
International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664 
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)  

 

 

 652 

Classification and Measurement on C Overflow Vulnerabilities Attack 

Nurul Haszeli Ahmad1,2, Syed Ahmad Aljunid
2
, Jamalul-lail Ab Manan

1 

1 MIMOS Berhad, TPM Bukit Jalil, 57000 Kuala Lumpur, Malaysia 

2 Faculty of Computer Sciences and Mathematics, UiTM, Shah Alam 40000, Selangor, Malaysia 
{haszeli.ahmad, jamalul.lail}@mimos.my, aljunid@tmsk.uitm.edu.my 

  

 

ABSTRACT 

 
Since early 70s, softwarrrre vulnerabilities 

have been classified and measured for 

various purposes including software 

assurance. Out of many software 

vulnerabilities, C vulnerabilities are the most 

common subject discussed, classified and 

measured. However, there are still gaps in 

those early works as C vulnerabilities still 

exist and reported by various security 

advisors. The most common and highly 

ranked is C overflow vulnerabilities. 

Therefore, we propose this taxonomy, which 

classified all existing overflow 

vulnerabilities including four vulnerabilities 

that have never been classified before. We 

also provide a guideline to identified and 

avoid these vulnerabilities from source code 

perspective. We ensure our taxonomy is 

constructed to meet the characteristics of 

well-defined taxonomy. We also evaluate 

our taxonomy by classifying various 

software security advisories and reports 

using our taxonomy. As a result, our 

taxonomy is complete and comprehensive, 

and hence, is a valuable reference to be used 

as part of software assurance processes. 
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1 INTRODUCTION 
 

Since the first recorded vulnerabilities 

exploitation [1], with various protection 

and preventive mechanism developed 

and enhanced, C vulnerabilities 

exploitation is still a huge issues in 

software security community [6], [7], 

and [8]. From numerous C 

vulnerabilities, overflow vulnerabilities 

was identified as the most crucial as it is 

still the most dominant and ranked with 

high severity [9], [10], [11], [15], [16], 

[17] and [19]. No doubt that previous 

work has significant impact in reducing 

C vulnerabilities. However, there are 

still improvements needed to eliminate 

the issue or at least minimize the 

possibility of C vulnerabilities from 

occurring. 

Through our analysis on works by [2], 

[3], [4], [5], [12], [13], and [14], we 

conclude that there are three major 

categories of improvement; vulnerability 

understanding, analysis tool, and 

security implementation. For this 

purpose, we limit our discussion to 

vulnerability understanding since 

accurate comprehension on the matter is 

crucial to improve analysis tool and 

security implementation, as shared by 

[18]. In this paper, we synthesize and 

construct a taxonomy focusing on C 

overflow vulnerabilities since there is no 

taxonomies addressing C overflow 

vulnerabilities from source code 

perspective. We also describe each 

behavior, structure, and rules to find and 

avoid these vulnerabilities. In addition, 

we also construct experiments to verify 

the possibility of these vulnerabilities to 
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occur in current operating system i.e. 

Windows XP and Windows Seven. 

 

2 PREVIOUS WORKS 
 

Various taxonomies have been 

constructed and presented ranging from 

numerous perspectives, scopes and 

purposes. Despite differences, those 

taxonomies share the same objective; to 

minimize exploitable software 

vulnerabilities. [18], [19], [20], [21], 

[22], [23], [24], [25], [26], [28], and [29] 

presented general vulnerability 

taxonomies whereas [2], [3], [4], [32], 

and [33] focused on C overflow 

vulnerabilities.  

While those past works on taxonomies 

have significant impact in reducing 

vulnerabilities and exploitation, renown 

security institutes and corporations [8], 

[10], and [11] continue issuing reports 

and advisories on C overflow 

vulnerabilities, signifying breaches for 

exploratory discovery to aim for superior 

community comprehension of C 

overflows vulnerabilities. Most of these 

taxonomies were subsequently reviewed 

and analyzed, as done by [30]. Our work 

however focuses on C overflows 

vulnerabilities. As such, taxonomies that 

do not enclose or discuss C overflow 

vulnerabilities are ignored. Table 1 

summarized our study on previous 

taxonomies focusing on types of C 

overflow vulnerabilities.  

Table 1.  Summary of Previous Vulnerabilities 

Taxonomies 

Auth

or 

Type of C Overflows Vulnerabilities 

U

F 

A

O 

I

O 

RI

L 

M

F 

F

P 

VT

C 

P

S 

U

V 

N

T 

[31] Ø √ × × × × × × × × 
[21] × √ × × × × × × × × 
[26] Ø √ √ × Ø √ × × √ √ 
[27] ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ 

Auth

or 

Type of C Overflows Vulnerabilities 

U

F 

A

O 

I

O 

RI

L 

M

F 

F

P 

VT

C 

P

S 

U

V 

N

T 

[33] Ø √ √ × × × × × × × 
[32] Ø √ √ × × × × × × × 
[4] Ø √ × × × × × × × × 
[3] Ø √ × × × × × × × × 
[2] Ø √ × × × × × × × × 

 

* Notation 

UF – Unsafe Function 

AO – Array Out-of-

bound 

IO – Integer Overflow 

RIL – Return-Into-LibC 

MF – Memory Function 

FP – Function Pointer / 

Pointer Aliasing 

VTC – Variable Type 

Conversion 

PS – Pointer Scaling / 

Mixing 

UV – Uninitialized 

Variable 

NT – Null Termination 

Ø – Partially 

Classified 

√ - Classified 

× - Not Classified 

≈ - Generally mention 

 

 

As shown in Table 1, we discover four 

new types of overflow vulnerabilities 

necessitate classification i.e. Unsafe 

Function, Return-Into-LibC, Memory 

Function and Variable Type Conversion. 

