
Derivation of Stochastic Reward net (SRN) from UML specification

considering cost efficient deployment management of collaborative

service components

Razib Hayat Khan, Poul E. Heegaard

Norwegian University of Science & Technology

7491, Trondheim, Norway

{rkhan, poul.heegaard}@item.ntnu.no

ABSTRACT
Performance evaluation of distributed

system is always an intricate undertaking

where system behavior is distributed among

several components those are physically

distributed. Bearing this concept in mind, we

delineate a performance modeling

framework for a distributed system that

proposes a transformation process from high

level UML notation to SRN model and

solves the model for relevant performance

metrics. To capture the system dynamics

through our proposed framework we outline

a specification style that focuses on UML

collaboration and activity as reusable

specification building blocks, while

deployment diagram identify the physical

components of the system and the

assignment of software artifacts to identified

system components. Optimal deployment

mapping of software artifacts on the

available physical resources of the system is

investigated by deriving the cost function.

The way to deal with parallel thread

processing of the network nodes by defining

the upper bound is precisely mentioned to

generate the SRN model. The proposed

performance modeling framework provides

transformation rules of UML elements into

corresponding SRN representations and also

the prediction result of a system such as

throughput. The applicability of our

proposed framework is demonstrated in the

context of performance modeling of a

distributed system.

Keywords

UML, SRN, Performance attributes

1 Introduction

Distributed system poses one of the main

streams of information and

communication technology arena with

immense complexity. Designing and

implementation of such complex

systems are always an intricate

endeavor. Likewise performance

evaluation is also a great concern of such

complex system to evaluate whether the

system meets the performance related

system requirements. Hence modeling

phase plays an important role in the

whole design process of the system for

qualitative and quantitative analysis.

However in a distributed system, system

behavior is normally distributed among

several objects. The overall behavior of

the system is composed of the partial

behavior of the distributed objects of the

system. So it is obvious to capture the

behavior of the distributed objects for

appropriate analysis to evaluate the

performance related factors of the

overall system. We therefore adopt UML

collaboration and activity oriented

approach as UML is the most widely

used modeling language which models

both the system requirements and

qualitative behavior through different

notations [2]. Collaboration and activity

diagram are utilized to demonstrate the

overall system behavior by defining both

the structure of the partial object

behavior as well as the interaction

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

721

between them as reusable specification

building blocks and later this UML

specification style is applied to generate

the SRN model by our proposed

performance modeling framework. UML

collaboration and activity provides a

tremendous modeling framework

containing several interesting properties.

Firstly collaborations and activity model

the concept of service provided by the

system very nicely. They define

structure of partial object behaviors, the

collaboration roles and enable a precise

definition of the overall system behavior.

They also delineate the way to compose

the services by means of collaboration

uses and role bindings [1].

The proposed modeling framework

considers system execution architecture

to realize the deployment of the service

components. Abstract view of the system

architecture is captured by the UML

deployment diagram which defines the

execution architecture of the system by

identifying the system components and

the assignment of software artifacts to

those identified system components [2].

Considering the system architecture to

generate the performance model resolves

the bottleneck of system performance by

finding a better allocation of service

components to the physical nodes. This

needs for an efficient approach to deploy

the service components on the available

hosts of distributed environment to

achieve preferably high performance and

low cost levels. The most basic example

in this regard is to choose better

deployment architectures by considering

only the latency of the service. The

easiest way to satisfy the latency

requirements is to indentify and deploy

the service components that require the

highest volume of interaction onto the

same resource or to choose resources

that are connected by links with

sufficiently high capacity [3].

It is indispensable to extend the UML

model to incorporate the performance-

related quality of service (QoS)

information to allow modeling and

evaluating the properties of a system like

throughput, utilization, and mean

response time. So the UML models are

annotated according to the UML profile

for MARTE: Modeling & Analysis of

Real-Time Embedded Systems to include

quantitative system parameters [4]. Thus

it helps to maintain consistency between

system design and implementation with

respect to requirement specification.

Markov models, stochastic process

algebras, stochastic petri net and

stochastic reward net (SRN) are

probably the best studied performance

modeling techniques [5]. Among all of

them, we will focus on the stochastic

reward net (SRN) as the performance

model generated by our proposed

framework due to its increasingly

popular formalism for describing and

analyzing systems, its modeling

generality, its ability to capture complex

system behavior concisely, its ability to

preserve the original architecture of the

system, to allow marking dependency

firing rates & reward rates defined at the

net level, to facilitate any modification

according to the feedback from

performance evaluation and the

existence of analysis tools.

Several approaches have been followed

to generate the performance model from

system design specification. Lopez-Grao

et al. proposed a conversion method

from annotated UML activity diagram to

stochastic petrinet model [6]. Distefano

et al. proposed a possible solution to

address software performance

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

722

engineering that evolves through system

specification using an augmented UML

notation, creation of an intermediate

performance context model, generation

of an equivalent stochastic petri net

model whose analytical solution

provides the required performance

measures [7]. D’Ambrogio proposed a

framework for transforming source

software models into target performance

models by the use of meta-modeling

techniques for defining the abstract

syntax of models, the interrelationships

between model elements and the model

transformation rules [8]. However, most

existing approaches do not highlight

more on the issue that how to optimally

conduct the system modeling and

performance evaluation. The framework

presented here is the first known

approach that introduces a new

specification style utilizing UML

behavioral diagrams as reusable

specification building block which is

later used for generating performance

model to produce performance

prediction result at early stage of the

system development process. Building

blocks describe the local behavior of

several components and the interaction

between them. This provides the

advantage of reusability of building

blocks, since solution that requires the

cooperation of several components may

be reused within one self-contained,

encapsulated building block. In addition

the resulting deployment mapping

provided by our framework has great

impact with respect to QoS provided by

the system. Our aim here is to deal with

vector of QoS properties rather than

restricting it in one dimension. Our

presented deployment logic is surely

able to handle any properties of the

service, as long as we can provide a cost

function for the specific property. The

cost function defined here is flexible

enough to keep pace with the changing

size of search space of available host in

the execution environment to ensure an

efficient deployment of service

components. Furthermore we aim to be

able to aid the deployment of several

different services at the same time using

the same proposed framework. The

novelty of our approach also reflected in

showing the optimality of our solution

with respect to both deployment logic

and evaluation of performance metrics.

