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ABSTRACT 

 
Malware classification is a vital component 

and works together with malware 

identification to prepare the right and 

effective malware antidote. Current 

techniques in malware classification do not 

give a good classification result while 

dealing with new as well as unique types of 

malware. In general, these kinds of malware 

are highly specialized and very difficult to 

classify. Therefore, this paper proposed the 

usage of Genetic Algorithm (GA) as an 

approach to optimize Decision Tree (DT) in 

malware classification. GA is chosen 

because unique types of malware are 

basically functioning like crossover and 

permutation operations in GA. New 

classifier is developed by combining GA 

with DT that we called as Anti-Malware 

System (AMS) Classifier. Experimental 

results obtained from AMS Classifier and 

DT are compared and visualized in tables 

and graphs. AMS Classifier shows an 

accuracy increase from 4.5% to 6.5% from 

DT Classifier. Outcome from this paper is a 

new Anti-Malware Classification System 

(AMCS) consists of AMS Classifier and 

new malware classes that we named as Class 

Target Operation (CTO). Malware is 

classified by using CTO which are mainly 

based on malware target and its operation 

behavior.  
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1 INTRODUCTION 
 

Malware classification is one of the main 

components in malware detection 

mechanism. It is used to classify the 

malware into its designated classes. In 

malware classification system, the main 

appliance or engine is named as 

classifier. According to Gheorghescu, 

malware classification task by using 

machine learning techniques is 

commercially applied in many anti-

malware products [1]. As stated by 

Rieck, malware classification system is 

necessary and highly important when 

combating the malware [2]. It is because, 

malware classification system work 

together with malware identification 

process to produce the right and 

effective malware antidote. 

The work by Aycock and Filiol 

classified malware as Virus, Worms, 

Trojan Horses, Logical Bombs, 

Backdoor, Spyware, Exploit and Rootkit 

[3-4]. According to Filiol, conventional 

malware classes are mainly based on 

malware specific objective. For example, 

malware in worm’s classes use the 

network system to send a copy of itself 

to other computer to spread but do not 

attempt to alter the target system. 

Therefore, by looking at the malware 

classes and their objectives, the right and 

effective malware antidote can be 

produced, thus will greatly help anti-
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malware products to act in preventing 

the malware from affecting the system.  

On another issue, Apel reported that the 

widespread of malware has increased 

dramatically due to the deployment of 

avoidance techniques by malware 

writers [5]. Avoidance techniques are 

progressively being used by malware 

writers to avoid detection and analysis of 

their malicious code by anti-malware 

products. According to Preda, malware 

writers used avoidance techniques to 

change the malware syntax or signature 

but not their behavior of attacks which 

has to be maintained [6]. In general, the 

common avoidance technique used by 

malware writers is called code 

obfuscation. There are two types of code 

obfuscation which are polymorphism 

and metamorphism technique. By using 

this technique, Szor showed that many 

new variants of polymorphic and 

metamorphic malware can easily be 

created by encrypting the code, flow 

transposition, substitution and renaming 

variable [7]. The other techniques to 

avoid detection are packing, anti-

debugging and anti-virtualization. 

The work by Noreen shows that, the 

design of malware and its intention has 

become more sophisticated and 

significantly improved [8]. Generally, 

current machine learning classifiers used 

in malware classification system such as 

Naïve Bayes (NB), Support Vector 

Machine (SVM), K-Nearest Neighbor 

(KNN) and Decision Tree (DT) does not 

give a good classification result when it 

deals with new as well as unique types 

of malware. As reported by Martignoni, 

this is due to the highly specialized of 

the malware and the difficulty to analyze 

them [9]. New as well as unique types of 

malware are no longer able to be 

classified easily to the conventional 

malware classes. According to 

Martignoni and Bayer, these variants of 

malware have numerous attributes and 

combination syntax but show the same 

types of behavior [9-10]. Thus, 

classification of malware has become 

more complicated and new malware 

classification system is urgently needed. 

This paper proposed the usage of 

Genetic Algorithm (GA) to optimize the 

current machine learning classifier 

which is DT. GA is a heuristic search 

that simulates the process of natural 

evolution. According to Mehdi, this 

heuristic algorithm is regularly used to 

generate useful solutions in optimization 

and search problems [11]. Malware 

created by avoidance techniques and 

having almost the same functionality as 

well as showing the same types of 

behavior can be classified by using GA. 

It is because these types of malware 

basically functioning like crossover and 

permutation operations in GA [12]. New 

classifier is developed by combining GA 

with DT that we call as Anti-Malware 

System (AMS) Classifier. As stated by 

Edge, GA has an ability to be a learning 

algorithm and can undergo self-learning 

[13]. As a result, it will make the new 

classification system more reliable than 

the current classification systems. 

 

2 STATE OF THE ART 
 

Malicious code or malware has long 

been recognized as the major threat to 

the computing world [10],[14]. 