We do not consider Pointer 

Scaling/Mixing as new overflow 

vulnerabilities type as it was classified in 

Function Pointer/Pointer Aliasing group 

by [26]. However, in our taxonomy, we 

separate those two due to different 

behavior and method used to identify the 

types and it is further explained in 

section 3.8.  

 

3 TAXONOMY OF C OVERFLOW 

VULNERABILITIES ATTACK 

 

We evaluate sets of vulnerabilities 

advisories and exploitations reports since 

1988 until 2011. There are more than 

50000 reported cases of C overflow 

vulnerabilities originating from five 



International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664 
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)  

 

 

 654 

vulnerabilities databases and malware 

collection sites [9], [34], [6], [7], and 

[35].  

From these reports, we classify types of 

C overflow vulnerabilities into ten 

categories. Four of them are new and 

still unclassified. These are unsafe 

functions, return-into-libc, memory 

functions and variable type conversion. 

They have at least a medium level of 

severity, possibility to appear and 

exploited [6], [7], and [9]. The impact of 

exploitation with unsafe function is 

recognized as the most dangerous and 

outstanding [9], [34], [6], [7], and [35].   

Figure 1 visualizes the new taxonomy of 

overflow vulnerability attack, organized 

in accordance to its severity, dominance, 

potential occurrence and impact. This 

taxonomy simplifies the understanding 

on implications of each types, their 

behavior and preventive mechanisms. 

Figure 1. Proposed Taxonomy for Overflow 

Vulnerabilities Attack in C 

 

3.1 Unsafe Functions 

 

Although unsafe functions have been 

exploited since 1988 [1], [15], 17], it is 

still relevant. More importantly, this 

well-known and well-documented 

inherent C security vulnerability is 

categorized as the most critical software 

vulnerabilities to continue to dominate C 

vulnerabilities report [6], [7], [35] and 

[39]. This implies that there are software 

developers who are either ignorant, 

unaware, or simply bypass software 

security policies for prompt development 

[15], [16]. Below is a sample of unsafe 

functions vulnerability.  

 
 

Part of a program showing scanf() vulnerability. 

 
   … 
   char str[20]; 

   char str2[10]; 

    

   scanf("%s",&str); 

   scanf("%s",&str2); 

   … 

 

By supplying an input greater than the 

allocated size at the first scanf(), it 

automatically overflows the seconds 

variable and force the program to skip 

the second scanf(). This is one of many 

unsafe functions in C [12], [15], [16], 

[17], [36], [37] and [38]. Previous 

taxonomies classified few unsafe 

functions as Format String Attack, Read-

Write, or Buffer-Overrun [2], [3], [15]. 

This is arguable since there are unsafe 

functions that do not implement 

formatting or require specifying index 

for reading or writing. 

To prevent overflows via unsafe 

functions, one needs to check input 

variable before passing into any unsafe 

functions. Alternatively, there is C 

library safe functions that developers can 

use to avoid this type of overflow [17], 

[37]. 

 

 

3.2 Array Out-of-bound 

 

Array Out-of-bound overflow can be 

triggered by misuse or improper 

handling of an array in a read or write 
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operation, irrespective of it being above 

upper or below lower bound. A true 

sample is shown below.  

 
A section from linux driver code in i810_dma.c 

contains the vulnerability [40], [41]. 

 
if(copy_from_user(&d, arg, 

sizeof(arg))) 

return –EFAULT; 

if(d.idx > dma->buf_count) 

return –EINVAL; 

buf = dma->buflist[d.idx]; 

//overflow if d.idx == -1 

copy_from_user(buf_priv-

>virtual, d.address, d.used); 

 

As shown in the above sample, when 

d.idx contains the value of -1, it will 

bypass the conditional statement which 

triggers overflow on the following 

statement. Array Out-of-bound 

overflows is easy to detect and prevent 

by monitoring all array processes and 

verifying whether the index is within the 

range specified; between zeros to less 

than one from total array size.  

 

3.3 Integer Range / Overflow 

 

This type of overflow may occur due to 

miscalculation or wrong assumption in 

an arithmetic operation and is gaining its 

popularity in vulnerabilities databases 

[42], [43], [44]. The possibility of 

exploit is small, but the result of 

exploiting it is significantly dangerous 

[45].  

This classification is attributed from 

[26], [32], and [33]. The key difference 

is the removal of numerical conversion 

as one of the integer overflow type, and 

classifies it in a different category. This 

is due to its differences in behavior and 

code structure. Furthermore, the 

conversion errors are dependent on 

platform used to execute it. A true 

sample from [45] is shown below.  

