

Optimizing Decision Tree in Malware Classification System by using

Genetic Algorithm

Mohd Najwadi Yusoff and Aman Jantan

School of Computer Science,

Universiti Sains Malaysia,

Penang, Malaysia.

{najwadi,aman}@cs.usm.my

ABSTRACT

Malware classification is a vital component

and works together with malware

identification to prepare the right and

effective malware antidote. Current

techniques in malware classification do not

give a good classification result while

dealing with new as well as unique types of

malware. In general, these kinds of malware

are highly specialized and very difficult to

classify. Therefore, this paper proposed the

usage of Genetic Algorithm (GA) as an

approach to optimize Decision Tree (DT) in

malware classification. GA is chosen

because unique types of malware are

basically functioning like crossover and

permutation operations in GA. New

classifier is developed by combining GA

with DT that we called as Anti-Malware

System (AMS) Classifier. Experimental

results obtained from AMS Classifier and

DT are compared and visualized in tables

and graphs. AMS Classifier shows an

accuracy increase from 4.5% to 6.5% from

DT Classifier. Outcome from this paper is a

new Anti-Malware Classification System

(AMCS) consists of AMS Classifier and

new malware classes that we named as Class

Target Operation (CTO). Malware is

classified by using CTO which are mainly

based on malware target and its operation

behavior.

KEYWORDS

Malware classification, Genetic Algorithm,

optimization, unique malware

1 INTRODUCTION

Malware classification is one of the main

components in malware detection

mechanism. It is used to classify the

malware into its designated classes. In

malware classification system, the main

appliance or engine is named as

classifier. According to Gheorghescu,

malware classification task by using

machine learning techniques is

commercially applied in many anti-

malware products [1]. As stated by

Rieck, malware classification system is

necessary and highly important when

combating the malware [2]. It is because,

malware classification system work

together with malware identification

process to produce the right and

effective malware antidote.

The work by Aycock and Filiol

classified malware as Virus, Worms,

Trojan Horses, Logical Bombs,

Backdoor, Spyware, Exploit and Rootkit

[3-4]. According to Filiol, conventional

malware classes are mainly based on

malware specific objective. For example,

malware in worm’s classes use the

network system to send a copy of itself

to other computer to spread but do not

attempt to alter the target system.

Therefore, by looking at the malware

classes and their objectives, the right and

effective malware antidote can be

produced, thus will greatly help anti-

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

694

malware products to act in preventing

the malware from affecting the system.

On another issue, Apel reported that the

widespread of malware has increased

dramatically due to the deployment of

avoidance techniques by malware

writers [5]. Avoidance techniques are

progressively being used by malware

writers to avoid detection and analysis of

their malicious code by anti-malware

products. According to Preda, malware

writers used avoidance techniques to

change the malware syntax or signature

but not their behavior of attacks which

has to be maintained [6]. In general, the

common avoidance technique used by

malware writers is called code

obfuscation. There are two types of code

obfuscation which are polymorphism

and metamorphism technique. By using

this technique, Szor showed that many

new variants of polymorphic and

metamorphic malware can easily be

created by encrypting the code, flow

transposition, substitution and renaming

variable [7]. The other techniques to

avoid detection are packing, anti-

debugging and anti-virtualization.

The work by Noreen shows that, the

design of malware and its intention has

become more sophisticated and

significantly improved [8]. Generally,

current machine learning classifiers used

in malware classification system such as

Naïve Bayes (NB), Support Vector

Machine (SVM), K-Nearest Neighbor

(KNN) and Decision Tree (DT) does not

give a good classification result when it

deals with new as well as unique types

of malware. As reported by Martignoni,

this is due to the highly specialized of

the malware and the difficulty to analyze

them [9]. New as well as unique types of

malware are no longer able to be

classified easily to the conventional

malware classes. According to

Martignoni and Bayer, these variants of

malware have numerous attributes and

combination syntax but show the same

types of behavior [9-10]. Thus,

classification of malware has become

more complicated and new malware

classification system is urgently needed.

This paper proposed the usage of

Genetic Algorithm (GA) to optimize the

current machine learning classifier

which is DT. GA is a heuristic search

that simulates the process of natural

evolution. According to Mehdi, this

heuristic algorithm is regularly used to

generate useful solutions in optimization

and search problems [11]. Malware

created by avoidance techniques and

having almost the same functionality as

well as showing the same types of

behavior can be classified by using GA.

It is because these types of malware

basically functioning like crossover and

permutation operations in GA [12]. New

classifier is developed by combining GA

with DT that we call as Anti-Malware

System (AMS) Classifier. As stated by

Edge, GA has an ability to be a learning

algorithm and can undergo self-learning

[13]. As a result, it will make the new

classification system more reliable than

the current classification systems.

2 STATE OF THE ART

Malicious code or malware has long

been recognized as the major threat to

the computing world [10],[14].

According to Mohamad Fadli and Aman

Jantan, all malware have their specific

objective and target, but the main

purpose is to create threats to the data

network and computer operation [15]. In

general, incoming files are considered as

malware if they perform suspicious

attack and might harm computer

systems. These files can break into

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

695

vulnerable systems from many ways

such as via internet (HTTP), email,

removable media, Peer-2-Peer (P2P) and

Instant Messaging (IM). Anti-malware

products in host machine will perform

scanning process to detect and identify

the attack. If unknown kinds of attack

are found, the samples will be sent to

anti-malware vendors to be analyzed.

Once analysis process is completed,

vendors will update the virus signature

database server and the latest update can

be downloaded from host machine side.

Classification part will classify the

attack sample into the correct malware

classes and prediction as well as removal

part will remove, clean or quarantine the

attacks.

2.1 Growth of Malware Attack

With the development of the

underground economy, malware is

considered as profitable product as the

malware writers use it to spam, steal

information, perform web frauds, and

many other criminal tasks. According to

Martignoni, malware has established

during the past decade to become a

major industry [9]. New malwares keep

on increasing from time to time and this

delinquent is seriously concerned by the

security group around the world. For

example, Panda Security Lab reported

that, one third of existing computer

malwares are created between January to

October 2010. The exponential growth

of malware is also reported by many

other security groups such as F-Secure,

Marcus, Kaspersky, Sophos, Symantec

and G-Data [16-21]. Figure 1 shows

Malware Evolution from 2003 to 2010

by Panda.

