

Towards a Dynamic File Integrity Monitor through a Security

Classification

Zul Hilmi Abdullah
1
, Nur Izura Udzir

1
, Ramlan Mahmod

1
, and Khairulmizam Samsudin

2

1
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia,

43400 Serdang, Selangor, Malaysia.

zulhilmi_abd@yahoo.com, izura@fsktm.upm.edu.my, ramlan@fsktm.upm.edu.my
2
Faculty of Engineering, Universiti Putra Malaysia,

43400 Serdang, Selangor, Malaysia

kmbs@eng.upm.edu.my

ABSTRACT

File is a component of a computer system

that has importance value of its own, either

in terms of availability, integrity,

confidentiality and functionality to a system

and application. If unintended changes

happen on the related file, it may affect the

security of related computer system. File

integrity monitor (FIM) tools is widely used

to minimize the file security risk. This paper

proposed dynamic schedule for FIM. This

paper presents a dynamic scheduling for

FIM by combining on-line and off-line

monitoring based on related files security

requirement. Files are divided based on their

security level group and integrity monitoring

schedule is defined based on related groups.

The initial testing result shows that our

system is effective in on-line detection of

file modification.

KEYWORDS

File Integrity, HIDS, File Security

Classification, Dynamic Scheduling,

Operating System.

1 INTRODUCTION

File is important element in computer

system that used for input and output for

most application [1]. In the operating

system environments, file system is a

most important component that must be

protected in order to maintain the

integrity and availability of their

services. Ensuring the integrity of files

on the computer system is crucial task

nowadays due to huge number of

instruction and data.

File integrity monitor (FIM) can be used

to optimize the file security. In addition,

other related tools known as file integrity

verification, file integrity tools and file

integrity checking. Generally, these tools

have in common which serves to ensure

the integrity of the files involved. Other

integrity tools such as kernel [2-5],

application [6, 7] and memory [8, 9]

integrity tools also targeted to ensure the

integrity of operating system.

FIM is one of the security tools that can

be implemented in host environment as

part of host based intrusion detection

system (HIDS). FIM play a big role in

monitoring the integrity of the files in

the event of any changes to the files on

their content, access control, privilege,

group and other properties either by

authorized or unauthorized users. The

main goal of related integrity tools is to

notify system administrator if any

changed, deleted, or added files detected

on the monitored system [10]. Basically,

file integrity tools measure the current

checksum or hash value of the monitored

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 766-779
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

766

files with their original value to detect

any changes in file content.

In general, FIM can be divided into two

categories in term of monitoring scheme,

off-line and on-line scheme [11]. Off-

line scheme refers to the FIM which

monitors the integrity of the related files

from time to time according to user

setting. While on-line monitoring of

FIM-related files in real time as each file

is modified.

The recent solutions are more focused on

on-line or real-time monitoring to

enhance detection capabilities of

malicious modification [11-13].

However, performance downgrade is a

big issue in real time checking making it

impractical for real world deployment.

On the other side, higher cost of

investment is required to deploy a new

technology of integrity verification for

the system such as hardware based

protection mechanism using the Trusted

Platform Module (TPM) which not only

require TPM chips embedded on the

computer hardware but also require

additional software to make it efficient.

The main goal of the FIM is to ensure

the integrity of file in operating system

environment from intruders and also

unintended alteration or modification by

authorized users. As one of the critical

part in the operating system

environment, the integrity of the system

files must be put as high priority.

However, to monitor all those system

files in real-time is very difficult task

and very costly especially for multi host

and operating systems environment.

In this paper, we propose a software

based file integrity monitoring by

dynamically checking related files based

on their sensitivity or security

requirement. Sensitive files refer to the

files which, if missing or improperly

modified can cause unintended result to

the system services and operation [14].

The rest of the paper is organized as

follows: Section 2 discusses related

works and compares our proposed

techniques with these works. In Section

3, we describe our proposed system

focusing on file security classification

algorithm and FIM scheduling and how

it differs with previous FIM. In Section

4, we quantify the initial implementation

and performance evaluation of our work.

This paper ended with discussion and

conclusion in Section 5.

2 RELATED WORKS

In operating system environment, every

component such as instruction, device

drivers and other data is saved in files.

There are huge numbers of files

contained in modern operating system

environment. Most of the time, files

become a main target by the attackers to

compromised the operating systems.

