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1 INTRODUCTION 
 

The demand for multi-functional 

software has grown drastically over the 

years. To cater for this demand, software 

engineers are forced to develop complex 

software with increasing number of 

input parameters. As a result, more and 

more dependencies between input 

parameters are to be expected, opening 

more possibilities of faults due to 

interactions. Although traditional static 

and dynamic testing strategies (e.g. 

boundary value analysis, cause and 

effect analysis and equivalent 

partitioning) are useful in fault detection 

and prevention [1], however they are not 

sufficiently effective to detect faults due 

to interaction. As a result, many 

researchers nowadays are focusing on 

sampling strategy that is based on 

interaction testing (termed t-way testing 

strategies where t indicates the 

interaction strength) [2]. 

 

In general, t-way testing strategies offer 

three types of interaction possibilities for 

generating the test data (i.e. uniform 

strength, variable strength, and input 

output based relations). Rather than 

giving the test engineers (as domain 

experts) the flexibility to choose 

amongst all interaction possibilities, 

some strategies dictate only uniform t-

way interactions (e.g. GTWay [3, 4], 

IPOG [5], MC-MIPOG [6], TConfig [7], 

and Jenny [8]) while others impose on 

variable strength interaction (e.g SA [9], 

ACS [10] and VS-PSTG [11]). In fact, 

there are also strategies that prescribe 

interactions due to input-output based 
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The adoption of t-way strategies (also 

termed interaction testing) for combinatorial 

testing is the main focus of this paper. 

Unlike earlier work, this paper unifies the 

different possible use of t-way strategies 

including uniform interaction, variable 

strength interaction, and input output based 

relations. In order to help engineers make 

informed decision on the different use of t-

way strategies, this paper highlights the 

current state-of-the-art on different t-way 

strategy implementations. In doing so, this 

paper also discusses a step-by-step example 

as practical application. 
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relationship (e.g. ReqOrder [12], Union 

and Greedy [13-15]). 

 

Addressing the aforementioned issues 

(and help test engineers make informed 

decision on the different use of t-way 

strategies), this paper highlights the 

current state-of-the-art on different t-way 

strategy implementations. In doing so, 

this paper also demonstrates a step-by-

step example as practical application. 

 

The rest of this paper is organized as 

follows. Section 2 illustrates the running 

example for demonstrating uniform 

strength, variable strength, and input 

output based relations. Section 3 

highlights the existing t-way strategies in 

the literature. Section 4 demonstrates a 

practical application for t-way strategies. 

Finally, section 5 gives our conclusions. 

 

2 RUNNING EXAMPLE 
 

To facilitate discussion, consider a 

running example of a Pizza Ordering 

Application as shown in Figure 1.  In 

this application, there are 4 options (or 

parameters) for the user is to choose 

from namely the crust, the flavour, the 

toppings, and the deliveries. For each of 

the option, there are 2 selections (or 

values) available. For simplification, this 

pizza ordering options can be 

represented using symbolic values (see 

Table 1).  

 
Table 1: Parameters and Values Conversion 

 
Actual  Parameters and 

Their Values 

Symbolic 

Representations 

Crust = {Classic Hand Tossed, 

Crunchy Thin} 

A =  {a1,a2} 

Flavour = {Pepperoni Delight, 

Vegetarian} 

B = {b1,b2} 

Toppings = {Pineapple, Beef} C = {c1,c2} 

Deliveries = {Eat In, Take 

Away} 

D = {d1,d2} 

 

Conveniently, as seen in Table 2, the 

pizza option representation can also be 

translated into a table of 4 columns (or 

parameters) and 2 rows (or values).  
  

Table 2: Base Data Values 

 

Base 

Values 

Input Variables 

A B C D 

a1 b1 c1 d1 

a2 b2 c2 d2 

 

 

 

 
 

Figure 1: Pizza Ordering Application 
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Figure 2: Uniform t-way Interaction Results (t=3) 

 

 

 
Table 3: Exhaustive Combination 

 

 

 

Base Values 

Input Variables 

A B C D 

a1 b1 c1 d1 

a2 b2 c2 d2 

 

 

 

All 

Combinatorial 

Values 

a1 b1 c1 d1 

a1 b1 c1 d2 

a1 b1 c2 d1 

a1 b1 c2 d2 

a1 b2 c1 d1 

a1 b2 c1 d2 

a1 b2 c2 d1 

a1 b2 c2 d2 

a2 b1 c1 d1 

a2 b1 c1 d2 

a2 b1 c2 d1 

a2 b1 c2 d2 

a2 b2 c1 d1 

a2 b2 c1 d2 

a2 b2 c2 d1 

a2 b2 c2 d2 

 

Here, at full strength of interaction (i.e. 

t=4), we can get all exhaustive 

combination. In this case, the exhaustive 

combinations would be 2
4
 = 16 (shown 

in Table 3).  