The objective of the paper is to provide

an extensive performance modeling

framework that provides a translation

process to generate SRN performance

model from system design specification

captured by the UML behavioral

diagram and later solves the model for

relevant performance metrics to

demonstrate performance prediction

results at early stage of the system

development life cycle. To incorporate

the cost function to draw relation

between service component and

available physical resources permit us to

identify an efficient deployment

mapping in a fully distributed manner.

The way to deal with parallel thread

processing of the network node by

defining the upper bound is precisely

mentioned while generating the SRN

model through the proposed framework.

The work presented here is the extension

of our previous work described in [9]

[10] [14] where we presented our

proposed framework with respect to the

execution of single and multiple

collaborative sessions and considered

alternatives system architecture

candidate to describe the system

behavior and evaluate the performance

factors.

2
5

6

SRN model

Annotated

UML model

Evaluate

model

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

723

The paper is organized as follows:

section 2 introduces our proposed

performance modeling framework,

section 3 demonstrates the application

example to show the applicability of our

modeling framework, section 4

delineates conclusion with future works.

2 Proposed Performance Modeling

Framework

Our proposed performance modeling

framework utilizes the tool suite Arctis

which is integrated as plug-ins into the

eclipse IDE [11]. The proposed

framework is composed of 6 steps

shown in figure 1 where steps 1 and 2

are the parts of Arctis tool suite.

Arctis focuses on the abstract, reusable

service specifications that are composed

form UML 2.2 collaborations and

activities. It uses collaborative building

blocks as reusable specification units to

create comprehensive services through

composition. To support the construction

of building block consisting of

collaborations and activities, Arctis

offers special actions and wizards. In

addition a number of inspections ensure

the syntactic consistency of building

blocks. A developer first consults a

library to check if an already existing

collaboration block or a collaboration of

several blocks solves a certain task.

Missing blocks can also be created from

scratch and stored in the library for later

reuse. The building blocks are expressed

as UML models. The structural aspect,

for example the service component and

their multiplicity, is expressed by means

of UML 2.2 collaborations. For the

detailed internal behavior, UML 2.2

activities have been used. They express

the local behavior of each of the service

components as well as their necessary

interactions in a compact and self-

contained way using explicit control

flows [11]. Moreover the building blocks

are combined into more comprehensive

service by composition. For this

composition, Arctis uses UML 2.2

collaborations and activities as well.

While collaborations provide a good

overview of the structural aspect of the

composition, i.e., which sub-services are

reused and how their collaboration roles

are bound, activities express the detailed

coupling of their respective behaviors

[11].

The steps are illustrated below:

Step 1: Construction of collaborative

building block: The proposed

3

UML Deployment diagram

& stating relation between

system component &

collaboration

Arctis

1

Composition of building

block using UML

Collaboration &

Activity

Library of

Collaborative

building

blocks

Figure 1. Proposed performance modeling framework

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

724

748

framework utilizes collaboration as main

specification units. The specifications

for collaborations are given as coherent,

self-contained reusable building blocks.

The structure of the building block is

described by UML 2.2 collaboration.

The building block declares the

participants (as collaboration roles) and

connection between them.

The internal behavior of building block

is described by UML activity. It is

declared as the classifier behavior of the

collaboration and has one activity

partition for each collaboration role in

the structural description. For each

collaboration use, the activity declares a

corresponding call behavior action

refereeing to the activities of the

employed building blocks. For example,

the general structure of the building

block t is given in figure 2 where it only

declares the participants A and B as

collaboration roles and the connection

between them is defined as collaboration

use tx (x=1…nAB (number of

collaborations between collaboration

roles A & B)). The internal behavior of

the same building block is shown in

figure 3(b). The activity transferij (where

ij = AB) describes the behavior of the

corresponding collaboration. It has one

activity partition for each collaboration

role: A and B. Activities base their

semantics on token flow [1]. The activity

starts by placing a token when there is a

response (indicated by the streaming pin

res) to transfer by either participant A or

B. After completion of the processing by

the collaboration role A and B the token

is transferred from the participant A to

participant B and from participant B to

Participant A which is represented by the

call behavior action forward.

Step 2: Composition of building block
using UML collaboration & activity:
To generate the performance model, the
structural information about how the
collaborations are composed is not
sufficient. It is necessary to specify the
detailed behavior of how the different
events of collaborations are composed so
that the desired overall system behavior
can be obtained. For the composition,
UML collaborations and activities are
used complementary to each other; UML
collaborations focus on the role binding
and structural aspect, while UML
activities complement this by covering
also the behavioral aspect for
composition. For this purpose, call
behavior actions are used. Each sub-
service is represented by call behavior
action referring the respective activity of
building blocks. Each call behavior
action represents an instance of a
building block. For each activity
parameter node of the referred activity, a
call behavior action declares a
corresponding pin. Pins have the same
symbol as activity parameter nodes to
represent them on the frame of a call
behavior action. Arbitrary logic between
pins may be used to synchronize the
building block events and transfer data
between them.

tx: transferAB

res res

forward

forward

 A B C

res res

 t:

transferAB

PB

dB

PA

dA

res res

t:

 transferBC

PC

dC

tx: transferAB

A B

B A tx: transferAB

Figure 2. Structure of the building block

using collaboration diagram

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

A B

By connecting the individual input and

output pins of the call behavior actions,

the events occurring in different

collaborations can be coupled with each

other. Semantics of the different kinds of

pins are given in more detailed in [1].