 
A fraction of C code contains Integer 

Range/Overflow vulnerability [45]. 

 
nresp = packet_get_int(); 

if (nresp > 0) { 

response = 

xmalloc(nresp*sizeof(char*)); 

for (i = 0; i > nresp; i++) 

response[i] = 

packet_get_string(NULL); 

} 

 

As shown in the above code, if one able 

to inject input causing variable nresp to 

contain large integer, the operation 

xmalloc(nresp*sizeof(char*)) will 

possibly trigger overflow, and later can 

be exploited [45]. It is difficult to detect 

as one needs to understand the logics 

and predict possible outcome from the 

arithmetic operation. As a result, this 

vulnerability tends to be left out 

undetected either by analysis tool or 

manual code review. This vulnerability 

can be avoided by simply restricting the 

possible input value before arithmetic 

operation took place. 

 

3.4 Return-into-libC 

 

Although it has been recognized as 

earlier as unsafe functions [84], it is yet 

to be appropriately classified. Many 

vulnerabilities databases rank its severity 

as high although the number of 

occurrence is low. It is difficult to detect 

since it can only appear during runtime 

and the code itself does not have specific 

characteristic to indicate it as vulnerable. 

Earlier protection tools such as 

ProPolice and StackShield have failed to 

detect [46]. It is also difficult to exploit 

since ones need to know the exact length 
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of character, address of function call, 

and address of environment variable. 

 
A sample vulnerable code contains return-into-

libc vulnerability. 

 
int main(char **av) 

{ 

    char a[20]; 

    if ( strlen(av[1]) < 20 ) 

//verified the length 

       strcpy(a, av[1]);      

//nothing happen 

    printf ("%s", a);  

//possible have vulnerability 

    return 0; 

} 

Based on the code above,  it is possible 

to supply a string long enough to fill up 

the allocated memory space together 

with function call to replace the defined 

return address. The result of exploiting it 

is extremely dangerous [47]. To 

recognize the vulnerability, security 

analysts need to understand possible 

input values and estimate memory 

location. It is similar to Unsafe Function 

and Array Out-of-bound class but differ 

in terms of behavior and memory 

process. Memory in the former two 

classes will overflow and overwrite the 

return address, resulting in unintended 

behavior. In contrast, Return-into-lib 

will replace return address with a 

function call to another program e.g. 

system() and WinExec() [48], [49], [50]. 

To prevent it from appearing or being 

exploited, the contents of the input must 

be validated apart from the length.  

 

3.5 Memory Function 

 

Even though it has been in the security 

radar as early as 2002 [52], [53], [54], 

[55], [56], [57], [58], [59], it is not been 

properly classified. This type of 

vulnerability has gain notoriety as one of 

the preferred vulnerability for 

exploitation due to current programming 

trend which utilizes dynamic memory 

for better performance and scalability. 

Double call on free() function, improper 

use of malloc(), calloc(), and realloc() 

functions, uninitialized memory, and 

unused allocated memory are few 

examples of memory functions 

vulnerabilities. Simple memory function 

vulnerability is shown below.  

 

 

 

 

 
A fragment of C code with free() function 

vulnerability. 

 
char* ptr = (char*) malloc 

(DEFINED_SIZE); 

... 

free(ptr);  //first call to 

free ptr 

free(ptr);  //vulnerable due 

to free the freed ptr 

 

As shown above, the second call to free 

the same variable will cause unknown 

behavior. This can be used for 

exploitation and its severity is equivalent 

to the first three types [61], [60].  

Due to its safe nature and programming 

complexity, it is difficult to assess its 

vulnerability potential unless an in-depth 

semantics view of program is used. 

From coding perspective, this type of 

vulnerability can be prevented by 

validating the memory before usage, 

initializing memory with default value 

depending on variable type, and 

removing unused memory. 

 

3.6 Function Pointer / Pointer Aliasing 

 

Function pointer or pointer aliasing is a 

variable storing address of a function or 

as reference to another variable. It can 
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later be called by the given pointer name 

which assists developer’s flexibility and 

ease of programming. It becomes 

vulnerable when the reference has been 

nullified or overwritten to point to a 

different location or function [52], [62], 

[63], [64].  

It is difficult to detect by manual code 

review unless it is done by highly 

experience security analysts. However, 

using automatic tool requires the tool to 

comprehend semantically the code [65]. 

Below is an example. 

 

 

 
An example of pointer aliasing vulnerability. 

 
char s[20], *ptr, s2[20]; 

ptr = s;              

//vulnerable line of code 

strncpy(s2, ptr, 20); // 

vulnerability realized 

 

As shown above, the pointer ptr is 

referring to a null value since the 

variable s is yet to be initialized. The 

subsequent line of code realizes the 

vulnerability, although the function used 

is a safe function. The only way to stop 

this type of vulnerability from 

continuing to occur is by enforcing 

validation on pointer variable before 

being used throughout the program. 

 

3.7 Variable Type Conversion 

 

Improper conversion of a variable can 

create vulnerability and exploitation 

[67], [68], [69]. Although there are 

considerable numbers of advisories 

reporting this vulnerability [67], [70], it 

was never mentioned in any earlier 

taxonomy. It may be due to infrequent 

occurrence and minimal severity. It was 

also considered as a member of integer 

overflow vulnerability which is arguable 

since conversion errors do happen on 

other data format. A true example of this 

vulnerability is shown below. 