According to Mohamad Fadli and Aman 

Jantan, all malware have their specific 

objective and target, but the main 

purpose is to create threats to the data 

network and computer operation [15]. In 

general, incoming files are considered as 

malware if they perform suspicious 

attack and might harm computer 

systems. These files can break into 
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vulnerable systems from many ways 

such as via internet (HTTP), email, 

removable media, Peer-2-Peer (P2P) and 

Instant Messaging (IM). Anti-malware 

products in host machine will perform 

scanning process to detect and identify 

the attack. If unknown kinds of attack 

are found, the samples will be sent to 

anti-malware vendors to be analyzed. 

Once analysis process is completed, 

vendors will update the virus signature 

database server and the latest update can 

be downloaded from host machine side. 

Classification part will classify the 

attack sample into the correct malware 

classes and prediction as well as removal 

part will remove, clean or quarantine the 

attacks.  

 

2.1 Growth of Malware Attack 
 

With the development of the 

underground economy, malware is 

considered as profitable product as the 

malware writers use it to spam, steal 

information, perform web frauds, and 

many other criminal tasks. According to 

Martignoni, malware has established 

during the past decade to become a 

major industry [9]. New malwares keep 

on increasing from time to time and this 

delinquent is seriously concerned by the 

security group around the world. For 

example, Panda Security Lab reported 

that, one third of existing computer 

malwares are created between January to 

October 2010. The exponential growth 

of malware is also reported by many 

other security groups such as F-Secure, 

Marcus, Kaspersky, Sophos, Symantec 

and G-Data [16-21]. Figure 1 shows 

Malware Evolution from 2003 to 2010 

by Panda. 
 

 
Figure 1.  Malware Evolution [22]. 

 

According to ESET, more than half of 

number of the malware samples 

nowadays are classified as unique and 

created by assimilating existing malware 

with avoidance technique. Figure 2 is 

shows the total number of unique 

malware samples reported by ESET 

from 2005 to 2010. 
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Figure 2. Unique Malware Sample: ESET Threat Center [23]. 

 

Both Figure 1 and Figure 2 show the 

increasing of malware sample and 

attack. Malware highly utilized the 

communication tools to spread itself. For 

examples, worms are being sent out 

through email and IM, Trojan horses 

attacked from infected web sites and 

viruses is downloaded from P2P 

connections to the user systems. 

According to Filiol, malware will pursue 

to abuse existing vulnerabilities on the 

systems to make their entry silent and 

easy [24]. 

In addition, malware continue to remain 

unnoticed, either by actively hiding or 

simply not making its presence on a 

system recognized to the user. The 

increase of malware causes billions of 

losses to the computer operation 

worldwide by breaking down the 

computer, congest the network, fully 

utilize the processing power and many 

more bad impacts. According to 

Langweg, the security control needs to 

be implemented in order to protect all 

code and data against modification, 

replacement or sub-versioned by 

malware activities [25]. 

 

2.2 Malware Avoidance Techniques 
 

At the present time, malware creation 

becomes more sophisticated and 

expressively improved. According to 

Apel, almost all modern malware has 

been implemented with a variety of 

avoidance techniques in order to avoid 

detection and analysis by anti-malware 

product [5]. The avoidance techniques 

used practically by malware writers are 

code obfuscation, packing, anti-

debugging and anti-virtualization. As 

stated by Noreen, the main purpose of 

these techniques is to avoid detection 

and to make the analysis process more 

complicated [8]. Code obfuscation 

technique can be divided into two types 

which are polymorphism and 

metamorphism. According to Preda, 

code obfuscation can change the 

malware syntax or signature but not their 

behavior of attacks which has to be 

maintained [6].  

Code obfuscation consists of 

polymorphic and metamorphic 

technique. A polymorphic technique can 

change the malware binary 

representation as part of the replication 
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process. According to Vinod, this 

technique consists of encrypted 

malicious code along with the 

decryption module [26]. In addition, it 

has a polymorphic engine to decrypt and 

generate new mutants for the code 

before running it. When the polymorphic 

malware infect the computer systems, it 

will encrypt itself by using the new 

encryption key and the new code is 

generated. The work by Christodorescu 

shows that, polymorphism has been 

widely used to escape Syntax-based on 

specific bit sequences by generating 

random encodings [27]. 

As for metamorphic technique, malware 

will transform the representation of 

programs by changing the code into 

different ways when it replicates but it 

still performs the same behaviors [28]. 

According to Szor, this technique can 

include control flow transposition, 

substitution of equivalent instructions 

and variable renaming [7]. Metamorphic 

malware can reproduce itself into 

different ways to rapidly create new 

malware variants and never look like the 

old malware. Research by Preda shows 

that, most malware detectors nowadays 

are easily crushed because they use 

pattern matching and not resilient to 

modification of variations [6]. 

Malware writers use packing technique 

to compress the Win32 portable 

execution file (PE file) and the actual 

file will be unpacked when it is needed 

to be executed. According to Han, the 

main purpose of this technique is to 

protect the commercial software code 

from crack [29]. The work by Alazab 

shows that, a packed program contain 

within a program that is used for 

decompressing the compressed data 

during execution in the objective of 

makes the task of static analysis become 

more difficult [30]. Packers will 

compress and encrypt the program. 