Figure 1. Malware Evolution [22].

According to ESET, more than half of

number of the malware samples

nowadays are classified as unique and

created by assimilating existing malware

with avoidance technique. Figure 2 is

shows the total number of unique

malware samples reported by ESET

from 2005 to 2010.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

696

Figure 2. Unique Malware Sample: ESET Threat Center [23].

Both Figure 1 and Figure 2 show the

increasing of malware sample and

attack. Malware highly utilized the

communication tools to spread itself. For

examples, worms are being sent out

through email and IM, Trojan horses

attacked from infected web sites and

viruses is downloaded from P2P

connections to the user systems.

According to Filiol, malware will pursue

to abuse existing vulnerabilities on the

systems to make their entry silent and

easy [24].

In addition, malware continue to remain

unnoticed, either by actively hiding or

simply not making its presence on a

system recognized to the user. The

increase of malware causes billions of

losses to the computer operation

worldwide by breaking down the

computer, congest the network, fully

utilize the processing power and many

more bad impacts. According to

Langweg, the security control needs to

be implemented in order to protect all

code and data against modification,

replacement or sub-versioned by

malware activities [25].

2.2 Malware Avoidance Techniques

At the present time, malware creation

becomes more sophisticated and

expressively improved. According to

Apel, almost all modern malware has

been implemented with a variety of

avoidance techniques in order to avoid

detection and analysis by anti-malware

product [5]. The avoidance techniques

used practically by malware writers are

code obfuscation, packing, anti-

debugging and anti-virtualization. As

stated by Noreen, the main purpose of

these techniques is to avoid detection

and to make the analysis process more

complicated [8]. Code obfuscation

technique can be divided into two types

which are polymorphism and

metamorphism. According to Preda,

code obfuscation can change the

malware syntax or signature but not their

behavior of attacks which has to be

maintained [6].

Code obfuscation consists of

polymorphic and metamorphic

technique. A polymorphic technique can

change the malware binary

representation as part of the replication

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

697

process. According to Vinod, this

technique consists of encrypted

malicious code along with the

decryption module [26]. In addition, it

has a polymorphic engine to decrypt and

generate new mutants for the code

before running it. When the polymorphic

malware infect the computer systems, it

will encrypt itself by using the new

encryption key and the new code is

generated. The work by Christodorescu

shows that, polymorphism has been

widely used to escape Syntax-based on

specific bit sequences by generating

random encodings [27].

As for metamorphic technique, malware

will transform the representation of

programs by changing the code into

different ways when it replicates but it

still performs the same behaviors [28].

According to Szor, this technique can

include control flow transposition,

substitution of equivalent instructions

and variable renaming [7]. Metamorphic

malware can reproduce itself into

different ways to rapidly create new

malware variants and never look like the

old malware. Research by Preda shows

that, most malware detectors nowadays

are easily crushed because they use

pattern matching and not resilient to

modification of variations [6].

Malware writers use packing technique

to compress the Win32 portable

execution file (PE file) and the actual

file will be unpacked when it is needed

to be executed. According to Han, the

main purpose of this technique is to

protect the commercial software code

from crack [29]. The work by Alazab

shows that, a packed program contain

within a program that is used for

decompressing the compressed data

during execution in the objective of

makes the task of static analysis become

more difficult [30]. Packers will

compress and encrypt the program.

However, the program is transparently

decompressed and decrypted at runtime

when the program is loaded into

memory. Some malware even packed its

code several times in order to make it

harder to be unpacked and used up so

many resources until the computer hang

or crash.

Debugger is a useful tool for reverse

engineering of the malware code.

Debuggers normally step through each

instruction in a program code before it is

executed. According to Desfossez,

debuggers perform their monitoring by

either inserting breakpoints in the

program or by tracing the execution

using a special system call [31].

Research by Liu and Chen shows that

anti-debugging is an active technique for

malware writers to embed code which is

aimed to check process list for the

debugger process [32]. This technique

will change functionalities of program

when it interpreted by a debugger and

make that program to discontinue its

malicious intent or jump to end it.

Virtual environment is a place to do

analysis and extract the features of the

malware. Dynamic analysis commonly

use virtual environment to place a

malware sample and observe its

behaviors. According to Lau and

Svajcer, malware writers used anti-

virtualization to create malware code

that has a capability to detect

virtualization environment to avoid the

malware from being analyzed [33]. By

using this technique, malware can be

detected whether they are running in a

virtual environment before the

execution. According to Daewon, when

the virtual environment is detected,

malware will act like a genuine program

or refuse to execute inside the virtual

environment [34].

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

698

3 MALWARE CLASSIFICATIONS

Classifying malware into possible types

was started somewhere in 1990s where

the concept of malicious software clearly

described for all unwanted code. In

1991, Computer Anti-virus Researchers

Organization (CARO) decided that the

fundamental principle behind the

malware naming scheme should be

grouped into families, which is based to

the similarity of its programming code

[35]. According to the naming scheme,

only the family name and the variant

name of a piece of malware are

compulsory. It is known as CARO

Malware Naming Scheme.

Normal practice by anti-malware

products is creating a malware naming

for each malware samples that have

analyzed. The malware naming is very

subjective and depends on particular

vendors to come out with their own

name. They also have different naming

class. Different naming class can cause

the malware characterization is different

between each anti-malware products

because the unique malware are created

with avoidance technique and their

characteristics belong to several malware

classes [3]. The problem is due to the

different naming schemes and can lead

to a very serious confusion. In order to

overcome this problem, this paper is

proposed to standardize malware class

and classify the malware based on

malware specific target and its operation

behavior.

3.1 Conventional Malware Classes

Malware are basically classified based

on malware specific objective. As a

result, there are diversities and different

naming classes among the anti-malware

vendors and researchers. According to

Aycock, malware can be classed into ten

(10) classes [3]. However, Apel stated

that malware are consisted of seventeen

(17) classes, whereas seven more classes

are added to the previous list [5]. Recent

study by Filiol stated that malware

classes are divided into two groups

which are ―Self-Reproducing‖ and

―Simple‖ groups [4].

