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ABSTRACT 

 
Interference and specially one of the most 

common kinds of it which is also known as 

physical interference, is among the most 

critical problems in terms of multi-robot co-

operation. 

 A simple way reducing interference is to 

make robots remain in unique work areas 

and move the objects to the next robot as 

soon as they intersect their areas’ borders. 

The problem of interference reduction, in 

this article, was investigated using complex 

task partitioning in the self-organized 

robotic swarms. 

The presented method is simulated, which 

eliminates some of the previous simulations’ 

limitations in many domains including the 

number and robots’ speed. These 

developments contribute to a more real 

impression of the natural world problems. 

The results show improvements in terms of 

operation cost. 
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1 INTRODUCTION 

 

Interference is an important problem 

which limits the development of a 

swarm in the collective robotic science; 

Voiding the barrier increases too when 

each robot performs the only one task 

through irrelevant behaviors and as the 

capacity of individuals increases [1]. 

Operation of the task which is in trouble, 

though physical interferences may 

usually be improved using spatial 

(environmental) partitioning; for 

instance, by keeping each robot in its 

own working area [2]. 
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One of the conventional research areas 

of collective robots is the problem of 

foraging (or harvesting) the objects by a 

robots’ swarm, because this problem can 

be easily modeled, has some variants in 

the nature and can be applied in a lot of 

scientific applications. The foraging 

problem can provide a useful and 

effective system of measurement [3], 

[4]. 

 A swarm of robots, in simple foraging, 

have to collect one- kind objects, and 

they are commonly stimulated by an 

internal motive or stimulus, such as 

artificial hunger, energy balance and so 

on [5]. 

Regarding self-organized task allocation, 

there are rarely few studies. This area is 

at its initial stages because most of the 

studies try to solve simple problems 

without tasks being dependent on each 

other. The self-organized task allocation 

studies are, mostly, based on edge-based 

methods, inspired by the division of 

labor in swarm oriented-insects [6]. 

There is one central robot in self-

organized systems, which determines, 

autonomously, the time, which have 

been allocated for a task, to a robot. 

Task partitioning is not a well-known 

concept, although it can be seen in most 

insect societies. Sometimes, it has been 

defined as a division of a single task 

among workers [7] and it is called so 

because several individuals divide a 

large task among themselves; it mainly 

allows tasks to be allocated not only to 

individuals but also to the swarms.  

Division of labor explains division of 

workforce through many sorts of tasks, 

with which a swarm is opposed. It is 

essential through task processing and 

parallel operating, and it is a basis for 

training specialized individuals. Because 

of such a specialization, division of labor 

can increase efficacy, and promotes 

special training comparing to the 

operations, in which they have been 

specialized. Division of labor, therefore, 

may result in heterogeneous populations, 

in terms of behaviors. 

These concepts are elaborated in the 

present paper as follows: Task 

partitioning is explained as the problem 

of dividing a general task to smaller 

(atomic) sub-tasks, which can be solved 

by an individual or a group of 

individuals. 

We aim to find ways to implement task 

partitioning, effectively, (at least, 

minimally) in an automatic and self-

organized mode. In this case, Pini’s 

researches had been considered as a well 

formed foundation of our study [8]. The 

Pini’s had ran the experiments using 

ARGOS simulator, which faced 

considerable limitations including the 

robots’ population and speed. In this 

work, it is attempted to eliminate 

aforementioned limitations through 

creating a more realistic impression of 

the natural world events. 

 

2 INTERFERENCE IN MULTI-

ROBOT SYSTEMS 
 

For a longtime, Interference had been 

known as one of the most critical 

problems of multi-robot co-operation 

field [9], [10]. Based on mathematical 

foundations, a logical strategy has been 

designed which makes possible 

determining the amount of interference 

and its effect on the efficacy of the 

swarm. In this way, a simple way 

reducing this kind of interference is to 

make robots remain in unique work 

areas and moving the objects to the next 

robot, as soon as they intersect the 

borders of areas which they are located 

in [11]. 
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Therefore, the partitioning and task 

allocation problems revealed that they 

have to face the tasks division complex 

methods and task allocating to a swarm 

of robots. The proposed approach can 

promote the performance and decrease 

costs, through reducing the number of 

physical interferences. 

 
2.1 The Recommended Method 
 

Solving complex task by the sequential 

dependence, foraging problem is used 

which is one of the conventional areas of 

research in the collective robots field 

[12]. In this article, implementing the 

problem, a swarm of robots should pick 

up target objects from the source area 

and move transit them to the nest area. 

Employing spatial partitioning of the 

environment, the general foraging task 

will be devided into two sub-tasks: 

1. Harvest target objects from an 

area (known as source). 

2. Store them in an area (known as 

nest). 

The robots, which work on the first sub-

task, pick up target objects from the 

source and transit them and deliver them 

to the robots which work on the second 

sub-task and which store the objects in 

the nest. These sub-tasks are sequentially 

dependent on each other, in the sense 

that the operations should be performed 

one by one, in order to, immediately, 

complete the general task: delivering a 

target object to the nest area [8]. 

 

2.2 Interference Reduction through 

Sequential Task Partitioning 
 

Interference is an important problem, 

which limits the of swarm development, 

in the science of collective robots; 

prevention from barrier increases, too, 

when each robot performs the task with 

irrelevant behaviors, as the density of 

people increases [1]. The task 

performing trend, which faces troubles 

because of physical interferences, can be 

usually improved by spatial 

(environmental) partitioning; for 

example, by keeping each robot in its 

own working area.  