However, the program is transparently 

decompressed and decrypted at runtime 

when the program is loaded into 

memory. Some malware even packed its 

code several times in order to make it 

harder to be unpacked and used up so 

many resources until the computer hang 

or crash.  

Debugger is a useful tool for reverse 

engineering of the malware code. 

Debuggers normally step through each 

instruction in a program code before it is 

executed. According to Desfossez, 

debuggers perform their monitoring by 

either inserting breakpoints in the 

program or by tracing the execution 

using a special system call [31]. 

Research by Liu and Chen shows that 

anti-debugging is an active technique for 

malware writers to embed code which is 

aimed to check process list for the 

debugger process [32]. This technique 

will change functionalities of program 

when it interpreted by a debugger and 

make that program to discontinue its 

malicious intent or jump to end it. 

Virtual environment is a place to do 

analysis and extract the features of the 

malware. Dynamic analysis commonly 

use virtual environment to place a 

malware sample and observe its 

behaviors. According to Lau and 

Svajcer, malware writers used anti-

virtualization to create malware code 

that has a capability to detect 

virtualization environment to avoid the 

malware from being analyzed [33]. By 

using this technique, malware can be 

detected whether they are running in a 

virtual environment before the 

execution. According to Daewon, when 

the virtual environment is detected, 

malware will act like a genuine program 

or refuse to execute inside the virtual 

environment [34]. 
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3 MALWARE CLASSIFICATIONS 

 

Classifying malware into possible types 

was started somewhere in 1990s where 

the concept of malicious software clearly 

described for all unwanted code. In 

1991, Computer Anti-virus Researchers 

Organization (CARO) decided that the 

fundamental principle behind the 

malware naming scheme should be 

grouped into families, which is based to 

the similarity of its programming code 

[35]. According to the naming scheme, 

only the family name and the variant 

name of a piece of malware are 

compulsory. It is known as CARO 

Malware Naming Scheme.  

Normal practice by anti-malware 

products is creating a malware naming 

for each malware samples that have 

analyzed. The malware naming is very 

subjective and depends on particular 

vendors to come out with their own 

name. They also have different naming 

class. Different naming class can cause 

the malware characterization is different 

between each anti-malware products 

because the unique malware are created 

with avoidance technique and their 

characteristics belong to several malware 

classes [3]. The problem is due to the 

different naming schemes and can lead 

to a very serious confusion. In order to 

overcome this problem, this paper is 

proposed to standardize malware class 

and classify the malware based on 

malware specific target and its operation 

behavior. 

 

3.1 Conventional Malware Classes 

 

Malware are basically classified based 

on malware specific objective. As a 

result, there are diversities and different 

naming classes among the anti-malware 

vendors and researchers. According to 

Aycock, malware can be classed into ten 

(10) classes [3]. However, Apel stated 

that malware are consisted of seventeen 

(17) classes, whereas seven more classes 

are added to the previous list [5]. Recent 

study by Filiol stated that malware 

classes are divided into two groups 

which are ―Self-Reproducing‖ and 

―Simple‖ groups [4].  

Self-Reproducing group consists of 

Virus and Worms. According to Aycock, 

virus is a computer program that able to 

perform secret action without owner’s 

permission [3]. It was firstly 

demonstrated to public in November 

1983 by Cohen [36]. At that time, the 

number of virus increased with an ability 

to cause damage and the ability to avoid 

detection. According to Jussi, virus 

concepts become common in the late 

1980 where it spreads through file and 

diskettes [36]. Virus can increase their 

probabilities of spreading to other 

computers by infecting files on a 

network or a file system accessed by 

another computer. Virus also can be 

spread as attachments in the e-mail note, 

in the downloaded file, on a diskette or 

CD. 

Worms is quite similar to a virus by 

design and many researchers considered 

it as a sub-class of virus. Worms is a 

self-reproducing malware that run 

independently and travel across network 

connections without any user 

intervention. According to Mohamad 

Fadli Zolkipli and Aman Jantan, Worms 

use network connectivity to find an 

attack vulnerable system from nodes to 

nodes [12]. In general, the goal of worm 

is to infect as many computer systems 

that connected to the network. The 

difference between worms and viruses 

is, worms normally causes at least some 

harm to the network by consuming 

bandwidth and also it has the capability 
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to travel without any human action, 

whereas viruses normally corrupt or 

modify files on a targeted computer. 

Simple group consist of Trojan horse 

and Logical Bombs. According to Filiol, 

Trojan horse is benign software that 

appears to perform a necessary function 

for the user prior to run or install but 

instead simplifies unauthorized access to 

the user's computer system [4]. Trojan 

horse designed to embed secret 

malicious task into other application or 

system. This software is normally made 

for servers and client modules whereby 

attacker can control and access the 

whole resources of infected systems [4]. 

