

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 553-564
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 553

Exploration on Scalability of Database Bulk Insertion with Multi-

threading

Boon-Wee Low, Boon-Yaik Ooi, and Chee-Siang Wong

Faculty of Information and Communication Technology, Department of Computer

Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900

Kampar, Perak, Malaysia.

.

{lowbw,ooiby,worgcs}@utar.edu.my

ABSTRACT

The advancement of database engine and

multi-core processors technologies have

enable database insertion to be implemented

concurrently via multithreading

programming. The objective of this work is

to evaluate the performance of using

multithreading technique to perform

database insertion of large data set with

known size to enhance the performance of

data access layer (DAL) particularly on the

bulk-insertion operation. The performance

evaluation includes techniques such as using

single database connection, multithreads the

insertion process with respective database

connections, single threaded bulk insertion

and multithreaded bulk insertion. MySQL

5.2 and SQL Server 2008 were used and the

experimental results show that the

performance of databases do not scale

linearly with the number of threads. This

work justifies our intention in developing a

smart data access layer that autonomously

decides the number of threads to spawn in

order to improve the performance of the

DAL.

KEYWORDS

Database bulk insertion, multicore

processor, multi-threading, data access layer

and database technologies.

1 INTRODUCTION

With the fall in price of multi-core

processors, it has made high-
performance processors affordable to all.
The steady increase of the number of
cores in microprocessors has enabled
parallel processing to be applied in
systems such as enterprise resource
planning (ERP) and customer
relationship management (CRM)
systems. For instance, the latest Intel
Core i7 Gulftown microprocessor [1, 2]
offers up to 12 logical cores when
simultaneous multi-threading is enabled.
Unfortunately, this increase of
processing resources can only be utilized
by a program if multi-threading or multi-
processing techniques are used. One of
such server-oriented application that
may utilize multi-threading techniques is
database system [3, 4]. Although, past
research has shown that multi-threading
is capable of improving the speed of
database insertion, this has spark the
question of how many threads would
help in improving the database insertion
performance. The scalability of such
improvement with respect to various
data sizes offers intriguing insight into
providing overall improvement in
database performance.

In this paper, we explore the
scalability of performance improvement
with respect to the size of the dataset,
available cores and insertion techniques

 554

such as bulk insertion. The relationships
of the CPU (Central Processing Unit),
the RAM (Random Access Memory),
the I/O (Input/Output) transfer rate of
system storages, and the performance of
database bulk insertion are studied as
well. The main contribution of this paper
is to evaluate which insertion methods
offer the best performance that suits
different database bulk insertion
environment.

The remaining parts of the paper are
organized as follows: Section 2
discusses the related work in improving
the performance of database bulk
insertion by using multi-threading
techniques and a short description of
DAL. Section 3 details the methodology
of the research, which includes
experimental setup, threading methods
used, and the systems utilization. The
outcome of the evaluations is presented
and discussed in Section 4. Finally,
Section 5 concludes the paper.

2 Related Work

The conventional way of inserting data

into a database is by using the sequential

SQL Insert method. In order to perform

data insertion in bulk, database vendors

have developed specific methods so that

data can be inserted at a better rate.

However, current DAL (Data Access

Layer) is single-threaded and no

attempts of multi-threading the DAL

have been made so far as the authors are

able to identify.

Previously, other research has shown

that multi-threading can improve the

performance of database insertion. This

has set the trend of utilizing thread level

parallelism and performance scalability

in modern software development [3].

Previous works related to parallel

database systems have also been studied.

Özsu and Valduriez [19] introduced

distributed and parallel Database

Management System (DBMS) that

enables natural growth and expansion of

database on simple machines. Parallel

DBMSs are one of the most realistic

ways working towards meeting the

performance requirements of application

which demands significant throughput

on the DBMS.