To delineate the overall system behavior

we will consider two sorts of activity

diagram where activities base their

semantics on token flow. In first case,

each collaboration role contains one

token and the processing realized by the

collaboration role is independent of each

other and in second case one token will

be passed through the each collaboration

role to realize the processing done by the

collaboration role which symbolizes the

dependency among the execution of

collaborations roles’ activity as there is

an order in which collaboration roles are

selected for completing the execution of

their activity. For example the detailed

behavior and composition of the

collaboration for the first case is given in

figure 3(a).The initial node () indicates

the starting of the activity. The activity is

started at the same time from each

participant. After being activated, each

participant starts its processing of the

request which is mentioned by call

behavior action Pi (Processingi, where i

= A, B & C). Completions of the

processing by the participants are

mentioned by the call behavior action di

(Processing_donei, i = A, B & C). After

completion of the processing, the

responses are delivered to the

corresponding participants indicated by

the streaming pin res. When the

execution of the task by the participant B

completes the result is passed through a

 A B C

res res

 t:

transferAB

PB

dB

PA

dA

res

res

t:

 transferBC

PC

dC

Figure 3. System activity to couple the collaboration

res
k

tx: transferAB

A B

res res
forward

Figure 4. System activity to couple the collaboration when there is an order

in which collaboration roles are selected for completing the processing.

(a)
(b)

(a)
(b)

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

726

decision node k and only one flow is

activated at the certain time instance.

The response of the collaboration role A

and C are forwarded to B and the

response of collaboration role B is

forwarded to either A or C which is

mentioned by collaboration t: transferij

(where ij = AB or BC). The completion

of the activity of each participant is

shown by the ending node (). In the

above way the detailed behavior and

composition of the collaboration as well

as the internal behavior of the

collaboration for the second case can be

illustrated which are portrayed in figure

4 (a) and 4 (b).

Step 3: Designing UML deployment

diagram & stating relation between

system components & collaborations:

Our deployment logic is launched with

the service model enriched with the

requirements specifying the search

criteria and with a resource profile of the

hosting environment specifying the

search space. In our view, however, the

logic we develop is capable of catering

for any other types of non-functional

requirements too, as long as a suitable

cost function can be provided for the

specific QoS dimension at hand. In this

paper, costs in the model are constant,

independent of the utilization of

underlying hardware [3]. Furthermore,

we benefit from using collaborations as

design elements as they incorporate local

behavior of all participants and all

interactions between them. That is, a

single cost value can describe

communication between component

instances, without having to care about

the number of messages sent, individual

message sizes, etc.

We model the system as collection of N

interconnected nodes shown in figure 5.

Our objective is to find a deployment

mapping for this execution environment

for a set of service components C

available for deployment that comprises

service. Deployment mapping can be

defined as M: CN between a

numbers of service components

instances c, onto nodes n. A components

ciC can be a client process or a service

process, while a node, nN is a physical

resource. Generally, nodes can have

different responsibilities, such as

providing

 Figure 5. Components mapping example

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

727

services (S1), relaying traffic (R1),

accommodating clients (C1), or a

mixture of these (SC1). Components can

communicate via a set of collaborations.

We consider four types of requirements

in the deployment problem. Components

have execution costs, collaborations

have communication costs and costs for

running of background process and some

of the components can be restricted in

the deployment mapping to specific

nodes which are called bound

components. Furthermore, we consider

identical nodes that are interconnected in

a full-mesh and are capable of hosting

components with unlimited processing

demand. We observe the processing load

that nodes impose while host the

components and also the target

balancing of load between the nodes

available in the network.

By balancing the load the deviation from

the global average per node execution

cost will be minimized. Communication

costs are considered if collaboration

between two components happens

remotely, i.e. it happens between two

nodes [3]. In other words, if two

components are placed onto the same

node the communication cost between

them will not be considered. The cost for

executing the background process for

conducting the communication between

the collaboration roles is always

considerable no matter whether the

collaboration roles deploy on the same

or different nodes. Using the above

specified input, the deployment logic

provides an optimal deployment

architecture taking into account the QoS

requirements for the components

providing the specified services. We

then define the objective of the

deployment logic as obtaining an

efficient (low-cost, if possible optimum)

mapping of component onto the nodes

that satisfies the requirements in

reasonable time. The deployment logic

providing optimal deployment

architecture is guided by the cost

function F (M). The evaluation of cost

function F(M) is mainly influenced by

our way of service definition. Service is

defined in our approach as a

collaboration of total E components

labeled as ci (where i = 1…. E) to be

deployed and total K collaboration

between them labeled as kj, (where j = 1

… K). The execution cost of each

service component can be labeled as fci;

the communication cost between the

service components is labeled as fkj and

the cost for executing the background

process for conducting the

communication between the service

components is labeled as fBj.

Accordingly we only observe the total

load (l


 , n = 1…N) of a given

deployment mapping at each node. We

will strive for an optimal solution of

equally distributed load among the

processing nodes and the lowest cost

possible, while taking into account the

execution cost fci, i = 1….E,

communication cost fkj, j = 1….K and

cost for executing the background

process fBj, j = 1….k. fci, fkj and fBj are

derived from the service specification,

thus the offered execution load can be

calculated as


E

i 1

 . This way, the logic

can be aware of the target load [6]:

To cater for the communication cost fkj,

of the collaboration kj in the service, the

function q0 (M, c) is defined first [21]:

T =




E

i 1

q0 (M, c) = {n N  (c → n) M}

fci

N

fci

n

(1)

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

728

This means that q0 (M, c) returns the

node n that host component in the list

mapping M. Let collaboration kj = (c1,

c2). The communication cost of kj is 0 if

components c1 and c2 are collocated, i.e.

q0 (M, c1) = q0 (M, c2), and the cost is fkj

if components are otherwise (i.e. the

collaboration is remote). Using an

indicator function I(x), which is 1 if x is

true and 0 otherwise, this expressed as I

(q0 (M, c1) ≠ q0 (M, c2)) = 1, if the

collaboration is remote and 0 otherwise.

To determine which collaboration kj is

remote, the set of mapping M is used.

Given the indicator function, the overall

communication cost of service, Fk (M),

is the sum [21]

Given a mapping M = {mn} (where mn is

the set of components at node n & nN)

the total load can be obtained as l


 =

 fci. Furthermore the overall cost

function F (M) becomes (where Ij = 1, if

kj external or 0 if kj internal to a node):

 (2)

Step 4: Annotating the UML model:

Performance information is incorporated

into the UML activity diagram and

deployment diagram according to UML

profile for MARTE: Modeling &

Analysis of Real-Time Embedded

Systems [4] for evaluating system

performance by performance model

solver.