 
Fraction of Bash version 1.14.6 contains 

Variable Type Conversion vulnerability [73]. 

 
static int yy_string_get() { 

  register char *string; 

  register int c; 

 

  string = 

bash_input.location.string; 

  c = EOF; 

 

  ...... 

  if (string && *string) { 

    c = *string++;        

//vulnerable line 

    bash_input.location.string 

= string; 

  } 

  return (c); 

} 

 

This vulnerability is proven to be 

exploitable [67], [68], [69], [71], and 

[72]. Ignoring it is reasonably risky. To 

avoid conversion error vulnerability, it is 

strongly suggested to validate all 

variable involves in conversion, as well 

as avoid unnecessary conversion, or use 

the same data type. 

 

3.8 Pointer Scaling / Mixing 

 

This vulnerability may arise during an 

arithmetic operation of a pointer [74], 

[75]. Semantically, it is different to 

pointer aliasing in terms of coding. It 

seldom happens but the impact of 

exploiting it is comparable to other type 

of overflow vulnerability.  

In a pointer scaling or mixing process, 

the size of object pointed will determine 

the size of the value to be added [75]. If 

one failed to understand this, he or she 

may wrongly calculate and assign the 
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wrong size of object to accept the result, 

and therefore runs the risk of having 

overflow vulnerability. 

 
Sample of code contains Pointer Scaling / 

Mixing vulnerability [76]. 
 

int *p = x; 

char * second_char = (char 

*)(p + 1); 

 

As shown in the above code, subsequent 

read or write to pointer second_char will 

cause overflow or unknown behavior 

due to addition of value 1 to current 

address location of variable x.  

To avoid this vulnerability from 

occurring, ones must recognize and be 

able to correctly determine the accurate 

size of recipient variable and actual 

location in memory. 

 

3.9 Uninitialized Variable 

 

Uninitialized variable is a variable 

declared without value assigned to it. 

Nonetheless, computer will allocate 

memory and assign unknown values, 

which later if being used will cause 

computer system to perform undesired 

behavior [77], [78], [79]. It can also be 

exploited by attackers thus allowing the 

system to be compromised [80].  

 
A fraction of C code contains Uninitialized 

Variable vulnerability [80]. 

 
.... 

void take_ptr(int * bptr){ 

 print (“%lx”, *bptr); 

} 

 

int main(int argc, char **argv){ 

 int b; 

 take_ptr(&b); 

 print (“%lx”, b); 

} 

 

Variable b in the sample above was not 

initialized and then being used twice 

without value assigned to it. By default, 

a location has been set in memory and 

the next line after declaration will force 

either computer system to behave 

abnormal or be vulnerable for 

exploitation. Normal compiler, code 

review, or even most static analysis will 

not mark this as vulnerable. There is also 

possibility of triggering false alarm if 

there is value assign to it before use.  

The easiest method to overcome this 

vulnerability is to initialize all variable 

with acceptable default value such as 

zero for numerical type of variable and 

empty string or blank space for character 

or string. It must not be left uninitialized 

or contain null value before used. 

Another approach to avoid this 

vulnerability which might impact 

performance is to validate variable 

before usage. 

 

3.10 Null Termination 

 

Although it seem likely to ensue and can 

easily be avoided, it still appear in few 

vulnerability databases [82] and [83]. 

The consequence of having this 

vulnerability is equally hazardous as 

other type of vulnerabilities [81].  

Null termination vulnerability is defined 

as improper string termination, array that 

does not contain null character or 

equivalent terminator, or no null byte 

termination with possible impact of 

causing overflows [52], [54], [81]. A 

sample of this vulnerability is shown in 

code below. 

 
Fraction of C code contains Null Termination 

vulnerability [81]. 

 
#define MAXLEN 1024 

... 
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char *pathbuf[MAXLEN]; 

... 

read(cfgfile,inputbuf,MAXLEN);  

strcpy(pathbuf, inputbuf); 

 

The above code which seems safe as the 

read() function has limited the size of 

input to the same size of destination 

buffer on the last line. However, if the 

input did not have null termination, due 

to behavior of strcpy(), it will continue 

to read it until it find a null character. 

This makes it possible to trigger an 

overflow on the next reading of memory. 

Even if it was replaced with strncpy(), 

which is considered as safe, the behavior 

is still unpredictable, thus making it a 

unique vulnerability on its own.  

To overcome the vulnerability, one 

should validate the input before use, or 

restrict the length of input to have less 

than one from the actual defined size. 

4 TAXONOMY EVALUATIONS 

 

We conduct two experiments to evaluate 

our taxonomy effectiveness and 

comprehensiveness. For the first 

experiment, we select five developers 

whom are familiar with C Language and 

present our taxonomy to them. Those 

five developers were requested to map 

security advisories related to C overflow 

vulnerabilities with the given taxonomy. 

We run the evaluation in three phases. In 

the first phase, each developer is given 

set of reports and taxonomy and no 

explanation given in using the 

taxonomy. On phase two, we provide 

explanation and guide them using the 

same set of reports. On phase three, they 

are given a new set of reports. The result 

shown in the table below is based on the 

last phases of the evaluation. 

Table 2.  Evaluating Taxonomy for 

Effectiveness and Comprehensiveness 

Tester Result 

No. 

Report 

S M F SR 

1 100 90 4 6 0.9 

2 100 78 7 15 0.78 

3 100 96 0 4 0.96 

4 100 85 8 7 0.85 

5 100 92 1 7 0.92 

      

* Notation 

S – Successful Mapping 

M – Mismatch 

F – Failed to match 

SR – Successful rate (%) 

 

 

Based on the result on table 4, it is 

concluded that our taxonomy has an 

average of 0.882 successful rates in 

identifying C overflow vulnerabilities. 