Self-Reproducing group consists of

Virus and Worms. According to Aycock,

virus is a computer program that able to

perform secret action without owner’s

permission [3]. It was firstly

demonstrated to public in November

1983 by Cohen [36]. At that time, the

number of virus increased with an ability

to cause damage and the ability to avoid

detection. According to Jussi, virus

concepts become common in the late

1980 where it spreads through file and

diskettes [36]. Virus can increase their

probabilities of spreading to other

computers by infecting files on a

network or a file system accessed by

another computer. Virus also can be

spread as attachments in the e-mail note,

in the downloaded file, on a diskette or

CD.

Worms is quite similar to a virus by

design and many researchers considered

it as a sub-class of virus. Worms is a

self-reproducing malware that run

independently and travel across network

connections without any user

intervention. According to Mohamad

Fadli Zolkipli and Aman Jantan, Worms

use network connectivity to find an

attack vulnerable system from nodes to

nodes [12]. In general, the goal of worm

is to infect as many computer systems

that connected to the network. The

difference between worms and viruses

is, worms normally causes at least some

harm to the network by consuming

bandwidth and also it has the capability

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

699

to travel without any human action,

whereas viruses normally corrupt or

modify files on a targeted computer.

Simple group consist of Trojan horse

and Logical Bombs. According to Filiol,

Trojan horse is benign software that

appears to perform a necessary function

for the user prior to run or install but

instead simplifies unauthorized access to

the user's computer system [4]. Trojan

horse designed to embed secret

malicious task into other application or

system. This software is normally made

for servers and client modules whereby

attacker can control and access the

whole resources of infected systems [4].

By default Trojan horse will appear to be

useful software but it will actually do

damage once installed or ran on the

computer. Trojan horse is also known

for creating a ―backdoor‖ on the

computer that gives malicious users

access to the system. Unlike viruses and

worms, Trojans do not reproduce by

infecting other files nor do they self-

replicate [36].

Logical bomb is a simple type of

malware which waits for significant

event such as date, action and particular

data to be activated and launch its

criminal activity. Many logical bombs

attack their host systems on specific

dates, such as Friday the 13th or April

Fool's Day. According to Filiol, to be

considered as a logic bomb, the payload

should be unwanted and unknown to the

user of the software [4]. Some logical

bombs can be detected and abolished

before trying to execute through a

periodic scan of all computer files,

including compressed files, with an up-

to-date anti-malware products.

Unique and blended malware is a

malware created by malware writers by

using avoidance technique. According to

Martignoni, these types of malware

combine two or more attribute from its

predecessor and produce a new class of

malware [9]. New class will be created

each time when the new combination is

detected and the list of malware class

will continue to expand. Nevertheless,

the unique malware still performs

similar behavior even classified in

different classes. Therefore, this paper

try to propose new malware classes to

overcome this issue, hence optimize the

classification process. Figure 3 shows

additional unique malware classes from

the group defined by [4].

Figure 3. Malware with Additional Unique Class.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

700

3.2 Machine Learning Classifier

Another component in malware

classification system can be referred as

machine learning classifier. Machine

learning is an algorithm that allows

computers to evolve behaviors based on

empirical data such as from sensor data

or databases. A key focus of machine

learning research is to automatically

learn to identify the complex patterns

and make smart decisions based on data.

The learner must generalize from the

given examples to be able to produce a

useful output in new cases. According to

Bishop, the core objective of a learner is

to generalize from its experience [37].

Machine leaning classifier is the main

engine in the malware classification

system. It is used to classify the

malwares into its designated classes.

This paper tries to enhance the current

machine learning classifier by using GA.

Table 1 shows current Machine learning

classifier in malware classification.

Table 1. Machine learning classifier in malware classification

Classifier Speed Accuracy Strength Weakness

Naïve Bayes

[38-39]

Very

Fast

High Fast, easier to maintain and

consistence result

Sensitive to the correlated

attributes

Support Vector

Machine

(SVM) [2][40]

Fast High Regression and density estimation

results. Better performance in text

classification, pattern segment and

spam classification

Expensive and problem lies on

the prohibitive training time.

Decision Tree

[39][41]

Very

Fast

High Easy to understand, easy to generate

rules and reduce problem complexity

Mistake on higher level will

cause all wrong result in sub

tree

K-Nearest

Neighbor [42]

Slow Moderate Useful when the dependent variable

takes more than two values and

effective if the training data is large

Very computationally

intensive. O(n²)

This paper selects Decision Tree (DT) to

be combined with GA in order to

produce better classifier engine in Anti-

Malware Classification System (AMCS).

This Anti-Malware System (AMS)

Classifier will used new proposed

malware Class Target Operation (CTO)

which is mainly based on malware

specific target and its operation

behavior. Malware target and operation

is referring to the Windows file system

which is in the tree format, thus making

DT as the most suitable classifier to be

enhanced and used in AMCS. New AMS

Classifier is expected to give better

classification result than current machine

learning classifier.

4 OPTIMIZATION TECHNIQUES

An optimization process is a process that

systematically comes up with solutions

to optimize some specified set of

parameters without sacrificing some

constraint. According to Bonnans, the

most common goals of optimization

process are minimizing cost and

maximizing throughput as well as

efficiency [43]. In general, optimization

is a concept that encompasses all kinds

of order-generating processes other than

emergence. Optimization is also about

choosing or selecting outcomes and

defined as better.

The problems created by current trends

of malware attacks make classification

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

701

process much more complicated and

does not provide good classification

result. Therefore, there is a need to

enhance malware classifiers in order to

optimize its performance. This paper

proposed the usage of GA under

Evolutionary Algorithm (EA) to enhance

selected classifier which is DT.

According to Shafiq, EA has been

received significant attention and does

relatively well when tested on various

benchmarks especially in classification

problem of detecting malicious

executable [44].