DeWitt and Gray [17] shows that

parallel processing is a cheap and fast

way to significantly gain performance in

database system. Software techniques

such as data partitioning, dataflow, and

intra-operator parallelism are needed to

be employed to have an easy migration

to parallel processing. The availability of

fast processors and inexpensive disk

packages is an ideal platform for parallel

database systems.

According to Valduriez [18], parallel

database system is the way forward into

making full use of multiprocessor

architectures using software-oriented

solutions. This method promises high-

performance, high-availability and

extensibility power price compared to

mainframes servers. Parallelism is the

most efficient solution into supporting

huge databases on a single machine.

In a research to speedup database

performance, Haggander and Lundberg

[16] shows that by multi-threading the

database application it would increase

the performance by 4.4 times than of a

single threaded engine. This research

was done to support a fraud detection

application which requires high

performance read and write processes.

Therefore they found that the process

would be speed up by increasing the

number of simultaneous request.

Zhou et al. [15] shows that there is

moderate performance increase when

database is being multithreaded. He

evaluated its performance,

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 553-564
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 555

implementation complexity, and other

measures and provides a guideline on

how to make use of various threading

method. From the experiment results,

multi-threading improves the database

performance by 30% to 70% over single-

threaded implementation. In this

research, it is also found that Naïve

parallelism is the easiest to implement.

However, it only gives a modest

performance improvement.

In 2009, Ryan Johnson shows that by

increasing the number of concurrent

threads it would also increase the

normalized throughput of data into a

database. But there is a limit on how

many concurrent threads can be used. As

the number of threads used gone pass the

optimal figure, it will suffer from

performance deterioration due to extra

overheads initiated from additional

context switching as a consequence of

spawning excessive number of threads.

The experiment was done based on

different database engines; which are

Postgres, MySQL, Shore and BDB. It

can be concluded that different database

engine has its respective optimal number

of threads. The optimal number depends

on how the database was being

developed. This comes to show that a

detailed study on different database

system is required to get the best out of

each database system. The research

concludes that multi-threading does help

in improving database insertion speed.

The paper also discovers the bottlenecks

that hamper the scalability. It is

overcome by introducing Shore-MT, a

multi-threaded version of Shore database

engine which shows excellent scalability

and great performance when compared

to other database engines [3].

Reference [4] uses of .NET 4

Framework to parallelize database

access. From the test results, they have

shown a significant increase of

performance when there is a large

amount of data. In contrast, there is only

a slight increase of performance when

the data size is small. The performance

increases as much as 80.5% when it

deals with a large amount of data. The

experiment was done by inserting an

amount of data into the database in

parallel, and then retrieving the data

from the database and storing it into an

XML file. In this approach, multiple

connections and threads access the

database in parallel and all is controlled

by the .NET 4 Framework.

From all previous research, we can see

great potential in multi-threading

database systems. It is proven that by

parallelizing the system, it would have a

moderate to significant gain in

performance at a lower cost. Therefore

with the right threading method and

insertion method, we are able to improve

database performance. This proves the

potential in multi-threading database

systems.

2.1 Data Access Layer (DAL)

DAL is a set of classes with functions

for reading and writing to a database or

other data storage medium. It does not

contain any business logic for the

application or user interface element and

only. It’s a background worker that

interacts between the application and the

database as a background worker. It i’s a

part of a multi-layer application design

that would normally include items as

shown in as below [20] and figure 1-

2Fig. 1 shows where the DAL sits in an

application [20].

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 553-564
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 556

Fig. 1. A typical application showing where the DAL

and other components [20].

• A User Interface Layer (UI)
which contains screens and user
interface components.

• A Business Logic Layer (BLL)
which contains the business rules for the
application.

• Data access logic components are
abstract logic that areis needed to access
underlying data stores. Doing so would
then centralize the data access function.
It would then help make the application
easier to configure and maintain.

• Data helpers/utilities are
functions and utilities assist in data
transformation and data access in the
layer. It contains specialized API and
routines that is designed to improve data
access efficiency and reduce the need to
develop logic components and service
agents in the layer.