The method which is presented here is 

such that robots deliver the objects to 

other robots, which work in the next area 

and transit the objects to the defined 

destinations. This method effectively 

limits the robots population, which 

should be applied in the task. Robots 

apply a simple, absolute and edge-based 

model in order to decide on the time of 

changing the status of a task. When the 

time, tw, is over, a robot changes its sub-

task. This strategy was compared with 

the strategy which did not include task 

partitioning and the way it helped in 

interference reduction was analyzed. In 

this study, these two strategies are called 

divided and undivided sequences [8]. 

 

3 OPERATION ENVIRONMENT 

The sections to which the environment is 

divided are those which include the 

source and are situated on the left and 

those which include the nest are situated 

on the right area. These two sides of the 

area are referred to as pick-up area and 

storage area, respectively. The exchange 

area is situated between these two areas. 

The robots working on the left are called 

harvesters which collect the target 

objects in the source area and transit 

them to the exchange area. Objects, in 

this area, will be delivered to the robots, 
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working in the other side, the storers, 

whose role is transiting the target objects 

to the nest and to store them over there 

[13], [14]. 

 
Figure 1. A graphic representation of the 

undivided strategy. 

 

Undivided strategy’s graphical 

representation is presented in Fig. 1 at 

time t = 0. All the robots are located in 

the harvest area. After picking up each 

object, each robot, enters the exchange 

area and, without hesitation (i.e. the 

value of edge is considered to be zero) 

enters the store area and places the 

object in the nest. 

Graphical representation of the divided 

strategy in the problem operation is 

presented in Fig. 2. After picking up 

each object, each robot enters the 

exchange area and waits there until the 

arrival of the other robot from the store 

area for three seconds, in order to deliver 

the object to that robot; otherwise, the 

same robot enters the store area and 

performs the task of storer. 

As shown in Fig. 3, the experiment is 

performed employing 10, 20, 30, 40 and 

50 robots, respectively and the threshold 

of zero. Increasing the number of robots 

raised the physical interference among 

robots, because of the undivided 

complex tasks of the robots, and, in 

result, the system performance 

decreased. 

Figure 2. A graphic representation of the divided 

strategy. 

In this experiment, the performance of 

the system is measured by 10, 20, 30, 40 

and 50 robots, as shown in Fig. 4. 

Inference rate increment among robots 

and lack of specialization decreases the 

system performance. As it can be seen in 

Fig. 5, the experiment is performed 

employing 10, 20, 30, 40 and 50 robots 

at the threshold of 3 (i.e., each robot 

remained in the exchange zone for 3 

seconds until the robot on the other side 

reached the zone to deliver the prey and 

take it to the nest). Unlike the undivided 

strategy, the cost did not increase, 

exponentially, in the undivided strategy. 
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   Figure 3. Graphical representation for attained 

        cost, through the undivided strategy 

 
Figure 4. A graphic representation of 

performance in unpartitioning strategy 

Moreover, decreasing the inferences in 

the divided strategy had increased the 

system performance. The system 

performance through this experiment 

(Fig. 6) employing 10, 20, 30, 40 and 50 

robots was measured. As can be seen in 

Fig. 6, dividing the general task into two 

subtasks of harvester and storer 

increases the performance of the system. 

Each robot, in this case, was specialized 

for its sub-task. Consequently, the 

performance of the divided strategy 

increased, compared to the undivided 

one. 

 

 
      Figure 5. A graphical representation of            

        attained cost in the divided strategy 
 

 
Figure 6. A graphic representation of     

performance in partitioning strategy 

In Fig. 7, the blue column is in relation 

with undivided strategy and the red 

column is related to divided strategy. By 

increasing the number of robots, 

According to the diagram, the cost of 

undivided strategy increased, 

exponentially. While in divided strategy 

cost of performing tasks decreased. In 

Fig. 8, the red curve demonstrates the 

divided strategy, the blue curve 

demonstrates the undivided strategy. By 

increasing the number of robots, the 

performance of divided strategy 

increased, according to the diagram, 

compared to the undivided strategy. 
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Figure 7. A graphical representation of cost 

differences between Undivided and Divided 

strategies 

 

 
 
Figure 8. A graphic representation of performance for 

Undivided and Divided strategies 

 

The divided strategy’s performance was 

increased, because each robot was 

specialized for its subtasks. 

 

4 CONCLUSION 

 

The article aims to investigate whether 

task partitioning can reduce interference 

through critical task areas in crowded 

environments or not, and also examines 

the allocating a robotic swarm to the 

divisions. Interference is related to the 

number of individuals of the system. In 

addition, physical interference among 

robots is a function of the environment, 

in which the robots worked. 

The larger the size of the swarm, the 

higher was the capacity and rate of 

physical interference. It can be 

concluded that, according to the 

conducted experiment, the amount of 

cost increases in the undivided strategy 

because of physical interference or 

contacts of robots against each other. In 

contrast, the divided strategy’s efficacy 

and also the amount of performed work 

will decrease. Finally, the results showed 

that the employed method is more 

efficient in environments which contain 

robots’ great population and higher 

probability of interferences. 
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