4.1 Genetic Algorithm

GA is a heuristic search that simulators

the process of natural evolution. The

standard GA can be seen as the

combination of bit-string representation,

with bit-exchange crossover and bit-flip

mutation, roulette-wheel selection plus

generational replacement. GA is belongs

to the larger class of Evolutionary

Algorithm (EA). GA include the survival

of the fittest idea into a search algorithm

which provides a method of searching

which does not need to explore every

possible solution in the feasible region to

obtain a good result.

GA also commonly used on a learning

approach to solve computational

research problem. According to Mehdi,

this heuristic algorithm is regularly used

to generate useful solutions in

optimization and search problems [11].

In a GA, a population of strings which

encode candidate solutions to an

optimization problem evolves toward

better answers. By tradition, solutions

are represented in binary as strings of 0s

and 1s, but other encodings are also

possible [45]. A simple presentation of

GA is as follows;

generate initial population,

G(0);

evaluate G(0);

t:=0;

repeat

 t:=t+1;

 generate G(t) using G(t-

1);

 evaluate G(t);

until find a solution

GA technique is implemented in this

paper in order to solve and classify the

unique malware that was created by an

avoidance technique. A framework is

proposed by combining GA with the

current machine learning classifier. New

and unique malware can be detected and

classify through this technique. It is

because, unique malware work similar

like crossover and permutation operation

in GA [12]. An avoidance techniques

that normally used by malware writers

can be detected and classified using this

new malware classification system

because it not only filter the content but

also train and learn by itself, so it can

predict the current and upcoming trend

of malware attacks.

4.2 Design Techniques

The first stage in GA is to decide on a

genetic representation of a candidate

solution to the problem. Chromosomes

are represented by the malware, and it

stores the representation of a malware

class into four attributes based on

malware target and its operation

behaviors. The collection of

chromosomes divided into training and

testing data set. This collection also

called as malware corpus.

// Malware target, specific

target for malware attack

vector<list<MalwareClass*>>

_slots;

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

702

// Malware classes for

chromosome

hash_map<MalwareClass*,int>

_Dataclasses;

hash_map<MalwareClass*,int>

_Appsclasses;

hash_map<MalwareClass*,int>

_Sysclasses;

hash_map<MalwareClass*,int>

_Dosclasses;

In addition, the chromosome should

store its fitness value and the parameters

which are used by genetic operations.

The fitness value is described by;

// Fitness value of chromosome

float _fitness;

// Flags of class requirements

satisfaction

vector<bool> _criteria;

Chromosome also should be created

according to the number of

chromosomes and number of genes.

Initially, each gene of chromosomes was

filled by random group number between

1 and 4. Chromosome parameters are

shows as below;

// Number of crossover points of

parent's malware

int _numberOfCrossoverPoints;

// Number of classes that is

moved randomly by single

mutation operation

int _mutationSize;

// Probability that crossover

will occure

int _crossoverProbability;

// Probability that mutation

will occure

int _mutationProbability;

After initialization of chromosome, the

fitness of each chromosome must be

evaluated. The following formula was

used for evaluating the fitness of each

chromosome.

First part of this formula (class_score ÷

maximum_score) denotes the number of

score obtain (class_score) divided to

total number of maximum class which is

4 (maximum_score). Score is obtained

by checking the classification result. If

malware in higher class is classified in

lower class, we increase it score. Else we

decrease the score. denotes the

weight of group of selected individuals.

After selection process, the average

weight of each individuals () was

calculated by averaging the weight of

each malware in each gene

(malware_class*4) as below.

The fitness values are represented by

single-precision floating point numbers

(float) in the range 0 to 1. Once

chromosome initialization phase was

done, the genetic algorithm operations

such as crossover and mutation must be

applied on initialized chromosomes in

order to create new population with

better fitness value.

A crossover operation combines data in

the hash maps of two parents, and then it

creates a vector of slots according to the

content of the new hash map. A

crossover 'splits' hash maps of both

parents in parts of random size. The

number of parts is defined by the

number of crossover points (plus one) in

the chromosome's parameters. Then, it

alternately copies parts from parents to

the new chromosome, and forms a new

vector of slots.

// Performes crossover operation

using to chromosomes

// and returns pointer to

offspring

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

703

Schedule*Crossover(const

Schedule& parent2) const;

A mutation operation is very simple. It

just takes a class randomly and moves it

to another randomly chosen slot. The

number of classes which are going to be

moved in a single operation is defined

by the mutation size in the

chromosome's parameters.

// Performs mutation on

chromosome

void Mutation();

5 PROPOSED FRAMEWORK

Framework is an abstraction in

providing generic functionality and can

be selectively overridden or specialized

by user code, thus providing specific

system functionality. Our proposed

framework consists of three steps which

are starting from input, followed by

classification process and finishes with

classification result as an experiment

output. Figure 4 shows our proposed

framework.

Figure 4. Framework for Optimizing DT in Malware Classification System by using GA [46]

5.1 Sample PE Files

Sample Portable Execution (PE) files for

this experiment are divided into two

categories which are malware and

benign types. Malware behavior analysis

is conducted to identify the behavior and

characteristic of sample PE files. We

conducted an analysis based on malware

behavior analysis proposed by Mohamad

Fadli Zolkipli and Aman Jantan [12].

The first step in malware behavior

analysis is to collect the sample PE files.

All the samples are collected from

college network, internet and some

suspicious execution file in windows

operating system itself. This paper used

HoneyClient [47] and Amun [48] as

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

704

malware collector tools. The samples

also downloaded from VX Heaven [49]

in order to maximize the varieties of

sample PE files.

The second step is to extract the sample

PE files in our collection. This sample is

extracted to identify features reflecting

behavior patterns such as modified file

attribute, distributed global memory,

load register and many more suspicious

behavior by malware analyzer tools. For

security purposes, this process is

conducted in the virtual environment

machine. This experiment used

CWSandbox [50] and Anubis [51] as a

malware analyzer.

The work by Wagener used up until 104

malware samples for malware analysis.