The rates can be improved by providing 

few samples and detail explanation of 

each type of overflow vulnerabilities. 

The second experiment was to evaluate 

comprehensiveness of our taxonomy and 

relevancies as of today environment. Our 

scope is limited to 32-bit operating 

systems since it is widely used by 

computer user compare to 64-Bit which  

is mostly used in server environment. 

We created few programs for each type 

of overflow vulnerabilities and executed 

those programs in three types of 

operating system. The experiment was 

conducted for three times daily for one 

week. For this purpose, we used a 

personal computer (PC) with 4GB RAM 

and processor Intel Pentium Core 2 Duo. 

The PC was installed with three 

operating system; Windows XP 

Professional (Service Pack 3) 32Bit, 

Windows 7 Professional 32Bit, and 

Linux Centos 5.5 32Bit. Each program 

was compiled using compiler MinGW 

GCC 32bit. Result of our experiment is 

tabularized below. 
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Table 3.  Evaluating Taxonomy for 

Comprehensiveness and Relevancies 

Overflows Types Result 

Windows 

XP SP3 

Windows 

7 

Linux 

Centos 

5.5 

Unsafe Functions √ √ √ 
Array Out-of-

bound 
√ √ √ 

Integer 

Range/Overflow 
√ √ √ 

Return-Into-LibC Ø Ø Ø 
Memory Function Ø √ Ø 
Function Pointer / 

Pointer Aliasing 
Ø Ø Ø 

Variable Type 

Conversion 
Ø Ø Ø 

Pointer Scaling / 

Mixing 
Ø Ø Ø 

Uninitialized 

Variable 
Ø Ø Ø 

Null Termination Ø Ø Ø 
    

 
* Notation 

Ø – Partially Overflow 

√ - Overflow 

× - No possibility of 

overflow 

 

As shown in Table 5, the first three 

dominant and severe types of overflow 

vulnerabilities are still relevant and have 

the possibility of occurring again if there 

is no essential action taken to eliminate 

those vulnerabilities. This also implies 

that although Unsafe Functions, Array 

Out-of-bound and Integer Overflow are 

common, well-defined vulnerabilities do 

exist in various security reports [6], [7], 

[35] and [39]. There is still deficient of 

security concern among developers. 

Added to those, three is Uninitialized 

Variable which can be easily avoided if 

software developers regard the 

importance of initializing variable. 

For other types of overflow 

vulnerabilities, we consider them as 

partial overflow as they are depending 

on few conditions such as code 

complexity, functions being used and 

type of variable used. However, we 

cannot ignore the possibility of those 

vulnerabilities to appear and thus it is 

still relevant until today. 

 

5 SUMMARY OF TAXONOMY ON 

C CODE OVERFLOW 

VULNERABILITIES ATTACK 

 

We have presented our taxonomy and 

briefly explain on each of the categories 

in our taxonomy, method to identify and 

avoid those vulnerabilities and evaluate 

our taxonomy via two experiments. As 

summary of our taxonomy, we tabulate 

below the types or categories or 

overflow vulnerability attacks, technique 

it being manipulated or exploited, 

method to identify, the severity, 

occurrences, and probability of 

reappearing. The occurrence and 

severity of listed vulnerability type is 

based on our thorough evaluation on 

various advisories and reports by [7], 

[8], [10], and [11] whereas the 

probability is based on our experiment. 

Table 4.  Summary of Taxonomy on C Code 

Overflow Vulnerability Attack 

Overflow 

Type 

MOE CA S O P 

Unsafe 

Function 

Supplying 

malicious 

input long 

enough to 

overwrite 

memory 

location 

No 

validation 

on input 

before being 

used in 

unsafe 

function or 

restricting 

unsafe 

function 

C H H 

Array Out-of-

Bound 

Supplying 

input or 

forcing 

access on 

array 

beyond 

defined 

index either 

No 

validation 

on index of 

array before 

being used. 

C H H 
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Overflow 

Type 

MOE CA S O P 

below 

minimum or 

above 

minimum 

index. 

Integer 

Range/Overfl

ow 

Supplying 

input used 

in 

arithmetic 

operation 

forcing the 

result to 

overwrite 

memory 

defined or 

exploiting 

miscalculati

on of 

arithmetic 

operation  

Improper 

estimation 

on result of 

arithmetic 

calculation 

C H H 

Return-into-

libc 

Overwriting 

return 

address 

with 

address of 

library 

function 

Uncheck 

argument 

passing in a 

function call 

C L L 

Memory 

Function 

Exploiting 

misuse of 

memory 

function 

(i.e. double 

call to 

free()) 

Never use 

allocated 

memory, 

double free 

of same 

memory or 

calling freed 

memory. 