The attack can be performed by

modifying or altering the existence files,

deletion, addition, and hide the related

files. Many techniques can be used by

the attackers to attack the files in the

operating system environment, make file

protection become a vital task.

Implementation of FIM and other related

system security tools is needed for that

purpose.

As part of the HIDS functions, file

integrity monitoring can be classified as

off-line and on-line integrity monitoring.

In the next section we discuss the off-

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 766-779
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

767

line and on-line FIM followed by the

multi platform FIM.

2.1 Off-line File Integrity Monitoring

Tripwire [10] is a well known file

integrity monitoring tool that motivates

other researchers to develop more

powerful FIM tools. Tripwire works

based on four process, init, check,

update and test. Comparing the current

hash values of the files with the baseline

values are the main principle of the FIM

tools like Tripwire.

However, relying on the baseline

database require more maintenance cost

due to more frequent system updates or

patches [15]. In addition, off-line FIM

needs to be scheduled in order to check

the integrity of related files and most of

the time can cause delay in detection of

the modification. Samhain [16], AIDE

[17], and Osiris [18] use the same

approach too, so they also inherit almost

the same issues as Tripwire.

Inspection frequency and the

modification detection effectiveness is

the main issue in the off-line FIM. In

order to maintain the effectiveness of the

FIM, high frequency inspection is

needed at the cost of system

performance, and vice versa. We

overcome this issue by proposing a

dynamic inspection schedule by

classifying related files to certain groups

and the inspection frequency will vary

between the groups of files. Thus, from

that approach, FIM can maintain its

effectiveness with a more acceptable

performance overhead to the system.

Wu et al. presents BinInt [19] as a new

security model for binaries that prevents

unauthorized binaries being executed.

Although this work efficiently protects

the binary, data files that more

frequently changed cannot be covered.

We are concern about this issue, so

although we focus on system files

integrity, our technique also can be

implemented on the data files.

2.2 On-line File Integrity Monitoring

On-line FIM is proposed to overcome

the delay detection in off-line FIM

approach by monitoring the security

event involving system files in real-time.

However, in order to work in real-time,

it requires access of low level (kernel)

activities which require kernel

modification. When kernel modification

is involved, the solution is kernel and

platform-dependent, and therefore

incompatible with other kernels and

platforms. In addition, real-time

application needs some scheduling

guarantee from operating system to

make it works [20] and load balancer

also needed for minimize latency in

multiple host environment.

As example, I3FS [21] proposed a real-

time checking mechanism using system

call interception and working in the

kernel mode. However this work also

requires some modification in protected

machine's kernel. In addition, whole

checksum monitoring in real time

affected more performance degradation.

I3FS offers a policy setup and update for

customizing the frequency of integrity

check. However it needs the system

administrator to manually set up and

update the file policy.

There are various on-line FIM and other

security tools using the virtual machine

introspection (VMI) technique to

monitor and analyze a virtual machine

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 766-779
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

768

state from the hypervisor level [22].

VMI was first introduced in Livewire

[23] and then applied by the other tools

like intrusion detection in HyperSpector

[24] and malware analysis in Ether [25].

On the other side, virtualization based

file integrity tools (FIT) has been

proposed by XenFIT [15] to overcome

the privileged issue on the previous user

mode FIT. XenFIT works by

intercepting system call in monitored

virtual machine (MVM) and sent to the

privileged virtual machine (PVM).

However, XenFIT requires a hardware

virtualization support and only can fit

with the Xen virtual machine, not other

virtualization software. Another Xen

based FIT is XenRIM [26] which does

not require a baseline database. NOPFIT

[13] also utilized the virtualization

technology for their FIT using undefined

opcode exception as a new debugging

technique. However, all those real-time

FIT only works on the Linux based OS.

Another on-line FIM, VRFPS uses

blktap library in Xen for their real time

file protection tool [12]. This tool is also

platform-dependent which only can be

implemented in a Xen hypervisor. An

interesting part in this tool is their file

categorization approach to define which

file requires protection and vice versa.

We try to enhance their idea by doing

the file classification to determine the

scheduling process of file monitoring.

VRFPS work on Linux environment in

real time implementation but we

implement our algorithm in Windows

environment by combining on-line and

off-line integrity monitoring. Combining

the on-line and off-line integrity

monitoring is to maintain the

effectiveness of the FIM and to reduce

the performance overhead.