104 malware samples are used in order

to obtain and identified malware

behavior pattern [52]. Some of that

malware sample shows the same

behavior of attack and Wagener divided

the similarity of malware into two

categories which are lowest average

similarity and highest average similarity.

For this paper, we observed and

monitored malware sample three times

(3x) higher than malware sample used

by Wagener. The reason we used higher

number of malware sample during

analysis is to obtain and observed more

malware behavior of attack. This paper

observed and monitored about 300

malware samples and divided the

similarity into 20 suspicious behaviors.

In the third step, human-based behavior

analysis is used to customize the result

generated by both malware analyzers by

using human expertise to analyze the

sample PE files. It is important to have

custom analysis because there might

have different result on different

malware analyzer tools. If the suspicious

behaviors are found, the sample PE files

is group under malware, else is group

under benign types as shown in Figure 5.

Figure 5. Malware and Benign Type.

The last step in the malware behavior

analysis is a statistical report. This report

is produced based on the result in the

previous step and stored in the

knowledge storage. The report is created

in the profile format and we called it as

―Malware Profile‖. This malware profile

is used by classifiers to classify malware

in our new Anti-Malware Classification

System (AMCS).

5.2 Classification Process

Classification process is the main

mechanism in our AMCS. This process

consists of three components which are

Virtual Environment, Knowledge

Storage and AMS Classifier. Figure 6

shows the classification process in

AMCS and its components.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

705

Figure 6. Classification Process.

Virtual environment is a security

mechanism for separating running

programs. It is often used to execute

untested code, or untrusted programs

from unverified third-parties, suppliers

and untrusted users. Virtual environment

machine run is isolated, so the benefit of

a virtual environment machine is that it

cannot directly modify the "real"

operating system running on our

machine. The virtual machine is

assigned its own hard disk space, and

that's what it treats as its virtual "entire

hard disk". In this proposed framework,

it has been decided to use Windows XP

Mode in Windows 7 Platform as the

testing platform. The purpose of this

virtual environment is to create secure

platform in order to minimize damage

and attack to the actual machine when

the malware sample is executed. Since

virtual environment is assigned with its

own hard disk space, if got infected, it

can simply be removed from the test

machine.

Knowledge storage is database storage

to store all the malware profile after

finishing the analysis and features are

extracted. Malware profile in the storage

consists of malware sample in MD5

format, malware size, malware specific

target and CTO. The knowledge storage

is designed to be re-writable by the

system. Certain unique malware has a

relationship and link with the other

malware when it is executed. According

to Desfossez, this malware relationship

is unable to analyze because during

analysis process, malware is executed

one by one [31]. At first, the information

in the knowledge storage is not sufficient

enough to be used in the classification

system. For this reason, this paper used

GA to conduct a training phase together

with the DT. The system will update the

database during the training phase.

Anti-Malware System (AMS) Classifier

is the main engine in this new malware

classification system. We have selected

the DT as our machine learning classifier

and combine it with GA. In this new

proposed system, we are providing the

classifier training phase and GA is used

to become a learning algorithm. During

the classifier training phase, 800 sample

PE files are used as training data set

consists of 200 benign and 600 malware

samples. The training data set is

different from testing sample PE files.

We must use different sample PE files

because we want to let the classifier to

learn and update the new malware into

malware profile.

One of the main goals conducting this

training phase is to detect and classify

the unique malware that has a

relationship when it is executed. The

other goal is to find unique malware that

perform the same behavior but providing

different syntax representation. As

mention earlier, the malware profile in

the knowledge storage is designed to be

re-writable. Classifier will keep on

updating the malware profile during this

training phase. The classification result

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

706

will become more accurate during the

training towards threshold values. The

training phase also shows the ability of

GA in helping DT to optimize the

classification task. Figure 7 shows the

classifier training phase in AMCS.

Figure 7. Classifier Training Phase.

5.3 Class Target Operation (CTO)

Malware behavior analysis has

discovered 20 suspicious malware

behaviors. This paper observed the

executed malware by focusing it to the

specific target and operation behavior in

windows environment systems. Figure 8

shows the malware operation behavior

chart percentage based on the result in

malware behavior analysis.

Figure 8. Malware Operation Behavior.

From the above chart, we classify the

malware specific operation into 4 main

classes which are Data, Application,

System and Dos. Malware that are

attacked File is group under Data class

while malware that attacked Browser is

group under Application class. Malware

that are attacked Kernel, Operating

System and Registry is group under

System class. Lastly, malware that are

attacked CPU, Memory and Network is

group under Dos class. Table 2 shows

more detail about new malware CTO.

Table 2. Machine learning classifier in malware classification

Class Target

Operation (CTO)

Rank Attacked examples Affected examples

Data 1 Malware attack office and

adobe file

.doc, .ppt, .xls and .pdf file

Application 2 Malware attack application

such as office application,

audio application and video

application

Microsoft Office, Winamp and

Windows media Player

System 3 Malware attack the entire

Operating System

Windows XP, Windows 7 and

Windows Server 2008

Dos 4 Malware attack physical

hardware and entire machine

CPU usage, memory and network

access

These four malware classes are related

with each other in rank 1 to 4 starting

with Data class and end with Dos class.

These classes are actually inspired from

basic fundamental of computer physical

architecture. According to Ivy, physical

architecture of host-based computer

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

707

consists of application, operating system

and hardware [53].

In general, all these three layers are

related with each other. Based on

malware behavior analysis that we

conducted earlier, we group the malware

behavior into four classes. Data and

Application classes are mainly grounded

by application layer, System class is

grounded by operating system layer and

Dos class is grounded by hardware layer.

The main reason that leads to the

proposal of new malware CTO based on

its operation is to reduce the process

flow and cost in malware detection

mechanism.

If the classifier is classified malware

sample into Data class, the antidote is

prepared based on Data operation only

and if malware sample is classified into

Application class, the antidote is

prepared based on Data and Application

operation. For malware in Data class, the

detection mechanism does not need to

look and prepare the antidote for other

classes because that particular malware

only attack file without attempt to attack

the application and operating system.