• Service agent is where business
component uses functions that are
exposed by external services. The
service agent isolates your application
from the idiosyncrasies of calling
diverse services and additional services
can be provided.

3 Methodology

This work focuses only on the INSERT

operation of a DAL. The DAL will be

multithreaded with multiple connections

to the database engine. We evaluate the

multithreaded performance of two

different database systems, Microsoft

SQL Server 2008 Enterprise and MY

SQL 5.1 by Oracle to search for the most

effective number of threads used

depending on the available resources and

data set size. All the evaluations done in

this work were conducted on a same

machine. We observe the performance of

various insertion methods with

multithreading implementation.

3.1 Environment Settings of the
Experiment
The machine used in this work is a computer

comprised of an Intel Core 2 Quad Q9400 2.66

GHz with 3.93 GB of RAM with Windows XP

Professional Service Pack 3. The hard-disk used

in this test bed is a 320GB Seagate Barracuda

with rotational speed of 7200rpm (revolution per

minute), and is capable of performing 78 MB/s

data transfer rate [5]. At start the machine

consumes 438 MB of RAM and 0% CPU

utilization.

All the test programs were developed on

.NET 4.0 Framework using C# via

Visual Studio 2010. MySQL Connector

.NET 6.2.4 adapter is being used to

execute the InsertLoader for MySQL

database. The test data consists of strings

with 302 random characters each. It

comprises alphabets, numeric and

symbols. These strings are stored in flat

file format and the file size ranges from

1 to 80,000 rows. The same set of files is

used for the entire experiment. The

database consists of one table with two

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 553-564
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 557

columns. The first column is an auto-

increment numeric counter which is set

to integer and the second column is to

store the rows from the flat file which is

set to VARCHAR(MAX). This is

applied to both databases that are

evaluated in this paper.

3.2 The Overview of the
Experiment Process
The process begins with the data reading

process. The data reading is done by

using a single thread and subsequently

distributes the data into multiple files

with the same amount of rows. The

reader writes the file into either flat file

format or XML format depending on the

requirement of the database engine.

Table 1. Evaluation on various insertion methods and

the number of threads used respectively.

Test Number Insertion Method Number of Threads

1 Sequential SQL Insertion

(SQL Server 2008 & MySQL

5.2)

1

2

3

4

2 Import Loader 1

2

3

4

3 Bulk Copy 1

2

3

4

3.2.1 Threading Method

Throughout the experiments, threads are

manually spawned in order to maintain a

controlled environment. The codes

below show how the program is being

threaded where two threads are used.

//create and start threads

ThreadStart threadDelOne = new

ThreadStart

(insOne.RunInsertion);

ThreadStart threadDelTwo = new

ThreadStart

(insTwo.RunInsertion);

Thread threadOne = new

Thread(threadDelOne);

Thread threadTwo = new

Thread(threadDelTwo);

threadOne.Start();

threadTwo.Start();

//thread join

threadOne.Join();

threadTwo.Join();

3.2.2 sequential insertion
Sequential insertion is done by using the

standard SQL insert command and each

command would insert one row.

Transaction is being used in this process

where the whole block will be

committed after the last data is inserted.

Rollback is being used if there is an error

[6]. The same code is being used for 1,

2, 4 and 8 threads. Before inserting the

row, it is being formatted into

compatible SQL command by replacing

certain characters to work with SQL

command formatting. For sequential, the

test is done with and without transaction.

The following is the code.

for (int i = 0; i <

dataList.Count; i++) {

sqlStr = "INSERT INTO

TestTbl(DataCol)VALUES(N"+d

ataList[i]+")";

sqlCmd = new

SqlCommand(sqlStr, conn,

transaction);

sqlCmd.ExecuteNonQuery();

}

transaction.Commit();

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 553-564
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 558

3.2.3 SQLBulkCopy Insertion
SQLBulkCopy is a .NET4 function to insert data

in bulks into SQL Server 2008 [8]. It receives

XML’s and inserts them. The format for the

XML file is as shown in Fig. 1. This method is

tested by using 1, 2, 4, and 8 threads; where the

number of individual XML’s are read according

to the number of threads used respectively. For

example, if 8 threads are used, they will read

from 8 individual XML’s.