2.3 Multi Platform File Integrity

Monitoring

Developments in information technology

and telecommunications led to higher

demand for on-line services in various

fields of work. Those services require

related servers on various platforms to

be securely managed to ensure their

trustworthiness to their clients.

Distributed and ubiquitous environment

require simple tools that can manage

security for multi platform servers

including the file integrity checking.

There are a number of HIDS proposed to

cater this need.

Centralized management of the file

integrity monitoring is the main concern

of those tools, and we take it as the

fundamental features for our system and

we focus more on the checking

scheduling concern on the multi

platform host. The other security tools

also implement a centralized

management for their tools, such as anti-

malware [27] and firewalls [28], FIM as

part of HIDS also needs that kind of

approaches to ensure the ease of

administration and maintenance. We

hope our classification algorithm and

scheduling technique can also be applied

to the other related systems.

Another issue to the FIM like Tripwire is

the implementation on the monitored

system which can be easily

compromised if the attackers gain the

administrator privilege. Wurster et al.

[29] proposed a framework to avoid root

abuse of file system privileges by

restricts the system control during the

installing and removing the application.

Restricting the control is to avoid the

unintended modification to the other

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 766-779
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

769

files that not related to the installed or

removed application.

Samhain [30], and OSSEC [31] comes

with centralized management of the FIT

component in their host based intrusion

detection system which allow multiple

monitored systems to be managed more

effectively. Monitoring the integrity of

files and registry keys by scanning the

system periodically is a common

practice of the OSSEC. However, the

challenge is to ensure the modification

of related files can be detected as soon as

the event occurs as fast detection can be

vital to prevent further damage.

Figure 1. Example of system integrity checking

configuration

OSSEC has features to customize rules

and frequency of file integrity checking

as shown in Figure 1. However it needs

manual intervention by the system

administrator. This practice becomes

impractical in distributed and multi

platform environment as well as cloud

computing due to the large number of

servers that should be managed.

Therefore we try to implement multi

platform FIM on the virtualized

environment by customizing the

scanning schedule with our techniques.

Allowing other functions work as

normal, we focus the file integrity

monitoring features to enhance the

inspection capabilities by scheduling it

based on related files security

requirements on related monitored

virtual machines.

3 Classification based FIM

We found that most of the on-line and

off-line FIM offer a policy setting

features for the system administrator to

update their monitoring setting based on

the current requirement. However it can

be a daunting task to the system

administrator to define the appropriate

security level for their system files

especially those involving large data

center. Therefore, a proper and

automated security level classification of

the file, especially system files, is

required to fulfill this need.

In this paper, we propose a new

checking scheduling technique that

dynamically updates the file integrity

monitoring schedule based on the

current system requirement. This can be

achieved by collecting information of

related files such as their read/write

frequency, owners, group, access control

and other related attributes that can

weight their security level. For initial

phase, we only focus on the files owner

and permission in our security

classification.

Inspired by various services offered by

modern operating systems, and multi

services environments such as email

services, web services, internet banking

and others, the criticality of the integrity

protection of those systems is very

crucial. Whether they run on a specific

physical machine or in virtual

environment, the integrity of their

<syscheck>

<directoriesrealtime=”yes”

check_all=”yes”> /WINDOWS/system32

</directories>

<frequency>79200</frequency>

<!-- Directories to check -->

 <directories

check_all="yes">/WINDOWS</directorie

s>

</syscheck>

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 766-779
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

770

operating system files must be put in

high priority to ensure the user's trust on

their services.

Centralized security monitoring is

required to ensure the attack detection is

still effective even though the monitored

host has already been compromised.

Windows comes with their own security

tools such as Windows File Protection

(WPC), Windows Resource Protection

(WRP) and many more. However most

of the tools rely on the privileged access

of the administrator. If an attacker gains

the administrator privileges, all

modifications to the system files or other

resources will look like a legal

operation. So here where the centralize

security monitoring is needed, when the

critical resources are modified, the

security administrator will be alerted

although it is modified by local host

administrator. Identifying the most

critical file that is often targeted by

attackers is a challenging task due to the

various techniques that can be used to

compromise the systems.

Figure 2. The DFIM architecture.