However, if malware attack Microsoft

Office application which is under

Application class, usually it will also

affect the office application file under

Data class, but not necessary to attack

that particular operating system, which is

under System class. The prediction

system will check as well as estimate

either that particular malware is harming

System or not. If malware is harming

System, the antidote is also prepared to

System operation.

There are different focuses with System

and Dos classes. When malware sample

is classified into System class, the

prediction system will estimate and

check Application and Dos classes in

order to prepare the antidote. The

antidote will only be prepared when

confirm by prediction system that the

attack is affecting Application as well as

Dos classes; else antidote is only for

System operation. Same goes when

malware sample is classified into Dos

class. The prediction system will

estimate and check System class and

when confirm the attack also affecting

System class, antidote will be prepared

for both. Our new malware CTO

relationship can be summarized as

Data ⊆ Application ↔ System ↔ Dos

However, not all malware will attack

based on this relationship and rank class

but it normally do. Duplicating a file is

considered under Data class but it also

consumes and bottlenecks the memory

usage, so for that cases, it is classified

into Dos class. The antidote is prepared

for Data and Dos class only. All the

decision in preparing antidote is made by

prediction system.

6 EXPERIMENT and RESULTS

Similar work by Zhang and Wang used

about 632 and 914 malware sample [54-

55]. For this paper, we used more

sample data which are 1000 sample

portable execution files (PE file) consist

of 250 benign programs and 750

malware samples. We follow ratio

suggested by Wang for training and

testing data set which are 80 % from

sample PE files is used for training

phase and the remaining 20% is for

testing purposes. Training phase is used

up until 800 sample PE files consist of

200 benign programs and 600 malware

samples and the remaining 200 samples

is for testing. Table 3 shows the

summary of sample PE files for this

experiment.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

708

Table 3. Sample Data

 Sample

PE Files

Training (80%) Testing (20%)

Benign 250 200 50

Malware 750 600 150

Total 1000 800 200

The control value in this experiment is

called as ―Threshold‖. Threshold is the

total or the value of training data that has

been trained. This paper trained the

training sample first and the control

value is set from 0.6 to 0.9 (60 % to 90%

trained samples). There are 200 sample

PE files for testing purposes and the

same samples is used for each Threshold

values. In order to review the classifier,

accuracies are calculated by using

formula suggested in Edge as shown

below [13].

The experiment is conducted by using

DT Classifier first. 200 sample PE files

have been tested by adjusting Threshold

value from 0.6 to 0.9. Table 4 shows the

relationship between Threshold value

and the accuracy.

Table 4. Classification Result for DT Classifier

Threshold TP TN FP FN Accuracies

0.6 134 45 16 5 89.5%

0.7 134 45 16 5 89.5%

0.8 136 45 14 5 90.5%

0.9 137 45 13 5 91.0%

After finishing the first experiment using

DT, we proceed with the next

experiment using our new AMS

Classifier. The same Threshold value is

used again. Table 5 shows the result of

our second experiment.

Table 5. Classification Result for AMS

Classifier

Threshold TP TN FP FN Accuracies

0.6 141 47 9 3 94.0 %

0.7 142 49 8 1 95.5 %

0.8 144 50 6 0 97.0 %

0.9 144 50 6 0 97.0 %

The next step is to compare the first and

second result of our experiments. Figure

9 shows the comparison between DT

Classifier versus AMS Classifier.

Figure 9. DT Classifier versus AMS Classifier.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

709

7 DISCUSSIONS and CONCLUSION

The purpose of this experiment is not

only to test workability of proposed

approach but also to prove the proposed

approach fairs better than existing

approaches. Two experiments have been

conducted in order to prove our

approach. The first experiment is done

using DT Classifier and the second

experiment is done using AMS

Classifier which is our proposed

approach. Both experiments are tested

using 200 sample PE files with four

chosen threshold value for both

experiments. The four threshold values

are 0.6, 0.7, 0.8 and 0.9. The sample data

is tested according to ascending value of

the threshold. The output gained from

both experiments is a classification

accuracy rate. The first experiment

yields out the classification accuracy rate

using DT classifier while the second

experiment yields out the classification

accuracy rate using AMS Classifier.

Obtained output from both experiments

is then compared to see the classification

accuracy rate difference. All obtained

results are visualized in tables and

graphs.

Results from the first experiment using

DT Classifier are shown in Table 4. The

results show that for threshold 0.6 and

0.7 obtained the same result. Both of

these threshold obtained 134 TP, 45 TN,

16 FP and 5 FN. Threshold value of 0.8

obtained 136 TP, 45 TN, 14 FP and 5

FN while threshold value 0.9 obtained

137 TP, 45 TN, 13 FP and 5 FN. Based

on Table 4, the accuracy rate for the first

two thresholds stays at 89.5%. The

accuracy increases to 90.50% for the

third threshold and 91.00% for the last

threshold.

Results from the second experiment

using AMS Classifier are shown in

Table 5. The results show that for

threshold 0.6 obtained 141 TP, 47 TN, 9

FP and 3 FN. Threshold value of 0.7

obtained 142 TP, 49 TN, 8 FP and 1 FN.

Threshold value of 0.8 obtained 144 TP,

50 TN, 6 FP and 0 FN while threshold

value 0.9 obtained 144 TP, 50 TN, 6 FP

and 0 FN. Based on Table 5, there is an

increase of 1.5% in accuracy rate for the

first two thresholds from 94.0% to

95.5%. The accuracy rate for the final

two threshold values stays at 97.0%.

Classification result of DT Classifier

shows that there is no different for FP

result in each different Threshold setting

value. On the other hand, our AMS

Classifier shows a decreasing result for

TN and FN result over the Threshold

values. It means that AMS Classifier is

able to classify the sample PE files that

has been failed to classify by the DT

Classifier. This also proves that DT

classifier is not resilient and does not

perform well to an avoidance technique.