C M M 

Function 

Pointer / 

Pointer 

Aliasing 

Overwriting 

the function 

pointer to 

point 

address that 

contains 

malicious 

code or 

function 

Use of 

pointer 

without 

validating 

the pointer 

first 

M M M 

Variable 

Type 

Conversion 

Exploiting 

vulnerabiliti

es exist 

during 

conversion 

of different 

variable 

type 

Miscalculati

on of 

variable size 

involves in 

conversion  

M L M 

Pointer 

Scaling / 

Pointer 

Mixing 

Exploiting 

vulnerabiliti

es trigger 

during 

arithmetic 

operation of 

Miscalculati

on of 

pointer size 

in scaling or 

mixing 

process 

M L M 

Overflow 

Type 

MOE CA S O P 

a pointer 

Uninitialized 

Variable 

Exploiting 

vulnerabiliti

es when 

uninitialized 

variable 

being used 

in the 

program 

A variable 

being used 

before 

initialization 

M L L 

Null 

Termination 

Supplying 

non-

terminated 

input 

No null 

termination 

validation 

on input 

M L M 

* Notation 

MOE – Mode of Exploit 

CA – Code Appearance 

S – Severity 

O – Occurences 

P – Probability of occurring 

C – Critical 

M – Medium 

H – High 

L - Low 

 

6 CONCLUSIONS 

 

We have discussed various 

classifications of software overflow 

vulnerabilities, and presented the 

strengths and weaknesses of previous 

taxonomies in general, and overflow and 

C vulnerabilities in particular. We noted 

at present there is no taxonomy 

specifically addressing overflow 

vulnerabilities from C source code 

perspective. Therefore, we construct 

taxonomy for C overflow vulnerabilities 

attack. In producing this taxonomy, we 

focus on how the overflow vulnerability 

appears in C code and the criteria used 

for a code to be considered as 

vulnerable. We demonstrated the 

application of our taxonomy in 

identifying types of C overflow 

vulnerabilities by providing a few 

sample vulnerable code segments. The 

taxonomy can be a valuable reference 

for developers and security analysts to 
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identify potential security C loopholes so 

as to reduce or prevent exploitations 

altogether. We also evaluate our 

taxonomy on its effectiveness, 

comprehensiveness, and relevancies to 

prove the important of having our 

taxonomy as part of understanding and 

eliminating C overflows vulnerabilities. 

 

7 FUTURE WORKS 

 

We look forward to extend our 

validation and verification of our 

taxonomy with standard vulnerability 

databases to large set of developers and 

implement it to evaluate the 

effectiveness of the security 

vulnerability program analysis tools. 

 

8 REFERENCES 

 
1. Aleph One: Smashing the Stack for Fun and 

Profit. Phrack Magazine. Volume 7, Issue 49, 

(1996) 

2. Zitser, M.: Securing Software: An Evaluation of 

Static Source Code Analyzers. M. Sc. Thesis. 

Department of Electrical Engineering and 

Computer Science, Massachusetts Institute of 

Technology (2003) 

3. Kratkiewicz, K.: Evaluating Static Analysis 

Tools for Detecting Buffer Overflows in C Code. 

M. Sc. Thesis. Harvard University (2005) 

4. Zhivich, M. A.: Detecting Buffer Overflows 

Using Testcase Synthesis and Code 

Instrumentation. M. Sc. Thesis. Massachusetts 

Institute of Technology (2005) 

5. Akritidis, P.,   Cadar, C.,   Raiciu, C.,   Costa, 

M.,   Castro, M.: Preventing Memory Error 

Exploits with WIT. In: IEEE Symposium on 

Security and Privacy, pp. 263 -- 277. IEEE 

Computer Society Washington, DC, USA (2008) 

6. Common Vulnerability and Exposures, 

http://cve.mitre.org/ 

7. Microsoft Security Advisories, 

http://www.microsoft.com/technet/security/advis

ory 

8. IBM X-Force Threat Reports, https://www-

935.ibm.com/services/us/iss/xforce/trendreports/ 

9. 2010 CWE/SANS Top 25 Most Dangerous 

Software Errors, http://cwe.mitre.org/top25/ 

10. Buffer Overflow on Common Vulnerability and 

Exposures, http://cve.mitre.org/cgi-

bin/cvekey.cgi?keyword=Buffer+Overflow 

11. Microsoft Security Advisories Archive, 

http://www.microsoft.com/technet/security/advis

ory/archive.mspx 

12. Chess, B., McGraw, G.: Static Analysis for 

Security. J. IEEE Security and Privacy. Volume 

2. Issue 6. 76 -- 79 (2004) 

13. Foster, J. S., Hicks, M. W., Pugh, W.: Improving 

software quality with static analysis. In: 7th ACM 

SIGPLAN-SIGSOFT workshop on Program 

Analysis for software tools and engineering, pp. 

83 -- 84. ACM, New York (2007) 

14. Emanuelsson, P., Nilsson, U.: A Comparative 

Study of Industrial Static Analysis Tools. J. 

Electronic Notes in Theoretical Computer 

Science (ENTCS). Volume 217. 5--21 (2008) 

15. Howard, M., LeBlanc, D., Viega, J.: 24 Deadly 

Sins of Software Security: Programming Flaws 

and How to Fix Them. McGraw Hill, United 

States of America (2009) 

16. Viega, J., McGraw, G.: Building Secure 

Software: How to Avoid Security Problems the 

Right Way. Addison-Wesley Professional, United 

States of America (2001) 

17. Seacord, R. C.: Secure Coding in C and C++. 

Addison-Wesley Professional, United States of 

America (2005) 

18. Krsul, I. V.: Software Vulnerability Analysis. 

Phd. Thesis. Purdue University (1998) 

19. Lough, D. L.: A Taxonomy of Computer Attacks 

with Applications to Wireless Networks. Phd. 

