service request.

-Obtain response.

Constraints - The received service will direct to interoperator.

- Provide authentication identification if needed.

Role name ResourceManager

Description Platform for resource execution (e.g. perform searching or tool for data

analysis [in2])

Responsibilities -Execute task within given context

Constraints -Perform task execution according to specified constraints (e.g.

authentication and authorization)

Client AssessControllerInteroperator

ResourceManager

Figure <Organizational model>. Organization model for task type of interoperability

Organization structure The interaction among the client and interoperator happens that

the interoperator will ensure the accessibility of information across various resources

once received the user request. To prevent the violate that occurred during the

transaction, interoperator will interact with AssessController. The ResourceManager will

conduct execution (e.g. retrieve information, running computation upon the interaction

with interoperator and produce the result to client.

Task Service

satisfy

consist of

User Constraint
impose

restrict

Resource
require

Figure <Domain model>. Domain model for task type of interoperability

Consequences:

The benefit from integration is to provide user upon processing across resources and

application;

-reduce the risk to avoid unaware or incorrect interpretation of patient history reside

within various resources and platform.

-Support the current standalone information system without further changes.

-Presenting the result in uniform view instead of multiple interfaces that occur or

represented across various system.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 780-796
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

796