Based on the observation that specific

attack techniques can be implemented to

specific types of operating system

services, we try to enhance the file

integrity monitoring schedule by looking

at the file security level for the specific

host. It may vary from the other host and

it can result dissimilarity type of

scheduling but it is more accurate and

resource-friendly since it fits on the

specific needs.

3.1 System Architecture

The architecture of our proposed system

is shown in Figure 2. The shaded area

depicts the components that we have

implemented. We develop our model

based on the multi platform HIDS.

File Attribute Scanner (FAS). We

collect file attributes to manipulate their

information for our analysis and

scheduler. Determining the specific

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 766-779
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

771

group of files that require more frequent

integrity inspection is a difficult task due

to the various types of services offered

by the operating systems.

We assume that the system file structure

is quite similar to various Windows

based operating system. The security

level of related group of files is the result

of the combination between the file

owner's rights and file permissions.

File attributes scanner (FAS) is locate in

the agent package that is deployed in

MVM. In the FAS, files are scanned for

the first time after our system installation

on the MVM to create the baseline

database. The baseline database of the

files is stored in the PVM. In this

process, the initial scheduler is created

and added to the file monitor scheduler

(FMS), which will overwrite the default

policy. The monitoring engine will

check the related files based on the

defined policy. Then, if any changes

occur in related files owner and

permission, the FAS will update the

classification and scheduler database.

We highlighted the FAS because it is

what we have added in the previous

agent's components. Another agent

component is the file integrity monitor

(FIM) that runs as the daemon process.

FIM monitors the changes of the file

content using the MD5 and SHA-1

checksum as well as changes in file

ownership and permission. Event

forwarding is part of the agent

component which notifies the server for

any event regarding file modification.

Agent and server communicate via

encrypted traffic.

Table 1. FIM Check Parameter

Check Parameter Function

check_sum Check files integrity using

MD5/SHA1

check_size Check changes of files size

check_perm Check changes of files permission

check_group Check changes of files group

ownership

check_own Check changes of files ownership

We implement our algorithm based on

OSSEC structure, so we also use the

check parameter in Table 1 same as

OSSEC check parameter [31].

File Monitor Scheduler. File monitor

scheduler (FMS) is one of our

contributions in this paper. FMS collects

file information from FAS in MVM via

the event decoder to perform the file

monitoring schedule based on the

classification criteria. FMS has its own

temporary database which contains

groups of file names captured from FAS.

The file groups will be updated if any

changes occur in MVM captured by

FAS. FMS will generate the FIM

schedule and overwrite the default

configuration file in the monitor engine.

The monitoring engine will check

related files based on the policy setting.

Policy. In default configuration, there

are many built-in policy files which can

be customized based on user

requirements. In our case, we leave other

policies as default configuration, but we

add new policy enhancement on the FIM

frequency. Our FIM policy relies on the

file security level classification which is

based on file ownership and permission

captured on MVM. We offer dynamic

policy updates based on our FMS result.

The frequency of the policy update is

very low due to infrequent changes in

the file security level.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 766-779
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

772

Figure 3. Classification based FIM monitoring

policy

Monitoring Engine. Monitoring engine

plays a key function for our system. It

communicates with the event decoder in

order to obtain file information from

MVM and pass instructions to the agent

in MVM. File information is needed in

the monitoring process either in real time

or periodic checking based on the policy

setting (Figure 3). The monitoring

engine should send instructions to the

agent in MVM when it needs current file

information to compare with the baseline

databases especially for the off-line

monitoring process

3.2 File Classification Algorithm

In operating system environment, system

files can be vulnerable to malicious

modifications especially when attackers

obtain administrator privileges.

Therefore system file is the major

concern in the FIM. However there are

other files that should also be protected

especially when related systems provide

critical services to each other, such as

web hosting, on-line banking, military

related system, and medical related

systems. It is quite subjective to define

which files are more critical than others

since every system provide different

services.

In addition, huge number of files in the

operating system environment is another

challenge to the FIM in order to

effectively monitor all those file without

sacrificing the system performance.

Hence, for that reason, we propose a file

classification algorithm that can help

FIM and other security tools to define

the security requirements of related files.

Hai Jin et al. [11] classified the files

based on their security level weight as

follows

wi = α * ƒi + βi * di (α + β = 1).