By default Trojan horse will appear to be 

useful software but it will actually do 

damage once installed or ran on the 

computer. Trojan horse is also known 

for creating a ―backdoor‖ on the 

computer that gives malicious users 

access to the system. Unlike viruses and 

worms, Trojans do not reproduce by 

infecting other files nor do they self-

replicate [36]. 

Logical bomb is a simple type of 

malware which waits for significant 

event such as date, action and particular 

data to be activated and launch its 

criminal activity. Many logical bombs 

attack their host systems on specific 

dates, such as Friday the 13th or April 

Fool's Day. According to Filiol, to be 

considered as a logic bomb, the payload 

should be unwanted and unknown to the 

user of the software [4]. Some logical 

bombs can be detected and abolished 

before trying to execute through a 

periodic scan of all computer files, 

including compressed files, with an up-

to-date anti-malware products. 

Unique and blended malware is a 

malware created by malware writers by 

using avoidance technique. According to 

Martignoni, these types of malware 

combine two or more attribute from its 

predecessor and produce a new class of 

malware [9]. New class will be created 

each time when the new combination is 

detected and the list of malware class 

will continue to expand. Nevertheless, 

the unique malware still performs 

similar behavior even classified in 

different classes. Therefore, this paper 

try to propose new malware classes to 

overcome this issue, hence optimize the 

classification process. Figure 3 shows 

additional unique malware classes from 

the group defined by [4]. 

 

 

 

 
Figure 3. Malware with Additional Unique Class. 
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3.2 Machine Learning Classifier 

 

Another component in malware 

classification system can be referred as 

machine learning classifier. Machine 

learning is an algorithm that allows 

computers to evolve behaviors based on 

empirical data such as from sensor data 

or databases. A key focus of machine 

learning research is to automatically 

learn to identify the complex patterns 

and make smart decisions based on data. 

The learner must generalize from the 

given examples to be able to produce a 

useful output in new cases. According to 

Bishop, the core objective of a learner is 

to generalize from its experience [37]. 

Machine leaning classifier is the main 

engine in the malware classification 

system. It is used to classify the 

malwares into its designated classes. 

This paper tries to enhance the current 

machine learning classifier by using GA. 

Table 1 shows current Machine learning 

classifier in malware classification.

 

Table 1. Machine learning classifier in malware classification 

 

Classifier Speed Accuracy Strength Weakness 

Naïve Bayes 

[38-39] 

Very 

Fast 

High Fast, easier to maintain and 

consistence result 

Sensitive to the correlated 

attributes 

Support Vector 

Machine 

(SVM) [2][40] 

Fast High Regression and density estimation 

results. Better performance in text 

classification, pattern segment and 

spam classification 

Expensive and problem lies on 

the prohibitive training time. 

Decision Tree 

[39][41] 

Very 

Fast 

High Easy to understand, easy to generate 

rules and reduce problem complexity 

Mistake on higher level will 

cause all wrong result in sub 

tree 

K-Nearest 

Neighbor [42] 

Slow Moderate Useful when the dependent variable 

takes more than two values and 

effective if the training data is large 

Very computationally 

intensive. O(n²) 

 

 

This paper selects Decision Tree (DT) to 

be combined with GA in order to 

produce better classifier engine in Anti-

Malware Classification System (AMCS). 

This Anti-Malware System (AMS) 

Classifier will used new proposed 

malware Class Target Operation (CTO) 

which is mainly based on malware 

specific target and its operation 

behavior. Malware target and operation 

is referring to the Windows file system 

which is in the tree format, thus making 

DT as the most suitable classifier to be 

enhanced and used in AMCS. New AMS 

Classifier is expected to give better 

classification result than current machine 

learning classifier. 

 

4 OPTIMIZATION TECHNIQUES 

 

An optimization process is a process that 

systematically comes up with solutions 

to optimize some specified set of 

parameters without sacrificing some 

constraint. According to Bonnans, the 

most common goals of optimization 

process are minimizing cost and 

maximizing throughput as well as 

efficiency [43]. In general, optimization 

is a concept that encompasses all kinds 

of order-generating processes other than 

emergence. Optimization is also about 

choosing or selecting outcomes and 

defined as better. 

The problems created by current trends 

of malware attacks make classification 

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)  

701 

 



 

process much more complicated and 

does not provide good classification 

result. Therefore, there is a need to 

enhance malware classifiers in order to 

optimize its performance. This paper 

proposed the usage of GA under 

Evolutionary Algorithm (EA) to enhance 

selected classifier which is DT. 

According to Shafiq, EA has been 

received significant attention and does 

relatively well when tested on various 

benchmarks especially in classification 

problem of detecting malicious 

executable [44]. 

 

4.1 Genetic Algorithm 

 

GA is a heuristic search that simulators 

the process of natural evolution. The 

standard GA can be seen as the 

combination of bit-string representation, 

with bit-exchange crossover and bit-flip 

mutation, roulette-wheel selection plus 

generational replacement. GA is belongs 

to the larger class of Evolutionary 

Algorithm (EA). GA include the survival 

of the fittest idea into a search algorithm 

which provides a method of searching 

which does not need to explore every 

possible solution in the feasible region to 

obtain a good result.  