Fig. 2. An example of XML formatting.

The codes below show how the SQLBulkCopy

insertion is being done.

dataSet dataSet = new DataSet();

dataSet.ReadXml(xmlFileName);

sourceData = dataSet.Tables[0];

using (SqlConnection conn = new

SqlConnection(connStr)){

conn.Open();

using (SqlBulkCopy bulkCopy

= new

SqlBulkCopy(conn.Connection

String)){

bulkCopy.ColumnMappings.Add

("DataCol", "DataCol");

bulkCopy.DestinationTableNa

me = "TestTbl";

bulkCopy.WriteToServer(sour

ceData);

 }conn.Close();

}

3.2.4 MySQL Bulk Loader

Insertion
MySQL Bulk Loader from the MySQL .NET

Connector 6.2.4 [7] is used for this experiment.

It receives flat files and inserts them using the

MySQL import loader. The number of files

created would depend on the number of threads

used. This method is being tested with 1, 2, 4,

and 8 threads. The following codes illustrate how

the import loader is performed.

//perform import loader

try {

MySqlBulkLoader myBulk

= new

MySqlBulkLoader(conn);

myBulk.Timeout = 600;

myBulk.TableName =

"testDatabase.testTbl"

;

myBulk.Local = true;

myBulk.FileName =

fileName;

myBulk.FieldTerminator

= "";

myBulk.Load();

 }

3.2.5 System

Utilization

In the next experiment, the RAM, CPU

and hard disk drive utilization are

captured throughout the insertion period.

This is done during 70,000 to 80,000

rows on all the insertion methods,

number of threads and database engines

as shown in Table 1. A sample is

captured every 30 seconds and the

average from the samples would be

taken as the result [9]. Codes below

illustrates the system utilization is being

captured.

PerformanceCounter

cpuUsage = new

PerformanceCounter("Proce

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 553-564
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 559

ssor", "% Processor

Time", "_Total", true);

PerformanceCounter

memoryAvailable = new

PerformanceCounter("Memor

y", "Available MBytes");

PerformanceCounter

physicalDiskTransfer =

new

PerformanceCounter("Physi

calDisk", "Disk

Bytes/sec", "_Total",

true);

startMemory =

totalMemoryCapacity -

memoryAvailable.NextValue

();

4 Experimental Results

The test data ranges from 1 to 80,000 rows and

we capture the elapsed time taken to insert the

data. The same test data are being used on both

database engines, SQL Server 2008 and MySQL

5.2, with the method discussed in Section 3.

4.1 SQL Server 2008

From the experiment, we confirmed that

multi-threading has a significant

improvement. At 50,000 rows,

performance increase as much as 67%

using multithreaded insertion method.

Code with transaction increases the

performance by 24%. Therefore multi-

threading and transaction proves to

improve the database insertion

performance. Fig. 3 shows the

performance increase between 1 and 8

threads using sequential insertion. But

when the data size is small, the overhead

of spawning the threads is too costly and

the performance would deteriorate. In

contrast with that, it implies that it is

best not to multithread the database

insertion when the data size is small.

This is reflected in Fig. 4.

Fig. 3. Sequential insertion with and without

transaction used.

Fig. 4. Comparison between BulkCopy and

sequential insertion with transaction.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 553-564
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 560

From Fig. 4, the result showed that

single threaded bulk copy can

outperform the multithreaded insertion

with transaction enabled. As the data

grow larger, bulk copy is becoming

more efficient. However, the

performance of bulk copy can be further

improved by using multiple threads. Fig.

5 shows the performance of BulkCopy

compared to sequential insertion with a

large data size. At 80,000 rows, the

performance increase by 43% when

threaded with eight threads.

Fig. 5. Comparison between BulkCopy and sequential

insertion.