They represent the wi as weighted value

for file i, ƒi shows the file i access

frequency, and they describing the

significance of the directory contain the

file i with di. They measure the files and

directory weighted on the Linux

environment which wi represent the

importance of the files. The variables, α

and β, relate to the proportion of the

frequency and the significance of

directory.

Microsoft offers File Classification

Infrastructure (FCI) in their Windows

Server 2008 R2 to assist users in

managing their files [32]. FCI targets the

business data files rather than system

files. In other words, the files

classification is based on the business

impact and involves a more complex

algorithm. Here we focus on the security

impact on the systems and start with a

simpler algorithm. In VRFPS file

categorization, they classified the files

the in Linux system into three types:

Read-only files, Log-on-write files and

Write-free files [12] to describe the

security level of related files. In this

paper, we also divide our file security

<files realtime=”yes”

check_all=”yes”>Shigh</files>

<frequency>36000</frequency>

 <files check_all=”yes”>Smed</files>

<ignore>slow</ignore>

<alert_new_files>yes</alert_new_files>

<auto_ignore>yes</auto_ignore>

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 766-779
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

773

level into three classes, high, medium or

low security levels.

In this initial stage, we use the simple

approach based on user's right and

object's permission combination to

define the file security level. However

we exclude the user and group domains

in this work as we are focusing more on

the local files in MVM. User's rights

refer to files owner that belong to a

specific group that have specific

privileges or action that they can or

cannot perform. The files as objects that

the user or group has permission or not

to perform any operation to their content

or properties [33]. For example, Ali as

user and a member of the Administrator

group is permitted to modify the

system.ini files contents. We define

our files security level as follows:

High security files: The files belong to

Administrator. Other user groups have

limited access to these files. Most of the

system file type is in this group. This

group of files requires on-line integrity

checking.

Figure 4. File security classification algorithm based on files ownership and permission

Medium security files: The files belong

to Administrator group but other user

groups also have permissions to read and

write to these files. This group of file

does not need on-line integrity

monitoring but requires periodic

monitoring, e.g. once a day. In this

paper, we create a single group of files

for this level.

Next, we will improve it to create more

additional groups in medium security

level. The additional group will result

different scheduling in periodically

mechanism for different type of files in

medium security level groups. Hence,

distribution of scheduling can minimize

Algorithm 1: File security classification algorithm

Input: File information (fname, fgrp, fperm),policy files

Output: Shigh, Smed, Slow

procedure FileSecurityClassification

Shigh, Smed and Slow are empty

read the default policy files

append the specified file to Shigh, Smed and Slow

get the file information (fname, fgrp and fperm)

the total of files names (fnum)

for (i=0; i < fnum; i++)

{

if ((fgrp = Administrators && fperm = full control)&&(fgrp !=

Administrators || SYSTEM && fperm != modify || write))

 append fname to Shigh

 else if ((fgrp = Administrator || SYSTEM || Power Users

 && fperm = modify || write) && (fgrp != Administrator

 && fperm = write))

 append fname to Smed

 else

 append fname to Slow

}

end procedure

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 766-779
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

774

the usage of computer resources and

reduce performance bottleneck.

Low security files: The files are owned

by users other than the Administrator

group. This group of files can be ignored

for integrity monitoring to reduce the

system performance overhead during the

monitoring process. The goal of file

security classification algorithm in

Windows-based operating system is to

dynamically schedule the integrity

monitoring of those files.

Different security levels of files need

different monitoring schedules and this

approach can optimize the FIM tool

effectiveness and system performance as

well. Moreover, the result of the file

security classification provides

information to the system administrator

about the security needs of the related

files.

Figure 4 shows our initial file security

classification algorithm. We need basic

file information including file names and

its directory (fname), group of file's

owner (fgrp), and file permission

(fperm) as input, together with existing

FIM policy files. All specified files will

be classified as high (Shigh), medium

(Smed) or low (Slow) security level

based on their ownership and

permission. Files' security level

information will be appended to the files

information list, so any changes on their

ownership and permission will be

update. Dynamic update of the security

level is needed due to discretionary

access control (DAC) [34]

implementation in Windows based OS

which allow the file owner to determine

and change access permission to user or

group.

Table 2 indicates the comparison

between our works with other FIM tools.