Step 5: Deriving the SRN model: Since

an SRN is based on a Petri net; the

introduction of Petri net is described in

brief [5]. A Petri net is represented by a

bipartite directed graph with two types

of nodes: places and transitions. Each

place may contain zero or more tokens

in a marking. Marking represents the

state of the Petri net at a particular

instant. A transition is enabled if all of

its input places have at least as many

tokens as required by the multiplicities

of the input arcs. A transition may fire

when it is enabled, and according to the

multiplicities of the arcs, tokens in each

input place are removed and new tokens

are deposited in each output place. In a

stochastic Petri net (SPN), each

transition has firing time that represents

the time to fire the transition after it is

enabled.

Generalized stochastic Petri net (GSPN)

extends SPN by introducing the

immediate transition which has zero

firing time. An immediate transition is

represented by a thin black bar [5]. A

marking in a GSPN is called vanishing if

at least one immediate transition is

enabled in the marking; otherwise the

marking is called tangible. GSPN also

introduces inhibitor arcs that disable the

transition unless the number of tokens in

input place is as many as the multiplicity

of the inhibitor arc. An inhibitor arc is

represented by a line terminated with a

small hollow circle.

SRN is based on the Generalized

Stochastic Petri net (GSPN) and extends

them further by introducing prominent

extensions such as guard functions,

reward function and marking dependent

firing rates [5]. A guard function is

assigned to a transition. It specifies the

condition to enable or disable the

transition and can use the entire state of

the net rather than just the number of

tokens in places. Reward function

defines the reward rate for each tangible

marking of Petri Net based on which

 F (M) = 


N

n 1

| l


 – T | + Fk (M) + 


K

j 1

 fBj (2)

n

cimn

Fk (M) = 


k

j 1

 I (q0 (M, Kj, 1) ≠ q0 (M, Kj, 2)). fkj

n

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

729

various quantitative measures can be

done in the Net level. Marking

dependent firing rate allows using the

number of token in a chosen place

multiplying the basic rate of the

transition.

By considering the internal behavior of

the reusable building blocks (step1),

composition of different events of the

building blocks (step2), deployment

mapping between system component and

collaboration (step3) and annotated

UML structure (step4), probable states

and transition rate for triggering the

change between states will be found

based on which our SRN performance

model will be generated. To generate the

SRN model of the system, first we

generate the SRN model of the

individual system components and later

compose them together to generate the

system level SRN model. The rules are

based on decomposition of UML

collaboration, activity and deployment

diagram into basic elements of SRN

model like states as places, timed

transition and immediate transition. In

addition the rules are based on the

rendezvous synchronization that means

when communication between two

processes of two interconnected nodes

occur it follows the rendezvous

synchronization [12]. Rendezvous

provides synchronization between two

threads while they communicate. In

rendezvous synchronization, a

synchronization and communication

point called an entry is constructed as a

function call. One process defines its

entry and makes it public. Any process

with knowledge of this entry can call it

as an ordinary function call. The process

that defines the entry accepts the call,

executes it and returns the results to the

caller. The issuer of the entry call

establishes a rendezvous with the

process that defined the entry [12].

SRN model of the collaboration role of a

reusable building block is mentioned by

the 6-tuple {Φ, T, A, K, N, m0} in the

following way [5]:

Φ = Finite set of the places (drawn as

circles), derived from the call behavior

action of the collaboration role

T = Finite set of the transition (drawn as

bars), derived from the annotated UML

activity diagram that denotes system’s

behavior

A  {Φ × T}  {T × Φ} is a set of arcs

connecting Φ and T,

K: T → {Timed (time>0, drawn as solid

bar), Immediate (time = 0, drawn as thin

bar)} specifies the type of the each

transition, derived from the annotated

UML activity diagram that denotes

system’s behavior

N: A→ {1, 2, 3…} is the multiplicity

associated with the arcs in A,

m: Φ → {0, 1, 2...} is the marking that

denotes the number of tokens for each

place in Φ. The initial marking is

denoted as m0.

The rules are following:

Rule 1: The SRN model of the

collaboration role of a reusable building

block is represented by the 6-tuple in the

following way:

Φi = {Pi, di}

T = {do, exit}

A = {{(Pi × do)  (do × di)}, {(di ×

exit)  (exit × Pi)}}

K = (do → Timed, exit → Immediate)

N = {(Pi × do) →1, (do × di) →1, (di ×

exit) →1, (exit × Pi)→1}

mo = {(Pi→1}, (di →0)}

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

730

The figure 6(a) highlights the SRN

model of the collaboration role A where

A has its own token to start the execution

of the SRN model and the figure 6 (b)

highlights the SRN model of the

collaboration role A where the starting of

the execution of the SRN model of A

depends on the receiving of token from

other element.

Rule 2: The SRN model of a

collaboration where collaboration

connects only two collaboration roles are

represented by the 6-tuple in the

following way (In this case, each

collaboration role has its own token and

the processing realized by the

collaboration role is independent of each

other):

Φ = {Φi, Φj} = {Pi, di, Pj, dj}

T = {doi, doj, tij}

A = {{(Pi × doi)  (doi × di)}, {(di × tij)

 (tij × Pj)}, {(Pj × doj)  (doj × dj)}

{(dj × tij)  (tij × Pi)}}

K = (doi → Timed, doj → Timed, tij →

Timed | Immediate)

N = {(Pi × doi) →1, (doi × di) →1, (di ×

tij) →1, (tij × Pi) →1, {{(Pj × doj) →1,

(doj × dj) →1, (dj × tij) →1, (tij × Pj)→1}

mo = {(Pi →1, di → 0, Pj →1, dj → 0}

tij is a timed transition if the two

collaboration roles deploy on the

different physical node (communication

time > 0) or immediate transition if the

two collaboration roles deploy on the

same physical node (communication

time = 0). SRN model of the

collaboration is graphically represented

in figure 7.