The following figure shows the overall

performance differences between having

transaction and bulk copy on SQL server

2008. It shows that the performance of

multithreaded database insertions do not

scale linearly. Different dataset, database

insertion method and number of threads

will yield different insertion

performance.

Fig. 6. Comparison between Transaction and

BulkCopy insertion.

From the experiment, we observed that

the performance of the insertion methods

is dependent on the data size. The

following table is the detail of the

observation.

Table 2. SQL Server 2008 Insertion method for

specific data size range.

Number of Rows Threading Method

1 to 29 Single threaded sequential insertion with transaction

30 to 5,000 Single threaded BulkCopy

5,001 to 50,000 Four threads BulkCopy

50,000 to 80,000 Eight thread BulkCopy

4.2 MySQL 5.2

On the other hand, MySQL does not

have significant performance

improvement when being threaded.

MySQL boost sequential insertion

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 553-564
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 561

performance by 99.5% when transaction

code is being used. To insert 50,000

rows without transaction, it requires

approximately 22 minutes compared to

6.3 seconds with transaction. Fig. 7

shows the sequential insertion

performance.

Fig. 7. Comparison between different numbers of

threads using sequentail insertion.

From Fig. 8, the multi-threading works

well when data size is in the range of

501 to 5,000, in these range four threads

improve the insertion performance by

42.5%. However, the performance

plunges by 49% when it is being

spawned with eight threads compared to

single threaded for data size with 100

rows. Even with insert loader, single

threaded still performes best. When

insert loader is being spawned with eight

threads, insertion performance plummet

by 65.4% compared to single threaded at

80,000 rows. Insert loader performs best

when the data size is large and single

threaded.

Fig. 8. Comparison between sequential insertion and

insert loader.

The following figure shows the overall

performance differences between having

transaction and insert loader on MySQL

5.2. Similar to observation made in fig.

6, It shows that the performance of

multithreaded database insertions do not

scale linearly. Besides, different dataset,

database insertion method and number

of threads will yield different insertion

performance; different database engines

will have different overall behavior.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 553-564
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 562

Fig. 9. Comparison between transaction and insert

loader.

Therefore, from the experimental results

the following is the observation made by

from our experiment using MySQL 5.2.

It is similar to MS SQL Server 2008 that

the performance of the insertion methods

is dependent on the data size. However,

the insertion method varies.

Table 3. MySQL 5.2 Insertion method

for specific data size range.

Number of Rows Threading Method

1 to 500 Single threaded sequential insertion with transaction

501 to 5,000 Four Threads sequential insertion with transaction

5,001 and 50000 Single threaded insert loader

4.3 System Utilization

Besides that, we observe the system

utilization when the insertion process is

executed. Observations are made only

with samples sizes ranging from 70,000

to 80,000 rows as they show the most

significant system utilization.

 Fig. 10. System utilization between Disk I/O and

CPU usage for SQL Server 2008.

Fig. 10 shows the system utilization of

SQL Server 2008, we found that as the

number of threads increase the overall

machine utilization increase as well. In

general, bulk copy has high IO traces

while normal SQL insertation with

transaction has high CPU traces

relatively. Similar observation was seen

with MySQL 5.2 in the following figure.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 553-564
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 563

Fig. 11. System utilization between Disk I/O and CPU

usage for MySQL 5.2.

5 Conclusion and Future Work

Although the advancement of multi-core

processors is encouraging multithreaded

application to be developed, we found

that the performance of the insertion

function of a database does not

necessary improve proportionately with

the number of threads used.

Multithreading did improve the

performance of both of the databases’

insertion function but the speed up is

very dependent on the underlying

architecture of the database system.