GA also commonly used on a learning 

approach to solve computational 

research problem. According to Mehdi, 

this heuristic algorithm is regularly used 

to generate useful solutions in 

optimization and search problems [11]. 

In a GA, a population of strings which 

encode candidate solutions to an 

optimization problem evolves toward 

better answers. By tradition, solutions 

are represented in binary as strings of 0s 

and 1s, but other encodings are also 

possible [45]. A simple presentation of 

GA is as follows; 

 

generate initial population, 

G(0); 

evaluate G(0); 

t:=0; 

repeat 

 t:=t+1; 

 generate G(t) using G(t-

1); 

 evaluate G(t); 

until find a solution 

 

GA technique is implemented in this 

paper in order to solve and classify the 

unique malware that was created by an 

avoidance technique. A framework is 

proposed by combining GA with the 

current machine learning classifier. New 

and unique malware can be detected and 

classify through this technique. It is 

because, unique malware work similar 

like crossover and permutation operation 

in GA [12]. An avoidance techniques 

that normally used by malware writers 

can be detected and classified using this 

new malware classification system 

because it not only filter the content but 

also train and learn by itself, so it can 

predict the current and upcoming trend 

of malware attacks. 

 

4.2 Design Techniques 

 

The first stage in GA is to decide on a 

genetic representation of a candidate 

solution to the problem. Chromosomes 

are represented by the malware, and it 

stores the representation of a malware 

class into four attributes based on 

malware target and its operation 

behaviors. The collection of 

chromosomes divided into training and 

testing data set. This collection also 

called as malware corpus.  

 
// Malware target, specific 

target for malware attack 

vector<list<MalwareClass*>> 

_slots; 
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// Malware classes for 

chromosome 

hash_map<MalwareClass*,int> 

_Dataclasses; 

hash_map<MalwareClass*,int> 

_Appsclasses; 

hash_map<MalwareClass*,int> 

_Sysclasses; 

hash_map<MalwareClass*,int> 

_Dosclasses; 

 

In addition, the chromosome should 

store its fitness value and the parameters 

which are used by genetic operations. 

The fitness value is described by; 

 
// Fitness value of chromosome 

float _fitness; 

// Flags of class requirements 

satisfaction 

vector<bool> _criteria; 

 

Chromosome also should be created 

according to the number of 

chromosomes and number of genes. 

Initially, each gene of chromosomes was 

filled by random group number between 

1 and 4. Chromosome parameters are 

shows as below; 

 
// Number of crossover points of 

parent's malware 

int _numberOfCrossoverPoints; 

// Number of classes that is 

moved randomly by single 

mutation operation 

int _mutationSize; 

// Probability that crossover 

will occure 

int _crossoverProbability; 

// Probability that mutation 

will occure 

int _mutationProbability; 

 

After initialization of chromosome, the 

fitness of each chromosome must be 

evaluated. The following formula was 

used for evaluating the fitness of each 

chromosome. 

 

 
 

First part of this formula (class_score ÷ 

maximum_score) denotes the number of 

score obtain (class_score) divided to 

total number of maximum class which is 

4 (maximum_score). Score is obtained 

by checking the classification result. If 

malware in higher class is classified in 

lower class, we increase it score. Else we 

decrease the score.  denotes the 

weight of group of selected individuals. 

After selection process, the average 

weight of each individuals ( ) was 

calculated by averaging the weight of 

each malware in each gene 

(malware_class*4) as below. 

 

 
 

The fitness values are represented by 

single-precision floating point numbers 

(float) in the range 0 to 1. Once 

chromosome initialization phase was 

done, the genetic algorithm operations 

such as crossover and mutation must be 

applied on initialized chromosomes in 

order to create new population with 

better fitness value. 

A crossover operation combines data in 

the hash maps of two parents, and then it 

creates a vector of slots according to the 

content of the new hash map. A 

crossover 'splits' hash maps of both 

parents in parts of random size. The 

number of parts is defined by the 

number of crossover points (plus one) in 

the chromosome's parameters. Then, it 

alternately copies parts from parents to 

the new chromosome, and forms a new 

vector of slots. 

 
// Performes crossover operation 

using to chromosomes 

// and returns pointer to 

offspring 
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Schedule*Crossover(const 

Schedule& parent2) const; 

 

A mutation operation is very simple. It 

just takes a class randomly and moves it 

to another randomly chosen slot. The 

number of classes which are going to be 

moved in a single operation is defined 

by the mutation size in the 

chromosome's parameters. 

 
// Performs mutation on 

chromosome 

void Mutation(); 

 

 

5 PROPOSED FRAMEWORK 

 

Framework is an abstraction in 

providing generic functionality and can 

be selectively overridden or specialized 

by user code, thus providing specific 

system functionality. Our proposed 

framework consists of three steps which 

are starting from input, followed by 

classification process and finishes with 

classification result as an experiment 

output. Figure 4 shows our proposed 

framework. 