Thesis. Virginia Polytechnic Institute and State 

University (2001) 

20. Aslam, T.: A Taxonomy of Security Faults in the 

UNIX Operating System. M. Sc. Thesis. 

Department of Computer Science, Purdue 

University (1995) 

21. Alhazmi, O. H., Woo, S. W, Malaiya, Y. K.: 

Security Vulnerability Categories in Major 

Software Systems. In: 3rd IASTED International 

Conference on Communication, Network, and 

Information Security (CNIS). ACTA Press, 

Cambridge, USA (2006) 

22. Pothamsetty, V., Akyol, B.: A Vulnerability 

Taxonomy for Network Protocols: Corresponding 

Engineering Best Practice Countermeasures. In: 

IASTED International Conference on 

Communications, Internet, and Information 

Technology (CIIT). ACTA Press, US Virgin 

Islands (2004) 

23. Bazaz, A., Arthur, J. D.: Towards A Taxonomy 

of Vulnerabilities. In: 40th International 

Conference on System Sciences. Hawaii (2007) 

24. Gegick, M., Williams, L.: Matching Attack 

Patterns to Security Vulnerabilities in Software-

Intensive System Designs. In: Workshop on 

Software Engineering for Secure Systems – 

Building Trustworthy Applications. ACM New 

York, USA (2005) 

25. Howard, J. D., Longstaff, T. A.: A Common 

Language for Computer Security Incidents. In: 



International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664 
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)  

 

 

 663 

Sandia Report (SAND98-8667). Sandia National 

Laboratories, California (1998) 

26. Tsipenyuk, K., Chess, B., McGraw, G.: Seven 

Pernicious Kingdoms: A Taxonomy of Software 

Security Errors. In: IEEE Security and Privacy. 

Volume 3. No. 6. pp. 81--84. (2005) 

27. Hansman, S., Hunt, R.: A taxonomy of network 

and computer attacks. J. Computer and Security. 

Volume 24, Issue 1, 31 -- 43, Elsevier Science 

Ltd (2005) 

28. Hansmann, S.: A Taxonomy of Network and 

Computer Attacks Methodologies. In: Technical 

Report. Department of Computer Science and 

Software Engineering, University of Canterbury, 

New Zealand (2003) 

29. Killourhy, K. S., Maxion, R. A., Tan, K. M. C.: A 

Defense-Centric Taxonomy Based on Attack 

Manifestations. In: International Conference on 

Dependable Systems and Networks. pp. 91 – 100. 

IEEE Press,  Los Alamitos, CA (2004) 

30. Igure, V., Williams, R.: Taxonomies of Attacks 

and Vulnerabilities in Computer Systems. J. 

IEEE Communications Surveys and Tutorials. 

Volume 10, Issue 1. 6 – 19 (2008) 

31. Shahriar, H., Zulkernine, M.: Taxonomy and 

Classification of Automatic Monitoring of 

Program Security Vulnerability Exploitations. J. 

Systems and Software 84, 250--269 (2011) 

32. Sotirov, A. I.: Automatic Vulnerability Detection 

Using Static Source Code Analysis. M. Sc. 

Thesis. University of Alabama (2005) 

33. Moore, H. D.: Exploiting Vulnerabilities. In: 

Secure Application Development 

(SECAPPDEV). Secappdev.org (2007) 

34. Metasploit Penetration Testing Framework,  

http://www.metasploit.com/framework/modules/ 

35. Symantec Threat Explorer. 

http://www.symantec.com/business/security_resp

onse/threatexplorer/vulnerabilities.jsp 

36. Wagner, D.: Static Analysis and Computer 

Security: New Techniques for Software 

Assurance. Phd. Thesis. University of California, 

Berkeley (2000) 

37. Security Development Lifecycle (SDL) Banned 

Function Calls. http://msdn.microsoft.com/en-

us/library/bb288454.aspx 

38. Stanford University: Pintos Project. 

http://www.stanford.edu/class/cs140/projects/pint

os/pintos.html#SEC_Top 

39. Secunia Advisories. 

http://secunia.com/advisories/ 

40. Engler, D.: How to find lots of bugs in real code 

with system-specific static analysis. 

http://www.stanford.edu/class/cs343/mc-

cs343.pdf 

41. Ashcraft, K., Engler, D.: Using Programmer-

written Compiler Extensions to Catch Security 

Holes.IEEE Symposium on Security And 

Privacy, pp. 143--159 (2002) 

42. Red Hat Bugzilla: Bug 546621. 

https://bugzilla.redhat.com/show_bug.cgi?id=546

621 

43. National Vulnerability Database: Vulnerability 

Summary for CVE-2010-4409. 

http://web.nvd.nist.gov/view/vuln/detail?vulnId=

CVE-2010-4409 

44. Integer Overflow. http://cve.mitre.org/cgi-

bin/cvekey.cgi?keyword=Integer+Overflow 

45. CWE-190: Integer Overflow or Wraparound. 

http://cwe.mitre.org/data/definitions/190.html 

46. Richarte, G.: Multiple Vulnerabilities in Stack 

Smashing Protection Technologies. Security 

Advisory, Core Labs (2002) 