Database architecture, RAM, CPU, and

type of HDD do have an effect on each

other. Different database engine react

differently toward different approach

into doing bulk insertion. Therefore, this

work suggests that software developers

should investigate the performance of

multithreaded operations on databases

before designing any system. From the

experimental results, it shows that

database threading must be carried

carefully as it would have adverse effect

if the database threading is overly done,

it will cause a major drop in

performance. Besides that, this work

justify our intention to develop a smart

DAL which capable of automatically

select the most efficient threading

methods depending on the type of

hardware, available resource and the size

of data set.

References

1. Intel® Core™ i7 Processor Extreme Edition,

http://www.intel.com/products/processor/corei

7EE /index.html

2. Intel® Core ™ i7 – 920 Desktop Processor

Series Product Specifications,

http://ark.intel.com/Product.aspx?id=37147

3. Johnson, R., Ippokratis, P., Hardavellas, N.,

Ailamaki, A., Falsafi, B., Shore-MT: A

Scalable Storage Manager for the Multicore

Era. In: Proceedings of the 12th International

Conference on Extending Database

Technology: Advances in Database

Technology, pp. 24--35, ACM, New York

(2009)

4. Verenker, A., Using .NET4 Parallel

Programming Model to Achieve Data

Parallelism in Multi-tier Applications, MSIT,

Microsoft Corporation (2010)

5. Seagate Barracude 7200.10 SATA 3.0Gb/s

320-GB Hard Drive,

http://www.seagate.com/ww/v/index.jsp?vgne

xtoid=2d1099f4fa74c010VgnVCM100000dd

04090aRCRD

6. TransactionScope Class,

http://msdn.microsoft.com/en-

us/library/system.transactions.

transactionscope.aspx

7. Using the Bulk Loader,

http://dev.mysql.com/doc/refman/5.1/en/conn

ector-net-programming-bulk-loader.html

8. SqlBulkCopy Class,

http://msdn.microsoft.com/en-

us/library/system.data.sqlclient.

sqlbulkcopy.aspx

9. Performance Counter Constructor,

http://msdn.microsoft.com/en-

us/library/xx7e9t8e.aspx

10. Bunn, J.J., Holtman, K., Newman, H.B.,

Object Database Scalability for Scientific

Workloads. Technical report, California

Institute of Technology (2000)

11. Thread Class,

http://msdn.microsoft.com/en-

us/library/system.threading.thread.aspx

12. Lui, D., Wang, S., Analysis of Database

Workloads on Modern Processors. In:

Proceedings of the 1st SIGMOD PhD

Workshop on Innovation Database Research

2007, pp. 63--68, ACM, New York (2007)

13. Performance Monitoring,

http://www.csharphelp.com/2006/05/performa

nce-monitoring/

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 553-564
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 564

14. How to Create and Terminate Thread

(C# Programming Guide),

http://msdn.microsoft.com/en-

US/library/7a2f3ay4(v=VS.80).aspx

15. Zhou, J., Cieslewicz, J., Ross, K.A.,

Shah, M., Improving Database Performance

on Simultaneous Multithreading Processors.

In: Proceedings of the 31st International

Conference on Very Large Data Bases 05’,

pp. 49--60, VLDB Endowment, Norway

(2005)

16. Haggander, D., Lundberg, L.,

Multiprocessor Performance Evaluation of a

Telecommunication Fraud Detection

Application. In: ARTES Graduate Student

Conference, Sweden (1999)

17. DeWitt, D., and Gray, J., Parallel

Database Systems: The Future of High

Performance Database Processing. Commun.

ACM, 35, 85--98 (1992)

18.Valduriez, P., Parallel Database Systems:

Open Problems and New Issues. J. Distributed

and Parallel Databases. 1, 137--165 (1993)

19. Özsu, M.T., Valduriez, P., Distributed

and Parallel Database System. J. ACM

Computing Surveys. 28, 125--128 (1991)

20.Meier, J.D., et. al., Chapter 12: Data Access

Layer Guidelines. Microsoft Pattern &

Practice:

http://apparchguide.codeplex.com/wikipage?ti

tle=Chapter%2012%20-

%20Data%20Access%20Layer%20Guideline

s

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(3): 553-564
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