 

 
Figure 4. Framework for Optimizing DT in Malware Classification System by using GA [46] 

 

5.1 Sample PE Files 

 

Sample Portable Execution (PE) files for 

this experiment are divided into two 

categories which are malware and 

benign types. Malware behavior analysis 

is conducted to identify the behavior and 

characteristic of sample PE files. We 

conducted an analysis based on malware 

behavior analysis proposed by Mohamad 

Fadli Zolkipli and Aman Jantan [12]. 

The first step in malware behavior 

analysis is to collect the sample PE files. 

All the samples are collected from 

college network, internet and some 

suspicious execution file in windows 

operating system itself. This paper used 

HoneyClient [47] and Amun [48] as 
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malware collector tools. The samples 

also downloaded from VX Heaven [49] 

in order to maximize the varieties of 

sample PE files. 

The second step is to extract the sample 

PE files in our collection. This sample is 

extracted to identify features reflecting 

behavior patterns such as modified file 

attribute, distributed global memory, 

load register and many more suspicious 

behavior by malware analyzer tools. For 

security purposes, this process is 

conducted in the virtual environment 

machine. This experiment used 

CWSandbox [50] and Anubis [51] as a 

malware analyzer.  

The work by Wagener used up until 104 

malware samples for malware analysis. 

104 malware samples are used in order 

to obtain and identified malware 

behavior pattern [52]. Some of that 

malware sample shows the same 

behavior of attack and Wagener divided 

the similarity of malware into two 

categories which are lowest average 

similarity and highest average similarity. 

For this paper, we observed and 

monitored malware sample three times 

(3x) higher than malware sample used 

by Wagener. The reason we used higher 

number of malware sample during 

analysis is to obtain and observed more 

malware behavior of attack. This paper 

observed and monitored about 300 

malware samples and divided the 

similarity into 20 suspicious behaviors.  

In the third step, human-based behavior 

analysis is used to customize the result 

generated by both malware analyzers by 

using human expertise to analyze the 

sample PE files. It is important to have 

custom analysis because there might 

have different result on different 

malware analyzer tools. If the suspicious 

behaviors are found, the sample PE files 

is group under malware, else is group 

under benign types as shown in Figure 5. 

 

 
Figure 5. Malware and Benign Type. 

 

The last step in the malware behavior 

analysis is a statistical report. This report 

is produced based on the result in the 

previous step and stored in the 

knowledge storage. The report is created 

in the profile format and we called it as 

―Malware Profile‖. This malware profile 

is used by classifiers to classify malware 

in our new Anti-Malware Classification 

System (AMCS).  
 

5.2 Classification Process 

 

Classification process is the main 

mechanism in our AMCS. This process 

consists of three components which are 

Virtual Environment, Knowledge 

Storage and AMS Classifier. Figure 6 

shows the classification process in 

AMCS and its components. 

 

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)  

705 



 

 
Figure 6. Classification Process. 

 

Virtual environment is a security 

mechanism for separating running 

programs. It is often used to execute 

untested code, or untrusted programs 

from unverified third-parties, suppliers 

and untrusted users. Virtual environment 

machine run is isolated, so the benefit of 

a virtual environment machine is that it 

cannot directly modify the "real" 

operating system running on our 

machine. The virtual machine is 

assigned its own hard disk space, and 

that's what it treats as its virtual "entire 

hard disk". In this proposed framework, 

it has been decided to use Windows XP 

Mode in Windows 7 Platform as the 

testing platform. The purpose of this 

virtual environment is to create secure 

platform in order to minimize damage 

and attack to the actual machine when 

the malware sample is executed. Since 

virtual environment is assigned with its 

own hard disk space, if got infected, it 

can simply be removed from the test 

machine. 

Knowledge storage is database storage 

to store all the malware profile after 

finishing the analysis and features are 

extracted. Malware profile in the storage 

consists of malware sample in MD5 

format, malware size, malware specific 

target and CTO. The knowledge storage 

is designed to be re-writable by the 

system. Certain unique malware has a 

relationship and link with the other 

malware when it is executed. According 

to Desfossez, this malware relationship 

is unable to analyze because during 

analysis process, malware is executed 

one by one [31]. At first, the information 

in the knowledge storage is not sufficient 

enough to be used in the classification 

system. For this reason, this paper used 

GA to conduct a training phase together 

with the DT. The system will update the 

database during the training phase.  

Anti-Malware System (AMS) Classifier 

is the main engine in this new malware 

classification system. We have selected 

the DT as our machine learning classifier 

and combine it with GA. In this new 

proposed system, we are providing the 

classifier training phase and GA is used 

to become a learning algorithm. During 

the classifier training phase, 800 sample 

PE files are used as training data set 

consists of 200 benign and 600 malware 

samples. The training data set is 

different from testing sample PE files. 

We must use different sample PE files 

because we want to let the classifier to 

learn and update the new malware into 

malware profile.  