We call our work as a dynamic file

integrity monitoring (DFIM). The main

objective of our work is to produce file

integrity monitor in multi-platform

environment. Variety of operating

system in the market needs more

effective and flexible approaches.

Therefore, base on some drawbacks of

current FIM tools, we use file security

classification algorithm to provide

dynamic update of monitoring policy.

Table 2. Comparison with previous FIM tools

Tripwire XenFIT OSSEC DFIM

Multi
Platform

No Yes Yes Yes

Frequency
Check

Periodic Runtime
Periodic
+ Run-
time

Periodic
+ Run-
time

Policy
Configuration

Static Static Static Dynamic

File
Classification

No No No Yes

Require
Virtualization
Extension
Support

No Yes No No

This is an initial work for file security

classification in Windows environment

and is not complete enough to secure the

whole file in general. We measure the

performance of the system with the

classification algorithm run. More

comprehensive study will be carried out

in future to enhance the file security

classification algorithm for better result.

4 Testing and Result

We tested our approach in the virtualized

environment using Oracle Sun

Virtualbox. Ubuntu 10 Server edition is

installed as a management server or

privileged virtual machine (PVM) for

our FIM and Windows XP Service Pack

3 as a monitored virtual machine

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 766-779
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

775

(MVM). We install HIDS for client

server packages. The experiment

environment is Intel Core2 Duo CPU

E8400 with 3.0GHz, and 3GB memory.

We assume that the virtual machine

monitor (VMM) provides strong

isolation between PVM and MVM that

fulfills the virtualization technology

security requirement. Basically, our

system does not require hardware-based

virtualization support and it can be

deployed on any CPU platform.

However the algorithm can also be

tested on other virtualization based FIT

that relies on the hardware-based

virtualization support such as XenFIT

and XenRIM.

We tested our algorithm by doing some

modification to the high security level

files to measure the effectiveness of on-

line FIM setting. We found that the

modification can be detected

immediately after the changes are made

(Figure 5).

Figure 5. Detection of files modification

We are carrying out more detail

experiments to measure the effectiveness

of on-line and off-line FIM in detecting

the file modification. In addition we

measured the performance overhead of

our system to be compared to the native

system. Initial testing carried out on the

client side running Windows XP SP3

with minimal software installed. We will

carry out the further experiment on the

server side as well as other operating

systems platform on the client side

environment.

In this stage, we measure time to be

completed by the system (1) to build a

software package and (2) to create an

archive for the software package using

archive manager (WinRAR). Time taken

to complete both workloads are

measured by activate related function

and compared against the native system

(without DFIM function). Testing was

carried out ten times for each workload

in each function activated. The average

time taken was recorded in Table 3.

Table 3. DFIM Performance Evaluation

Workload System
Time

Completed
Overhead

Build

Base 24.2s -

Initial

Classification 25.4s 4.9%

DFIM + Off-line 24.6s 1.7%

DFIM + On-line 25.0s 3.3%

DFIM Dual 25.2s 4.1%

Archive

Base 35.1s -
Initial

Classification 36.7s 4.5%

DFIM + Off-line 35.7s 1.4%

DFIM + On-line 36.1s 2.8%

DFIM Dual 36.4s 3.7%

Table 3 shows the performance

evaluation of DFIM tools when related

function in DFIM activated. Both

workloads recorded maximum time to

complete during the initial classification

activated. In the initial classification

process, more information needed in

order to create a list of file security

group. Scanning the file attributes result

the highest overhead on the system.

Computer resources are shared with this

classification process, make time to

complete for both operation take longer.

Minimum time to complete for both

workloads is during the off-line

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 766-779
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

776

monitoring process activated. In this

process only files that are scheduled,

monitored within certain period of time.

Process does not involve acquisition of

real-time information resulting only

minimum use of resources. In such

cases, the computer resources can be

shared by other workloads (testing

workload).

Overhead of the on-line monitoring,

3.3% for build and 2.8% of archive

shows that it still in acceptable level.

Next, activation of whole system

function by combining the off-line and

on-line monitoring result higher

overhead (4.1% and 3.7%) but it also

still practical to implement. It not just a

dual scheme monitoring process, the

dynamic classification and scheduling

update as add-on function should be

considered.