Results from the first experiment and the

second experiment is then compared and

graphically displayed in Figure 9. The

comparison result between proposed

approach and existing approach shows

that there is an increase of accuracy rate

for all threshold values in the favor of

proposed approach. Threshold value of

0.6 shows an increase of 4.5% in

accuracy rate while threshold value of

0.7 shows an increase of 6.0% in

accuracy rate. As for the final two

threshold values, the increased rate is

6.5% and 6.0%. As a conclusion, both

experiment results shows that accuracy

rate increases as the value of threshold

increases and our proposed approach

which is AMS Classifier yields a better

accuracy rate compared to DT Classifier.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

710

Acknowledgments. The author would

like to thanks to the members in the

Security Research Group, Universiti

Sains Malaysia for their helpful

discussion and suggestion. This work is

supported by Short-term Grant

No.304/PKOMP/639021.

8 REFERENCES

1. Gheorghescu, M.: An Automated Virus

Classification System (2005).

2. Rieck, K., Holz, T., Willems, C., Düssel, P.,

Laskov, P.: Learning and Classification of

Malware Behavior. In: Detection of

Intrusions and Malware, and Vulnerability

Assessment. Vol. 5137, pp. 108--125.

Berlin, Heidelberg: Springer (2008).

3. Aycock, J.: Computer Viruses and Malware.

Springer (2006).

4. Filiol, E.: Viruses and Malware. In:

Handbook of Information and

Communication Security. pp. 747--769.

Springer (2010).

5. Apel, M., Bockermann, C., Meier, M.:

Measuring Similarity of Malware

Behaviour. In: The 5th LCN Workshop on

Security in Communication Network. pp.

891--898. Zurich, Germany: IEEE (2009).

6. Preda, M., Christodorescu, M., Jha, S.,

Debray, S.: A Semantics-Based Approach to

Malware Detection. In: Transactions on

Programming Languages and Systems, Vol

30, No 5, pp 25--54 (2008).

7. Szor, P.: The Art of Computer Virus

Research and Defense. In: Addison-Wesley

Professional (2005).

8. Noreen, S., Murtaza, S., Shafiq, M., Farooq,

M.: Evolvable Malware. In: 11th Annual

Conference on Genetic and Evolutionary

Computation. pp. 1569–1576. Montreal,

Quebec, Canada: ACM (2009).

9. Martignoni, L., Paleari, R., Bruschi, D.: A

Framework for Behavior-Based Malware

Analysis in the Cloud. In: 5th International

Conference on Information Systems

Security. Vol. 5905, pp. 178-192. Berlin,

Heidelberg: Springer-Verlag (2009).

10. Bayer, U., Habibi, I., Balzarotti, D., Kirda,

E., Kruegel, C.: A View on Current

Malware Behaviors. In: Usenix Workshop

on Large-scale Exploits and Emergent

Threats. Berkeley, CA, USA: USENIX

Association (2009).

11. Mehdi, S., Tanwani, A., Farooq, M.: IMAD:

In-Execution Malware Analysis and

Detection. In: 11th Annual Conference on

Genetic and Evolutionary Computation.

New York, USA: ACM (2009).

12. Mohamad Fadli Zolkipli, Aman Jantan.:

Malware Behavior Analysis: Learning and

Understanding Current Malware Threats. In:

Second International Conference on

Network Applications, Protocols and

Services. pp. 218--221. Kedah, Malaysia:

IEEE (2010).

13. Edge, K., Lamont, G., Raines, R.: A

Retrovirus Inspired Algorithm for Virus

Detection and Optimization. In: 8th Annual

Conference on Genetic and Evolutionary

Computation. New York, USA: ACM

2006).

14. Zhao, H., Xu, M., Zheng, N., Yao, J., Ho,

Q.: Malicious Executables Classification

Based on Behavioral Factor Analysis. In:

International Conference on e-Education, e-

Business, e-Management, and e-Learning.

pp. 502-506. Sanya: IEEE (2010).

15. Mohamad Fadli Zolkipli, Aman Jantan.: A

Framework for Malware Detection Using

Combination Technique and Signature

Generation. In: Second International

Conference on Computer Research and

Development. pp. 196-199. Kuala Lumpur:

IEEE (2010).

16. F-Secure IT Threats Security Summary

(2008),
http://www.f-

secure.com/en_EMEALabs/news-

info/threat-summaries/

17. Marcus, D. Malware Is Their Business…and

Business Is Good! (2009),
 http://www.avertlabs.com/rese

arch/blog/index.php/2009/07/2

2/malware-is-their-

businessand-business-is-good/

18. Kaspersky Security Bulletin. Malware

Evolution (2010),
 http://www.securelist.com/en/

analysis/204792161/Kaspersky_

Security_Bulletin_Malware_Evo

lution_2010

19. Sophos – Security Threats Report: Mid-Year

(2010),
 http://www.sophos.com/sophos/

docs/eng/papers/sophossecurit

y-threat-report-midyear-2010-

wpna.pdf

20. Symantec. Cyber War — Much Ado About

Nothing or the Real Deal? (2010),

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

711

 http://www.invincea.com/blog/

2010/07/cyber-war-much-ado-

about-nothing-or-the-real-

deal/

21. G-Data - Number of New Computer Viruses

at Record High (2010),
 http://www.gdatasoftware.co.u

k/about-g-data/press-

centre/news/news-

details/article/1760-number-

of-new-computer-viruses.html

22. Panda Security Lab. One third of existing

computer viruses were created in Jan-Oct

2010 (2010),
http://www.channeltimes.com/s

tory/one-third-of-existing-

computer-viruses-were-

created-upto-october-2010-

panda/

23. ESET. The Malware Challenge (2011),
http://www.eset.com/us/threat

-center

24. Filiol, E., Jacob, G., Liard, M. L.:

Evaluation Methodology and Theoretical

Model for Antiviral Behavioural Detection

Strategies. In: Journal in Computer

Virology, Vol. 3, No 1, pp 23--37 (2006).

25. Langweg, H.: Framework for Malware

Resistance Metrics. In: 2nd ACM workshop

on Quality of protection, pp. 39--44. New

York, USA: ACM (2006).

26. Vinod, P., Laxmi, V., Gaur., M.: Survey on

Malware Detection Methods. In: 3rd

Hackers' Workshop on Computer and

Internet Security. Kanpur, India (2009).

27. Christodorescu, M., Jha, S., Maughan, D.,

Song, D., Wang, C.: Malware Detection.