Rule 3: The SRN model of a

collaboration where collaboration

connects only two collaboration roles is

represented by the 6-tuple in the

following way (In this case one token

will be passed through the each

collaboration role to realize the

processing done by the collaboration

role which symbolizes the dependency

among the execution of collaborations

roles’ activity):

i di

Pi

Pi do exit

di

i j

Pi

doi

di
dj

doj

Pj

tij

 i j

Timed (if time > 0)

Immediate (if time=0)

di

Pi

tij

Collaboration

Role Equivalent Acitivity Diagram
Equivalent SRN model

Collaboration

Diagram

Equivalent Acitivity Diagram

Equivalent SRN model

res res

res res

Figure 6. Graphical representation of Rule 1

Figure 7. Graphical representation of Rule 2

Collaboration

Role

di

Pi i

Pi do exit

di

Equivalent Acitivity

Diagram Equivalent SRN model

Pj

dj

tij

(a) (b)

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

731

Φ = {Φi, Φj} = {Pi, di, Pj, dj}

T = {doi, doj, tij}

A = {{(Pi × doi)  (doi × di)}, {(di × tij)

 ((tij × Pi), (tij × Pj))}, {(Pj × doj) 

(doj × dj)} {(dj × exit)  (Ø)}}

K = (doi → Timed, doj → Timed, tij →

Timed | Immediate)

N = {(Pi × doi) →1, (doi × di) →1, (di ×

tij) →1, (tij × Pi) →1, (tij × Pj) →1, (Pj ×

doj) →1, (doj × dj) →1, (dj × exit) →1}

mo = {(Pi →1, di → 0, Pj →1, dj → 0}

tij is an immediate transition if the two

collaboration roles deploy on the same

physical node (communication time = 0)

or timed transition if the two

collaboration roles deploy on the

different physical nodes (communication

time > 0). SRN model of collaboration is

represented graphically in figure 8.

Rule 4: When the collaboration role of a

reusable building block deploys onto a

physical node the equivalent SRN model

is represented by 6-tuple in following

way:

Φi = {Pi, di, PΩ}

T= {do, exit}

A= {{(Pi × do)  (do × di)}, {(PΩ × do)

 (do × PΩ)}, {(di × exit)  (exit ×

Pi)}}

K= (do → Timed, exit → Immediate)

N= {(Pi × do) →1, (do × di) →1, (PΩ ×

do) →1, (do × PΩ) →1(di × exit) →1,

(exit × Pi)→1}

mo = {(Pi→1}, (di →0), (PΩ →q)}

Here place PΩ contains q (where q = 1,

2, 3…..) tokens which define the upper

bound of the execution of the threads in

parallel by the physical node Ω and the

timed transition do will fire only when

there is a token available in both the

place Pi and PΩ. The place PΩ will again

get back it’s token after firing of the

timed transition do indicating that the

node is ready to execute incoming

threads. SRN model of the collaboration

role is graphically represented in the

figure 9.

i
Ω deploy

Collaboration

role

Physical

node

Equivalent SRN model

PΩ

Figure 9. Graphical representation of Rule 4

 i j

A B t

Timed (if time > 0)

Immediate (if time=0)

Equivalent Acitivity Diagram

Collaboration

Diagram

Equivalent SRN model

Pi

doj

di

tij exit

Pj

dj

Figure 8. Graphical representation of Rule 3

Pi

di

Pj

dj
tij

res res

res

Pi

do

exit

di

doi

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

732

Rule 5: For a composite structure, if a

collaboration role A connects with n

collaboration roles by n collaborations

like a star graph (where n=2, 3, 4, …..)

where each collaboration connects only

two collaboration roles, then only one

instance of collaboration role A exists

during the it’s basic state transition and

the single instance of collaboration role

A connects with all other collaboration

roles by immediate or timed transitions

based on their deployment on the same

or different physical components to

generate the SRN model. This rule can

be demonstrated through 6-tuple in the

above way. The graphical

representations of the SRN model for

composite structures are shown in the

figure 10.

Step 6: Evaluate the model: We focus

on measuring the throughput of the

system from the developed SRN model.

Before deriving formula for throughput

estimation we consider several

assumptions. Firstly if more than one

service component deploy on a network

node the processing power of the

network node will be utilized among the

multiple threads to complete the parallel

processing of that node. There must be

an upper bound of the execution of

parallel threads by a network node.

Secondly when communication between

two processes of two interconnected

nodes occur it follows the rendezvous

synchronization. Moreover all the

communications among the

interconnected nodes occur in parallel.

Finally the communications between

interconnected nodes will be started

following the completion of all the

processing inside each physical node. By

considering the all the assumption we

define the throughput as function of total

expected number of jobs, E (N) and cost

of the network, C_Net. The value of E

(N) is calculated by solving the SRN

model using SHARPE [15]. The value of

C_Net is evaluated by considering a

subnet which is performance limiting

factor of the whole network i.e., which

posses maximum cost with respect to its

own execution cost, communication cost

with other subnet and cost for running

background processes. Assume cost of

the network, C_Net is defined as follows

(where fcm = execution cost of the m
th

component of subneti; c_subneti = cost

of the i
th

 subnet where i = 1…n that

comprises the whole network and Ij = 0

in this case as kj internal to a node):

Figure 10. Graphical representation of Rule 5

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

733

c_subneti = max { fcm + Ij f kj + f Bj };

 = max { fcm + f Bj }; (3)

Now we evaluate the cost between each

pair of subnet (sbuneti & subnetj ; where

i ≠ j) with respect to the subnet’s own

processing cost, cost for running

background process and the cost

associated with the communication with

other subnet in the network. Cost

between subneti and subnetj, C_subneti,j

is defined as (where fki,j =

communication cost between subneti &

subnetj and Ii,j = 1 as ki,j external to a

node):

c_subneti,j = max {max {c_subneti,

 c_subnetj} + Ii,j f ki,j

 + f Bi,j }; (4)

 C_Net = max {c_subneti,j}; (5)

 Throughput = (6)

Equation 6 for conducting the

throughout calculation is considered

when each collaboration role has its own

token and the processing realized by the

collaboration role is independent of each

other. The below equation 7 is

considered for throughput calculation

when there is an order in which

collaboration roles are selected for

completing the execution.

  Throughput = (7)

Value of C_Net´ will be derived from

equation (8).