One of the main goals conducting this 

training phase is to detect and classify 

the unique malware that has a 

relationship when it is executed. The 

other goal is to find unique malware that 

perform the same behavior but providing 

different syntax representation. As 

mention earlier, the malware profile in 

the knowledge storage is designed to be 

re-writable. Classifier will keep on 

updating the malware profile during this 

training phase. The classification result 
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will become more accurate during the 

training towards threshold values. The 

training phase also shows the ability of 

GA in helping DT to optimize the 

classification task. Figure 7 shows the 

classifier training phase in AMCS. 

 

Figure 7. Classifier Training Phase. 
 

5.3 Class Target Operation (CTO) 

 

Malware behavior analysis has 

discovered 20 suspicious malware 

behaviors. This paper observed the 

executed malware by focusing it to the 

specific target and operation behavior in 

windows environment systems. Figure 8 

shows the malware operation behavior 

chart percentage based on the result in 

malware behavior analysis. 

 

 
Figure 8. Malware Operation Behavior. 

 

From the above chart, we classify the 

malware specific operation into 4 main 

classes which are Data, Application, 

System and Dos. Malware that are 

attacked File is group under Data class 

while malware that attacked Browser is 

group under Application class. Malware 

that are attacked Kernel, Operating 

System and Registry is group under 

System class. Lastly, malware that are 

attacked CPU, Memory and Network is 

group under Dos class. Table 2 shows 

more detail about new malware CTO. 

 

 

 
Table 2. Machine learning classifier in malware classification 

 

Class Target 

Operation (CTO) 

Rank Attacked examples Affected examples 

Data 1 Malware attack office and 

adobe file 

.doc, .ppt, .xls and .pdf file 

Application 2 Malware attack application 

such as office application, 

audio application and video 

application 

Microsoft Office, Winamp and 

Windows media Player 

System 3 Malware attack the entire 

Operating System 

Windows XP, Windows 7 and 

Windows Server 2008 

Dos 4 Malware attack physical 

hardware and entire machine 

CPU usage, memory and network 

access 

 

These four malware classes are related 

with each other in rank 1 to 4 starting 

with Data class and end with Dos class. 

These classes are actually inspired from 

basic fundamental of computer physical 

architecture. According to Ivy, physical 

architecture of host-based computer 
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consists of application, operating system 

and hardware [53].  

In general, all these three layers are 

related with each other. Based on 

malware behavior analysis that we 

conducted earlier, we group the malware 

behavior into four classes. Data and 

Application classes are mainly grounded 

by application layer, System class is 

grounded by operating system layer and 

Dos class is grounded by hardware layer. 

The main reason that leads to the 

proposal of new malware CTO based on 

its operation is to reduce the process 

flow and cost in malware detection 

mechanism.  

If the classifier is classified malware 

sample into Data class, the antidote is 

prepared based on Data operation only 

and if malware sample is classified into 

Application class, the antidote is 

prepared based on Data and Application 

operation. For malware in Data class, the 

detection mechanism does not need to 

look and prepare the antidote for other 

classes because that particular malware 

only attack file without attempt to attack 

the application and operating system. 

However, if malware attack Microsoft 

Office application which is under 

Application class, usually it will also 

affect the office application file under 

Data class, but not necessary to attack 

that particular operating system, which is 

under System class. The prediction 

system will check as well as estimate 

either that particular malware is harming 

System or not. If malware is harming 

System, the antidote is also prepared to 

System operation.  

There are different focuses with System 

and Dos classes. When malware sample 

is classified into System class, the 

prediction system will estimate and 

check Application and Dos classes in 

order to prepare the antidote. The 

antidote will only be prepared when 

confirm by prediction system that the 

attack is affecting Application as well as 

Dos classes; else antidote is only for 

System operation. Same goes when 

malware sample is classified into Dos 

class. The prediction system will 

estimate and check System class and 

when confirm the attack also affecting 

System class, antidote will be prepared 

for both. Our new malware CTO 

relationship can be summarized as  

 
Data ⊆ Application ↔ System ↔ Dos 

 

However, not all malware will attack 

based on this relationship and rank class 

but it normally do. Duplicating a file is 

considered under Data class but it also 

consumes and bottlenecks the memory 

usage, so for that cases, it is classified 

into Dos class. The antidote is prepared 

for Data and Dos class only. All the 

decision in preparing antidote is made by 

prediction system. 

 

6 EXPERIMENT and RESULTS 

 

Similar work by Zhang and Wang used 

about 632 and 914 malware sample [54-

55]. For this paper, we used more 

sample data which are 1000 sample 

portable execution files (PE file) consist 

of 250 benign programs and 750 

malware samples. We follow ratio 

suggested by Wang for training and 

testing data set which are 80 % from 

sample PE files is used for training 

phase and the remaining 20% is for 

testing purposes. Training phase is used 

up until 800 sample PE files consist of 

200 benign programs and 600 malware 

samples and the remaining 200 samples 

is for testing. Table 3 shows the 

summary of sample PE files for this 

experiment. 