In:Advances in Information Security. Verlag

New York, Inc. Secaucus, NJ, USA:

Springer (2006).

28. Zhang, Q., Reeves, D.: MetaAware:

Identifying Metamorphic Malware. In:

Twenty-Third Annual Computer Security

Applications Conference. pp. 411--420).

Miami Beach, Florida: IEEE (2007).

29. Han, S., Lee, K., Lee, S.: Packed PE File

Detection for Malware Forensics. In: 2nd

International Conference on Computer

Science and its Applications, pp. 1--7. Jeju,

Korea: IEEE (2009).

30. Alazab, M., Venkataraman, S., Watters, P.:

Towards Understanding Malware Behaviour

by the Extraction of API Calls. In: Second

Cybercrime and Trustworthy Computing

Workshop, pp. 52 - 59. Ballarat, VIC,

Australia: IEEE (2010).

31. Desfossez, J., Dieppedale, J., Girard, G.:

Stealth Malware Analysis From Kernel

Space with Kolumbo. In: Journal in

Computer Virology, Vol. 7, No. 1, pp. 83--

93 (2011).

32. Liu, L., Chen, S.: Malyzer: Defeating Anti-

detection for Application-Level Malware

Analysis. In: Applied Cryptography and

Network Security - Lecture Notes in

Computer Science. Vol. 5536, pp. 201-218.

Berlin, Heidelberg: Springer (2009).

33. Lau, B., Svajcer, V.: Measuring Virtual

Machine Detection in Malware Using DSD

Tracer. In: Journal in Computer Virology,

Vol. 6, No. 3, pp. 181--195 (2010).

34. Daewon, K., Ikkyun, K., Jintae, O., Jongsoo,

J.: Behavior-Based Tracer to Monitor

Malicious Features of Unknown Executable

File. In: Fifth International Multi-

Conference on Computing in the Global

Information Technology, pp. 152 - 156.

Valencia: ICCGI (2010).

35. Banković, Z., Stepanović, D., Bojanić, S.,

Nieto-Taladriz, O.: Improving Network

Security Using Genetic Algorithm

Approach. In: Computers and Electrical

Engineering, Vol. 33, pp. 5--6 (2007).

36. Jussi, P.: Digital Contagions. In: A Media

Archaeology of Computer Viruses. New

York, USA (2007).

37. Bishop, C.: Pattern Recognition and

Machine Learning. Springer-Verlag (2006).

38. Wang, C., Pang, J., Zhao, R., Fu, W., Liu,

X.: Malware Detection Based on Suspicious

Behavior Identification. In: First

International Workshop on Education

Technology and Computer Science, pp. 198-

-202. Wuhan, Hubei: IEEE (2009).

39. Dewan Md Farid, Nouria Harbi, Mohammad

Zahidur Rahman.: Combining Naive Bayes

and Decision Tree for adaptive Intrusion

Detection. Vol. 2, No. 2, pp. 12--25 (2010).

40. Mezghani, D., Boujelbene, S., Ellouze, N.:

Evaluation of SVM Kernels and

Conventional Machine Learning Algorithms

for Speaker Identification. In: International

Journal of Hybrid Information Technology,

Vol. 3, No. 3 (2010).

41. Komashinskiy, D., Kotenko, I.: Malware

Detection by Data Mining Techniques

Based on Positionally Dependent Features.

In: International Conference on Parallel,

Distributed and Network-Based Processing,

pp. 617—623. Pisa (2010).

42. Hall, P., Park, B., Samworth, R.: Choice of

neighbor order in nearest-neighbor

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

712

classification. In: An Official Journal of the

Institute of Mathematical Statistics, Vol. 36,

No. 5, pp 2135--2152 (2008).

43. Bonnans, J. F., Gilbert, J. C., Lemaréchal,

C., Sagastizábal, C. A.: Numerical

Optimization: Theoretical and Practical

Aspects. Berlin: Springer-Verlag (2006).

44. Shafiq, M. Z., Tabish, S. M., Farooq, M.: On

The Appropriateness of Evolutionary Rule

Learning Algorithms for Malware

Detection. In: 11th Annual Conference

Companion on Genetic and Evolutionary

Computation Conference. New York, USA:

ACM (2009).

45. Cha, S.-H., Tappert, C.: A Genetic

Algorithm for Constructing Compact Binary

Decision Trees. In: Journal of Pattern

Recognition Research, Vol. 4, No. 1 (2009).

46. Mohd Najwadi Yusoff, Aman Jantan.: A

Framework for Optimizing Malware

Classification by using Genetic Algorithm.

In: Communications in Computer and

Information Science, Vol. 180, Part 1, pp

58--72, SpringerLink (2011).

47. HoneyClient. Capture-HPC Client

Honeypot. (2011),
https://projects.honeynet.org

/capture-hpc

48. Amun. Python Honeypot (2011),
http://amunhoney.sourceforge.

net/

49. Schufa. VX Heavens. (2011),
http://vx.netlux.org/

50. CWSandbox. Honeyblog (2011),
http://honeyblog.org/categori

es/5-CWSandbox

51. Anubis. Analyzing Unknown Binaries

(2011),
http://anubis.iceclab.org/

52. Wagener, G., State, R., Dulaunoy, A.:

Malware Behaviour Analysis. In: Journal in

Computer Virology, Vol 4, No. 4, pp 279--

287 (2007).

53. Irv, E.: The Architecture of Computer

Hardware and System Software: An

Information Technology Approach. John

Wiley & Sons (2009).

54. Zhang, B.-y., Yin, J.-p., Hao, J.-b., Zhang,

D.-x.,Wang , S.-l. Using Support Vector

Machine to Detect Unknown Computer

Viruses. In: International Journal of

Computational Intelligence Research, Vol.

2, No. 1 (2006).

55. Wang, Z., Cui, D.: A Hybrid Algorithm

Based on Genetic Algorithm and Simulated

Annealing for Solving Portfolio Problem. In:

International Conference on Business

Intelligence and Financial Engineering, pp.

106--109. Beijing: IEEE (2009).

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

713