3 Application Example

As a representative example, we

consider the scenario originally from Efe

dealing with heuristically clustering of

modules and assignment of clusters to

nodes [13]. This scenario is sufficiently

complex to show the applicability of our

proposed framework. The problem is

defined in our approach as a service of

collaboration of E = 10 components or

collaboration role (labeled C1 . . . C10) to

be deployed and K = 14 collaborations

between them depicted in figure 11. We

consider four types of requirements in

this specification. Besides the execution

cost, communication costs and cost for

running background process, we have a

restriction on components C2, C7, C9

regarding their location. They must be

bound to nodes n2, n1, n3, respectively.

Moreover collaboration and components

in the example scenario are shown in

figure 12 as an order in which

components are selected for completing

the execution of their activity.

The internal behavior of the

collaboration K of our example scenario

is realized by the call behavior action

through UML activity like structure

already mentioned in figure 3(b). The

composition of the collaboration role C

is realized through UML activity

diagram shown in figure 13. The initial

node () indicates the starting of the

activity. The activity is started at the

same time from the entire participants C1

to C10. After being activated, each

participant starts its processing of

request which is mentioned by call

behavior action Pi (Processing of the i
th

service component). Completions of the

processing by the participants are

mentioned by the call behavior action di

(Processing done of the i
th

 service

component).

E(N)

C_Net

E(N)

C_Net´

 C_Net´ = 


N

n 1

l


 + Fk (M) + 


K

j 1

 fBj (8) n

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

734

After completion of the processing, the

responses are delivered to the

corresponding participants indicated by

the streaming pin res. When any

participant is associated with more than

one participant through collaborations

the result of the processing of that

participant is passed through a decision

node and only one flow is activated at

the certain time instance. For example

after completion of the processing of

participant C2 the response will be

passed through the decision node X2 and

only one flow (flow towards C1 or C3 or

C5) will be activated. The completion of

the processing of the each participant is

shown by ending node (). In the same

way the composition of the collaboration

role C is also realized through UML

activity diagram (figure 14) where there

is an order in which collaboration roles

are selected for completing the execution

of their activity.

n3

n1

n2

Run BP

cost =5

Run BP

cost =5

Run BP

cost =5

Run BP

cost =5 c1

c4

c5

k1

k8

k5

k6

k7

k4

Exec.

cost =30

Exec.

cost =15
Exec.

cost =25

Exec.

cost =10

Exec.

cost =20

c7
k9

Exec.

cost =20

c10
c8

k10

k13

k12

Comm.

cost =50

Exec.

cost =15

Exec.

cost =25

Exec.

cost =10

Comm.

cost =40

Comm.

cost =10

Comm.

cost =15

Comm.

cost =25

Comm.

cost =20

Comm.

cost =10

Comm.

cost =20

Comm.

cost =10

Comm.

cost =15
Comm.

cost =20

Comm.

cost =15

Comm.

cost =20

Comm.

cost =30

k2

c6

k11

c9

K14

Exec.

cost =35

Run BP

cost =5

Run BP

cost =5

c3 k3 c2

Figure 11. Collaborations and components in the example scenario

k10

c3

c2 c4

c5
c1

c7
c6

c8

c9
c10

k3 k1

k2 k4 k5

k8

k11

k12

k9

k6

k7

k13

k3

Figure 12. Collaborations and components in the

example scenario when there is an order in

which components are selected for completing

the processing

n3

n2

n1

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

735

In this example, the target environment

consists only of N = 3 identical,

interconnected nodes with a single

provided property, namely processing

power and with infinite communication

capacities depicted in figure 15(a). The

optimal deployment mapping can be

observed in table 1. The lowest possible

deployment cost, according to (2) is 17 +

(270 − 100) = 187.

To annotate the UML diagram in figure

13, 14 & 15(a) we use the stereotype

saStep computingResource, scheduler

and the tag value execTime, deadline and

schedPolicy [4].

 K5

 K3

K1

 K2 K4

 d6

P6

d7

P7

d8

P8
 K8

 K9

 K10

 K7

 K11

 K13

 K6

 K12

d9 P9

 d1 P1

C3

C7

C4

C2

C5

C1

C6

C8
C9

C10

res res

res

res res

res

res

res

res

res

res res res
res

res

res res

res

res

res

res
res res

res res

res

res

res

res

res

res

res

res

res

res

res res

res

res

res

res

res

res

res

res

res res res

res

res

res

res

res

res

res

x3

x2
x4

x7

x5

x1

x1

x9

x8

x6

P2

d2
d4

P4

d5

P5

res

 & ---- convey the same

meaning; just use here to

evaporate any ambiguity when

the two lines cross each other

P10

d10

 P3

 d3

 K14

Figure 13. Detail behavior of the event of the collaboration using activity for our example scenario

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

736

saStep is a kind of step that begins and

ends when decisions about the allocation

of system resources are made. The

duration of the execution time is

mentioned by the tag value execTime

which is the average time in our case.

deadline defines the maximum time

bound on the completion of the

particular execution segment that must

be met. A ComputingResource

represents either virtual or physical

processing devices capable of storing

and executing program code. Hence its

fundamental service is to compute. A

Scheduler is defined as a kind of

ResourceBroker that brings access to its

brokered ProcessingResource or

resources following a certain scheduling

policy tagged by schedPolicy.

Collaboration Ki is associated with two

instances of deadline (figure 15(b)) as

collaborations in example scenario are

associated with two kinds of cost:

communication cost & cost for running

background process.

By considering the above deployment

mapping and the transformation rule the

analogous SRN model of our example

scenario is depicted in figure 16 where

Figure 14. Detail behavior of the event of the collaboration using activity for our example scenario

where there is an order in which collaboration roles are selected for completing the processing

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

737

each collaboration role has its own token

and the processing realized by the

collaboration role is independent of each

other. The states of the SRN model are

derived from the call behavior action of

the corresponding collaboration role and

collaboration among them. While

generating the SRN model of the system

if more than one service component

deploy on a network node the processing

power of the network node will be

utilized among the multiple threads to

complete the parallel processing of that

node. This can be achieved through

marking dependency firing rate defined

as the following way in SRN model:

 (8)

Where λi = processing rate of the i
th

service component deploys in a network

node and i=1…n defines the number of

service components deploy on a network

node. (# (Pi)) returns the number of

tokens in the place Pi.