 

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

708 

 



 

Table 3. Sample Data 

 
 Sample 

PE Files 

Training (80%) Testing (20%) 

Benign 250 200 50 

Malware 750 600 150 

Total 1000 800 200 

 

The control value in this experiment is 

called as ―Threshold‖. Threshold is the 

total or the value of training data that has 

been trained. This paper trained the 

training sample first and the control 

value is set from 0.6 to 0.9 (60 % to 90% 

trained samples). There are 200 sample 

PE files for testing purposes and the 

same samples is used for each Threshold 

values. In order to review the classifier, 

accuracies are calculated by using 

formula suggested in Edge as shown 

below [13]. 

 

 

The experiment is conducted by using 

DT Classifier first. 200 sample PE files 

have been tested by adjusting Threshold 

value from 0.6 to 0.9. Table 4 shows the 

relationship between Threshold value 

and the accuracy. 

 
Table 4. Classification Result for DT Classifier 

 
Threshold TP TN FP FN Accuracies 

0.6 134 45 16 5 89.5% 

0.7 134 45 16 5 89.5% 

0.8 136 45 14 5 90.5% 

0.9 137 45 13 5 91.0% 

 

After finishing the first experiment using 

DT, we proceed with the next 

experiment using our new AMS 

Classifier. The same Threshold value is 

used again. Table 5 shows the result of 

our second experiment. 

 
Table 5. Classification Result for AMS 

Classifier 

 

Threshold TP TN FP FN Accuracies 

0.6 141 47 9 3 94.0 % 

0.7 142 49 8 1 95.5 % 

0.8 144 50 6 0 97.0 % 

0.9 144 50 6 0 97.0 % 

 

The next step is to compare the first and 

second result of our experiments. Figure 

9 shows the comparison between DT 

Classifier versus AMS Classifier. 

 

 
Figure 9. DT Classifier versus AMS Classifier. 

 

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 694-713
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)  

709 

 



 

7 DISCUSSIONS and CONCLUSION 

 

The purpose of this experiment is not 

only to test workability of proposed 

approach but also to prove the proposed 

approach fairs better than existing 

approaches. Two experiments have been 

conducted in order to prove our 

approach. The first experiment is done 

using DT Classifier and the second 

experiment is done using AMS 

Classifier which is our proposed 

approach. Both experiments are tested 

using 200 sample PE files with four 

chosen threshold value for both 

experiments. The four threshold values 

are 0.6, 0.7, 0.8 and 0.9. The sample data 

is tested according to ascending value of 

the threshold. The output gained from 

both experiments is a classification 

accuracy rate. The first experiment 

yields out the classification accuracy rate 

using DT classifier while the second 

experiment yields out the classification 

accuracy rate using AMS Classifier. 

Obtained output from both experiments 

is then compared to see the classification 

accuracy rate difference. All obtained 

results are visualized in tables and 

graphs.  

Results from the first experiment using 

DT Classifier are shown in Table 4. The 

results show that for threshold 0.6 and 

0.7 obtained the same result. Both of 

these threshold obtained 134 TP, 45 TN, 

16 FP and 5 FN. Threshold value of 0.8 

obtained 136 TP, 45 TN, 14 FP and 5 

FN while threshold value 0.9 obtained 

137 TP, 45 TN, 13 FP and 5 FN. Based 

on Table 4, the accuracy rate for the first 

two thresholds stays at 89.5%. The 

accuracy increases to 90.50% for the 

third threshold and 91.00% for the last 

threshold.  

Results from the second experiment 

using AMS Classifier are shown in 

Table 5. The results show that for 

threshold 0.6 obtained 141 TP, 47 TN, 9 

FP and 3 FN. Threshold value of 0.7 

obtained 142 TP, 49 TN, 8 FP and 1 FN. 

Threshold value of 0.8 obtained 144 TP, 

50 TN, 6 FP and 0 FN while threshold 

value 0.9 obtained 144 TP, 50 TN, 6 FP 

and 0 FN. Based on Table 5, there is an 

increase of 1.5% in accuracy rate for the 

first two thresholds from 94.0% to 

95.5%. The accuracy rate for the final 

two threshold values stays at 97.0%. 

Classification result of DT Classifier 

shows that there is no different for FP 

result in each different Threshold setting 

value. On the other hand, our AMS 

Classifier shows a decreasing result for 

TN and FN result over the Threshold 

values. It means that AMS Classifier is 

able to classify the sample PE files that 

has been failed to classify by the DT 

Classifier. This also proves that DT 

classifier is not resilient and does not 

perform well to an avoidance technique. 

Results from the first experiment and the 

second experiment is then compared and 

graphically displayed in Figure 9. The 

comparison result between proposed 

approach and existing approach shows 

that there is an increase of accuracy rate 

for all threshold values in the favor of 

proposed approach. Threshold value of 

0.6 shows an increase of 4.5% in 

accuracy rate while threshold value of 

0.7 shows an increase of 6.0% in 

accuracy rate. As for the final two 

threshold values, the increased rate is 

6.5% and 6.0%. As a conclusion, both 

experiment results shows that accuracy 

rate increases as the value of threshold 

increases and our proposed approach 

which is AMS Classifier yields a better 

accuracy rate compared to DT Classifier. 
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