5 Conclusions

We propose a new FIM scheduling

algorithm based on file security

classification that can dynamically

update FIM needs. Most current FIM

focus on their real-time FIM for

sensitive files and ignored the other files

without periodic checking their integrity.

In addition, changes in file attributes are

also ignored by most of FIM tools which

can reduce their effectiveness.

First, we try to simplify the different

security groups for the files based on

user's rights and object (file) permission

combination. In Windows environment,

DAC provides flexibility to the users to

determine the permission setting of their

resources. Changes to the object

permission sometimes also require

changes to their security requirement.

DFIM provides automated mechanism to

update the file security level if any

changes involved. The changes of

security level will result the update of

monitoring schedule.

Next, we will enhance the algorithm to

develop more comprehensive

classification of files security. Moreover,

file security classification can be also

used in other security tools to enhance

their capabilities with acceptable

performance overhead. Other platforms

such as mobile and smart phone

environments also can be a next focus in

the file security classification in order to

identify their security requirement.

Lastly, centralized management of

security tools should be implemented

due to the large number of systems

owned by organizations to ensure

security updates and patches can

perform in a more manageable manner.

6 REFERENCES

1. Stallings, W., Operating Systems: Internals

and Design Principles. Sixth ed. 2008:

Prentice Hall Press Upper Saddle River, NJ,

USA.

2. Nick L. Petroni, J., et al., An architecture for

specification-based detection of semantic

integrity violations in kernel dynamic data,

in Proceedings of the 15th conference on

USENIX Security Symposium - Volume 15.

2006, USENIX Association: Vancouver,

B.C., Canada.

3. Xu, M., et al., Towards a VMM-based usage

control framework for OS kernel integrity

protection, in Proceedings of the 12th ACM

symposium on Access control models and

technologies. 2007, ACM: Sophia Antipolis,

France.

4. Xuan, C., J. Copeland, and R. Beyah,

Shepherding Loadable Kernel Modules

through On-demand Emulation, in Detection

of Intrusions and Malware, and

Vulnerability Assessment. 2009. p. 48-67.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 766-779
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

777

5. Seshadri, A., et al., SecVisor: a tiny

hypervisor to provide lifetime kernel code

integrity for commodity OSes, in

Proceedings of twenty-first ACM SIGOPS

symposium on Operating systems principles.

2007, ACM: Stevenson, Washington, USA.

6. Lifu, W. and P. Dasgupta. Kernel and

Application Integrity Assurance: Ensuring

Freedom from Rootkits and Malware in a

Computer System. in Advanced Information

Networking and Applications Workshops,

2007, AINAW '07. 21st International

Conference on. 2007.

7. Li, N., Z. Mao, and H. Chen, Usable

Mandatory Integrity Protection for

Operating Systems, in Proceedings of the

2007 IEEE Symposium on Security and

Privacy. 2007, IEEE Computer Society.

8. Dewan, P., et al., A hypervisor-based system

for protecting software runtime memory and

persistent storage, in Proceedings of the

2008 Spring simulation multiconference.

2008, The Society for Computer Simulation,

International: Ottawa, Canada.

9. Akritidis, P., et al. Preventing Memory Error

Exploits with WIT. in Security and Privacy,

2008. SP 2008. IEEE Symposium on. 2008.

10. Kim, G.H. and E.H. Spafford, The design

and implementation of tripwire: a file

system integrity checker, in Proceedings of

the 2nd ACM Conference on Computer and

communications security. 1994, ACM:

Fairfax, Virginia, United States.

11. Jin, H., et al., A guest-transparent file

integrity monitoring method in virtualization

environment. Comput. Math. Appl., 2010.

60(2): p. 256-266.

12. Feng, Z. VRFPS: A Novel Virtual Machine-

Based Real-time File Protection System. in

oftware Engineering Research, Management

and Applications, ACIS International

Conference. 2009: IEEE Computer Society.

13. Junghan, K. NOPFIT: File System Integrity

Tool for Virtual Machine Using Multi-byte

NOP Injection. in 2010 International

Conference on Computational Science and

Its Applications. 2010. Fukuoka, Japan.

14. Zhao, X., K. Borders, and A. Prakash,

Towards Protecting Sensitive Files in a

Compromised System, in Proceedings of the

Third IEEE International Security in Storage

Workshop. 2005, IEEE Computer Society.