According to the transformation rules 1,

each collaboration role is defined by the

two states pi and di and the passing of

token from state pi to di is realized by the

timed transition ti which is derived from

the annotated UML model. Initially there

will be a token from place p1 to p10. For

generating the SRN model (figure 16)

firstly we will consider the collaboration

roles deploy on the processor node n1

which are C4, C7 & C8. Here components

C7 are connected with C4 and C8. The

communication cost between the

components is zero but there is still

some cost for execution of the

background process. So according to

rule 2, after the completion of the state

transition from p7 to d7 (states of

component C7), from p4 to d4 (states of

component C4) and from p8 to d8 (states

of component C8) the states d7, d4 and d7,

d8 are connected by the timed transition

k8 and k9 to generate the SRN model.

Collaboration roles C2, C3 & C5 deploy

on the processor node n2. Likewise after

the completion of the state transition

from p2 to d2 (states of component C2),

from p3 to d3 (states of component C3)

and from p5 to d5 (states of component

C5) the states d2, d3 and d2, d5 are

connected by the timed transition k3 and

k4 to generate the SRN model according

to rule 2. Collaboration roles C6, C1, C9

& C10 deploy on the processor node n3.

In the same way after the completion of

the state transition from p1 to d1 (states

of component C1), from p6 to d6 (states

of component C6), p9 to d9 (states of

component C9) and from p10 to d10

(states of component C10) the states d1,

d6; d1, d9 and d9, d10 are connected by the

timed transition k11, k12 and K14 to

generate the SRN model following rule

2. To generate the system level SRN

model we need to combine the entire

three SRN model generated for three

processor nodes by considering the

interconnection among them.

Figure 15. (a)The target network of hosts (b) annotated UML model using MARTE profile

n2: Processor

Node <<Scheduler>>

{schedPolicy = FIFO}

n1: Processor

Node
n3: Processor

Node

<<computingResource>>

C1
<<saStep>

 {execTime=10, s}

K1
<<saStep>>

{deadline=20, s}

 {deadline=5, s}

(a) (b)

λi / 


n

i 1

 (# (Pi))

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

738

To compose the SRN models of

processor node n1 and n2, states d4 and

d3 connect by the timed transition k1 and

states d4 and d5 connect by the timed

transition k2 according to rule 2.

Likewise to compose the SRN models of

processor node n2 and n3, states d2 and

d1 connect by the timed transition k5 and

states d5 and d1 connect by the timed

transition k6 according to rule 2. To

compose the SRN models of processor

node n1 and n3, states d7 and d1 connect

by the timed transition k7, states d8 and

d6 connect by the timed transition k10

and states d8 and d9 connect by the timed

transition k13 according to rule 2. By the

above way the system level SRN model

is derived. According to rule 4, to define

the upper bound of the execution of

parallel threads by a network node we

introduce three places PP1, PP2 and PP3

in the SRN model for the three network

nodes and initially these three places will

contain q (q = 1, 2, 3,…….) tokens

where q will define the maximum

number of the threads that will be

handled by a network node at the same

time. To ensure the upper bound of the

parallel processing of a network node n1

we introduce arcs from place PP1 to

transition t4, t7 and t8. That means

components C4, C7 and C8 can start their

processing if there is token available in

place PP1 as the firing of transitions t4, t7

and t8 not only depend on the availability

of the token in the place p4, p7 and p8 but

also depend on the availability of the

token in the place PP1.

Node Components
l


 | l


 – T |
Internal

collaborations

n1 c4, c7, c8 70 2 k8, k9

n2 c2, c3, c5 60 8 k3, k4

n3 c1, c6, c9, c10 75 7 k11, k12, k14

∑ cost 17 100

P8

d8

t8

P7

t7

d7

P4 P3 P2 P5

P1

P6

P9 P10

t4 t3 t2 t5

t1

t10 t9

t6

k9 k8 k1 k3 k4

k2
k6

k5
k7

k12
k14

k10

k11

k13

PP1 PP2

Figure 16. SRN model of our example scenario

d4 d3 d2 d5

d6
d1

d10 d9

PP3

Table. 1. Optimal deployment mapping in the example scenario

n n

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

739

Likewise to ensure the upper bound of

the parallel processing of a network node

n2 and n3 we introduce arcs from place

PP2 to transition t2, t3 and t5 and from

place PP3 to transition t1, t6, t9, t10.

In the same way by considering the

above same deployment mapping and

the transformation rule 1, 3 and 5 the

analogous SRN model of our example

scenario is depicted in Figure 17 where

there is an order in which collaboration

roles are selected for completing the

execution of their activity which

symbolizes the dependency among the

execution of collaborations roles’

activity.

The throughput calculation according to

(6) for the different deployment mapping

including the optimal deployment

mapping is shown in Table. 2. The

throughput is 0.107s
-1

 while considers

the optimal deployment mapping where

E (N) = 6.96 (calculated using SHARPE

[15]) and optimal cost = 187s.

The throughput calculation according to

(7) for the different deployment mapping

including the optimal deployment

mapping is shown in Table. 3. The

throughput is 2.33×10
-4

s
-1

 while

considers the optimal deployment

mapping where E (N) = 0.0435

(calculated using SHARPE [15]) and

optimal cost = 187s.

Figure 17. SRN model of our example scenario where there is an order

in which components are selected for completing the processing

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

740

The optimal deployment mapping

presented in Table 1 also ensures the

optimality in case of throughput

calculation for both the SRN

performance model shown in Figure 16

and 17. We present here the throughput

calculation of some of the deployment

mappings of the software artifacts but

obviously the approach presented here

confirms the efficiency in both

deployment mapping and throughput

calculation for all the possible cases.

4 Conclusion

We present a novel approach for model

based performance evaluation of

distributed system which spans from

capturing the system dynamics through

UML diagram as reusable building block

to efficient deployment of service

components in a distributed manner by

capturing the QoS requirements. System

dynamics is captured through UML

collaboration and activity oriented

approach. The behavior of the

collaboration and the composition of

collaboration to highlight the overall

system behavior are demonstrated by

utilizing UML activity. Furthermore,

quantitative analysis of the system is

achieved by generating SRN

performance model from the UML

specification style. The transformation

from UML diagram to corresponding

SRN elements like states, different

pseudostates and transitions is proposed.