47. Stack Overflow. 

http://www.owasp.org/index.php/Stack_overflow 

48. Lhee, K., Chapin, S. J.: Type-Assisted Dynamic 

Buffer Overflow Detection. In: 11th USENIX 

Security Symposium. USENIX Association, CA, 

USA (2002) 

49. Nelißen, J.: Buffer Overflows for Dummies. 

SANS InfoSec Reading Room - 

Threats/Vulnerabilities. SANS Institute (2003) 

50. Nergal: The Advanced Return-into-lib(c) 

Exploits. Phrack Magazine. Volume 11, Issue 58, 

(2001) 

51. Using Environment for Returning Into Lib C. 

http://www.securiteam.com/securityreviews/5HP

020A6MG.html 

52. Grenier, L. A.: Practical Code Auditing. 

Metasploit Framework (2002) 

53. Akritidis, P., Cadar, C., Raiciu, C., Costa, M., 

Castro, M.: Preventing Memory Error Exploits 

with WIT. In: IEEE Symposium on Security and 

Privacy. pp. 263--277. (2008) 

54. Tevis, J. J., Hamilton, J. A.: Methods for the 

Prevention, Detection and Removal of Software 

Security Vulnerabilities. In: 42nd annual 

Southeast Regional Conference. pp. 197--202. 

(2004) 

55. SecurityFocus. 

http://www.securityfocus.com/archive/1/515362 

56. Microsoft Security Bulletin MS03-029. 

http://www.microsoft.com/technet/security/bullet

in/ms03-029.mspx 

57. iDefense Labs Public Advisory: 06.12.07. 

http://labs.idefense.com/intelligence/vulnerabiliti

es/display.php?id=542 

58. CVE-2005-3828. 

http://www.cvedetails.com/cve/CVE-2005-3848/ 

59. Testing for Heap Overflow. 

http://www.owasp.org/index.php/Testing_for_He

ap_Overflow 

60. Double Free. 

http://www.owasp.org/index.php/Double_Free 

61. CWE-415: Double Free. 

http://cwe.mitre.org/data/definitions/415.html 

62. Kolmonen, L.: Securing Network Software using 

Static Analysis. In: Seminar on Network 

Security. Helsinki University of Technology 

(2007) 



International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 652-664 
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)  

 

 

 664 

63. Nagy, C., Mancoridis, S.: Static Security 

Analysis Based on Input-related Software Faults. 

In: European Conference on Software 

Maintenance and Reengineering. pp. 37--46. 

IEEE Computer Society (2009) 

64. Durden, T.: Automated Vulnerability Auditing in 

Machine Code. Phrack Magazine. Issue  64 

(2007) 

65. Michael, C., Lavenhar, S. R.: Source Code 

Analysis Tools – Overview. Homeland Security 

(2006) 

66. Wagner, D., Foster, J. S., Brewer, E. A., Aiken, 

A.: A First Step Towards Automated Detection of 

Buffer Overrun Vulnerabilities. In: Network and 

Distributed System Security (2000) 

67. C Language Issues for Application Security. 

http://www.informit.com/articles/article.aspx?p=

686170&seqNum=6 

68. Pozza, D., Sisto, R. : A Lightweight Security 

Analyzer inside GCC. In: 3rd International 

Conference on Availability, Reliability and 

Security. pp. 851--858. Barcelona (2008) 

69. Morin, J.: Type Conversion Errors. In: Black Hat. 

USA (2007) 

70. FFmpeg Type Conversion Vulnerability. 

http://securityreason.com/securityalert/5033 

71. CWE-704: Incorrect Type Conversion or Cast. 

http://cwe.mitre.org/data/definitions/704.html 

72. CWE-195: Signed to Unsigned Conversion Error. 

http://cwe.mitre.org/data/definitions/195.html 

73. STR34-C. Cast characters to unsigned char 

before converting to larger integer sizes. 

https://www.securecoding.cert.org/confluence/dis

play/seccode/STR34-

C.+Cast+characters+to+unsigned+char+before+c

onverting+to+larger+integer+sizes 

74. Black, P. E., Kass, M., Kog, M.: Source Code 

Security Analysis Tool Functional Specification 

Version 1.0. In: NIST Special Publication 500-

268. (2007) 

75. Seacord, R. C.: The CERT C Secure Coding 

Standard. Addison-Wesley Professional (2008) 

76. Unintentional Pointer Scaling. 

http://www.owasp.org/index.php/Unintentional_p

ointer_scaling 

77. Uninitialized variable. 

http://en.wikipedia.org/wiki/Uninitialized_variabl

e 

78. Eight C++ programming mistakes the compiler 

won’t catch. http://www.learncpp.com/cpp-

programming/eight-c-programming-mistakes-the-

compiler-wont-catch/ 

79. Uninitialized Variable. 

http://www.owasp.org/index.php/Uninitialized_V

ariable 

80. Flake, H.: Attacks on Uninitialized Local 

Variables. Black Hat Federal (2006) 

81. CWE-170: Improper Null Termination. 

http://cwe.mitre.org/data/definitions/170.html 

82. Microsoft Security Bulletin MS09-056. 

http://www.microsoft.com/technet/security/bullet

in/ms09-056.mspx 

83. CVE-2007-0042. http://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2007-0042 

84. SolarDesigner: Getting around non-executable 

stack (and fix). Bugtraq Mailing List. 

http://www.securityfocus.com/archive/1/7480 
 

 

 

 