15. Quynh, N.A. and Y. Takefuji, A novel

approach for a file-system integrity monitor

tool of Xen virtual machine, in Proceedings

of the 2nd ACM symposium on Information,

computer and communications security.

2007, ACM: Singapore.

16. http://www.la-samhna.de/samhain/. The

SAMHAIN file integrity / host-based

intrusion detection system. 2006 [cited

2010 November 2nd].

17. Lehti, R., M. Haber, and R.v.d. Ber. The

AIDE manual. 20 May 2011 [cited 2011

July 10th]; Available from:

http://aide.sourceforge.net/stable/manual.ht

ml.

18. Wotring, B. and B. Potter, Osiris, in Host

Integrity Monitoring Using Osiris and

Samhain. 2005, Syngress: Burlington. p.

141-239.

19. Wu, Y. and R.H.C. Yap, Towards a binary

integrity system for windows, in

Proceedings of the 6th ACM Symposium on

Information, Computer and

Communications Security. 2011, ACM:

Hong Kong, China.

20. Lee, M., et al., Supporting soft real-time

tasks in the xen hypervisor, in Proceedings

of the 6th ACM SIGPLAN/SIGOPS

international conference on Virtual

execution environments. 2010, ACM:

Pittsburgh, Pennsylvania, USA.

21. Patil, S., et al., I3FS: An In-Kernel Integrity

Checker and Intrusion Detection File

System, in Proceedings of the 18th USENIX

conference on System administration. 2004,

USENIX Association: Atlanta, GA.

22. Pfoh, J., C. Schneider, and C. Eckert, A

formal model for virtual machine

introspection, in Proceedings of the 1st

ACM workshop on Virtual machine

security. 2009, ACM: Chicago, Illinois,

USA.

23. Tal Garfinkel, M.R. A Virtual Machine

Introspection Based Architecture for

Intrusion Detection in Proc. Network and

Distributed Systems Security Symposium.

2003.

24. Kourai, K. and S. Chiba, HyperSpector:

virtual distributed monitoring environments

for secure intrusion detection, in

Proceedings of the 1st ACM/USENIX

international conference on Virtual

execution environments. 2005, ACM:

Chicago, IL, USA.

25. Dinaburg, A., et al., Ether: malware analysis

via hardware virtualization extensions, in

Proceedings of the 15th ACM conference on

Computer and communications security.

2008, ACM: Alexandria, Virginia, USA.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 766-779
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

778

http://www.la-samhna.de/samhain/
http://aide.sourceforge.net/stable/manual.html
http://aide.sourceforge.net/stable/manual.html

26. Quynh, N.A. and Y. Takefuji, A Real-time

Integrity Monitor for Xen Virtual Machine,

in Proceedings of the International

conference on Networking and Services.

2006, IEEE Computer Society.

27. Szymczyk, M., Detecting Botnets in

Computer Networks Using Multi-agent

Technology, in Proceedings of the 2009

Fourth International Conference on

Dependability of Computer Systems. 2009,

IEEE Computer Society.

28. Shaer, E. and H. Hamed, Modeling and

management of firewall policies. IEEE

Trans. Network and Service Management,

2004. 1(1).

29. Wurster, G. and P.C.v. Oorschot, A control

point for reducing root abuse of file-system

privileges, in Proceedings of the 17th ACM

conference on Computer and

communications security. 2010, ACM:

Chicago, Illinois, USA.

30. Wotring, B. and B. Potter, Samhain, in Host

Integrity Monitoring Using Osiris and

Samhain. 2005, Syngress: Burlington. p.

241-305.

31. Hay, A., et al., System Integrity Check and

Rootkit Detection, in OSSEC Host-Based

Intrusion Detection Guide. 2008, Syngress:

Burlington. p. 149-174.

32. Microsoft. File classification infrastructure,

technical white paper. 2009; Available

from:

http://www.microsoft.com/windowsserver20

08/en/us/fci.aspx.

33. Weadock, G., Windows 2003/2000/xp

security architecture overview. 2005, Global

Knowledge Network, Inc.

34. Russinovich, M.E. and D.A. Solomon,

Microsoft Windows Internals, Fourth

Edition: Microsoft Windows Server(TM)

2003, Windows XP, and Windows 2000

(Pro-Developer). 2004: Microsoft Press

Redmond, WA, USA.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 766-779
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

779