Performance related QoS information is

taken into account and included in the

SRN model with equivalent timing and

probabilistic assumption for enabling the

evaluation of performance prediction

result of the system at the early stage of

the system development process. In

addition, the logic, as it is presented

here, is applied to provide the optimal,

initial mapping of components to hosts,

i.e. the network is considered rather

static. However, our eventual goal is to

develop support for run-time

redeployment of components, this way

keeping the service within an allowed

region of parameters defined by the

requirements.

Node Components Possible cost (s) Throughput (s-1)

{n1, n2, n3} {{c4, c7, c8}, {c2, c3, c5}, {c1, c6, c9, c10}} 187 0.107

{n1, n2, n3} {{c4, c6, c7, c8}, {c2, c3, c5}, {c1, c9, c10}} 218 0.106

{n1, n2, n3} {{ c4, c7}, {c2, c3, c5, c6,}, {c1, c8, c9, c10}} 232 0.102

{n1, n2, n3} {{c5, c7, c8}, {c2, c3, c4}, { c1, c6, c9, c10}} 227 0.086

{n1, n2, n3} {{ c3, c7, c8}, {c2, c4, c5}, {c1, c6, c9, c10}} 252 0.084

{n1, n2, n3} {{ c1, c6, c7, c8}, {c2, c3, c5}, { c4, c9, c10}} 257 0.083

{n1, n2, n3} {{c1, c6, c7, c8}, {c2, c3, c4}, {c5, c9, c10}} 247 0.075

{n1, n2, n3} {{c4, c7, c8}, { c1, c2, c3, c5}, { c6, c9, c10}} 217 0.073

{n1, n2, n3} {{c3, c6, c7, c8}, {c1, c2, c4, c5}, {c9, c10}} 302 0.072

{n1, n2, n3} {{c6, c7, c8}, { c1, c2, c4, c5}, {c3, c9, c10}} 288 0.071

Table. 2. Optimal deployment mapping in the example scenario

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

741

As the results with our proposed

framework show our logic will be a

prominent candidate for a robust and

adaptive service execution platform.

However the size of the underlying

reachability set to generate SRN model

is major limitation for large and complex

system. Further work includes

automating the whole translation

process, the way to solve the

performance model and to tackle state

explosion problems of reachability

marking.

References

1. F. A. Kramer, R. Bræk, P. Herrmann,

“Synthesizes components with sessions from

collaboration-oriented service

specifications”, SDL 2007, V-4745, LNCS,

2007.

2. OMG UML Superstructure, Version-2.2

3. M. Csorba, P. Heegaard, P. Herrmann, “Cost-

Efficient Deployment of Collaborating

Components”, DAIS 2008, LNCS, pp. 253–

268.

4. OMG 2009, “UML Profile for MARTE:

Modeling & Analysis of Real-Time

Embedded Systems”, V – 1.0

5. K. S. Trivedi, “Probability and Statistics with

Reliability, Queuing and Computer Science

application”, Wiley- Interscience publication,

ISBN 0-471-33341-7

6. J. P. Lopez, J. Merseguer, J. Campos, “From

UML activity diagrams to SPN: application

to software performance engineering”, ACM

SIGSOFT software engineering notes, NY,

2004
7. S. Distefano,M. Scarpa, A. Puliafito,

“Software Performance Analysis in UML
Models”, FIRB-PERF, 2005

8. A. D’Ambrogio, “A Model Transformation

Framework for the Automated Building of

Performance Models from UML Models”,

WOSP, 2005

9. R. H. Khan, P. E. Heegaard, “Translation

from UML to SPN model: A performance

modeling framework”, EUNICE, 2010

10. R H Khan, P Heegaard, “Translation from

UML to SPN model: Performance modeling

framework for managing behavior of

multiple session & instance” ICCDA 2010

11. F. A. Kramer, “ARCTIS”, Department of

Telematics, NTNU, http://arctis.item.ntnu.no

12. Rendezvous synchronization,

http://book.opensourceproject.org.cn/embedd

ed/cmprealtime/opensource/5107final/lib009

1.html, retrieved June, 2010

13. Efe, K., “Heuristic models of task assignment

scheduling in distributed systems”, Computer

(June 1982)
14. R H Khan, P Heegaard, “ A Performance

modeling framework incorporating cost
efficient deployment of collaborating
components” ICSTE, 2010

15. K. S. Trivedi, R Sahner, “Symbolic

Hierarchical Automated Reliability /

Performance Evaluator (SHARPE)”, Duke

University, Durham, NC.

Node Components Possible cost

(sec)

Throughput (s-1)

{n1, n2, n3} {{c4, c7, c8}, {c2, c3, c5}, {c1, c6, c9, c10}} 187 2.33×10-4

{n1, n2, n3} {{c4, c7, c8}, { c1, c2, c3, c5}, { c6, c9, c10}} 217 2.00×10-4

{n1, n2, n3} {{c4, c6, c7, c8}, {c2, c3, c5}, {c1, c9, c10}} 218 1.99×10-4

{n1, n2, n3} {{c5, c7, c8}, {c2, c3, c4}, { c1, c6, c9, c10}} 227 1.92×10-4

{n1, n2, n3} {{ c4, c7}, {c2, c3, c5, c6,}, {c1, c8, c9, c10}} 232 1.87×10-4

{n1, n2, n3} {{ c4, c5, c7, c8}, {c2, c3}, { c1, c6, c9, c10}} 232 1.87×10-4

{n1, n2, n3} {{c1, c6, c7, c8}, {c2, c3, c4}, {c5, c9, c10}} 247 1.76×10-4

{n1, n2, n3} {{ c1, c6, c7, c8}, {c2, c3, c5}, { c4, c9, c10}} 257 1.69×10-4

{n1, n2, n3} {{ c6, c7, c8}, {c1, c2, c4, c5}, { c3, c9, c10}} 288 1.51×10-4

{n1, n2, n3} {{ c3,c6, c7, c8}, { c1, c2, c4, c5}, {c9, c10}} 302 1.44×10-4

Table. 3. Optimal deployment mapping in the example scenario when there is an

order in which components are selected for completing their activity

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 721-742
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

742