 

The next sub-sections demonstrate the 

fact that by relaxing the interaction 

strength (t), the test data for testing 

consideration can be systematically 

reduced. In this case, the possible use of 

t-way strategies including uniform 

interaction, cumulative interaction, 

variable strength interaction, and input 

output relation based interaction will be 

demonstrated. 

 

2.1 Uniform Strength T-way 

Interaction 
 

Here, it is assumed that the interaction of 

variable is uniform throughout. 

Revisiting Table 2, and considering t=3, 

Figure 2 highlights how the reduction is 

achieved. Firstly, the interaction is 
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Figure 3: Uniform t-way Interaction Results (t=2) 

broken down between parameters ABC, 

ABD, ACD, and BCD.  Here, when 

parameters ABC are considered, the 

values for parameter D takes don’t care 

value (i.e. any random valid values for 

parameter D suffices). Similarly, when 

parameters ABD are considered, values 

for parameter C takes don’t care value.  

When parameters ACD are considered, 

values for parameter B takes don’t care 

value. Finally, when parameters BCD 

are considered, values for parameter A 

takes don’t care value. Combining these 

results, we note that there are some 

repetitions of values between some 

entries for ABC, ABD, ACD and BCD.  

If these repetition is removed, we can get 

all the combinations at t=3. Here, we 

note that the test suite has been reduced 

from 16 (for exhaustive combination) to 

13 (for t=3), a saving of 18.75 percent. 

 

 

2.2 Variable Strength T-way 

Interaction 
 

Unlike uniform strength interaction 

counterparts, variable strength 

interaction considers more than one 

interaction strength in the test data 

generation process. Practically, a 

particular subset of input parameters can 

have a higher interaction dependency 

than other parameters (indicating failures 

due to the interaction of that subset may 

have more significant impact to the 

overall system).  For example, consider a 

subset of components that control a 

safety-critical hardware interface. We 

want to use stronger coverage in that 

area (i.e. t=3). However, the rest of our 

components may be sufficiently tested 

with t=2. In this case, we can assign 

variable coverage strength to each subset 

of components as well as to the whole 

system. 

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)



 463

 

 
Figure 4: Variable Strength Interaction 
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Figure 5: Cummulative t=2 & t=3 Interaction Results 

 

 

To illustrate variable strength t-way 

interaction, we adopt the same example 

as Table 2. Now, we assume that all 

interaction is uniform at t=2 for all 

parameters (i.e. based on our result in 

Figure 3). Then, we consider t=3, only 

for parameters B,C,D. Combining both 

interactions yield result shown in Figure 

4. Here, the test suite has been reduced 

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)



 464

 

 

Figure 6: Input Output Based Relations Interaction 

from 16 (for exhaustive case) to 13, a 

saving of 18.75 percent.  

 

As a special case for variable strength 

interaction, we can also consider 

cumulative strength, t=3 and t=2. 

Revisiting Table 2, we can derive the 

test suite for t=2 using the same 

technique as t=3 (see Figure 5). 

 

Combining the test suite with t=3, yields 

the following result (see Figure 6). Here, 

we note that T suite for t=2 is not 

necessarily a subset of T suite for t=3. In 

this case, the test suite has been reduced 

from 16 (for exhaustive case) to 14, a 

saving of 12.5 percent. 

 

 

2.3 Input Output Relation Based 

Interaction 

 

Similar to variable strength t-way 

interaction, input output relation based 

interaction does not deal with uniform 

interaction. Also, unlike other interaction 

possibilities discussed earlier, the 

reduction is performed by considering 

the knowledge on the input and output 

relationship amongst the parameter 

values involved (i.e. derived based on 

some statistical analysis such as Design 

of Experiments (DOE). In this manner, 

any input output relations based strategy 

implementation can address both 

uniform and variable strength 

interactions.  

 

To illustrate the input output based 

interaction, we revisit Table 1 with the 

following input output relationship. 

i. Only two outputs are 

considered, f1 an f2. 

ii. f1 is a function of A,B,C, that 

is, f1=f(A,B,C). 

iii. f2 is a function of A,D, that is, 

f2=f(A,D). 

 

Ideally, these input output relationship 

are not to be assumed as they come from 

experimental results. Upon establishing 

these assumptions, we can derive the test 

suite accordingly. Figure 6 illustrates the 

complete results. Here, the test suite has 

been reduced from 16 (for exhaustive 

case) to 9, a saving of 43.75 percent.  
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3 OVERVIEW OF EXISTING T-

WAY STRATEGIES 

 

The main aim of any t-way strategies is 

to cover the interaction tuples of interest 

in an optimal manner (i.e. at most once 

whenever possible), hence, 

systematically minimizing the test cases 

for testing consideration. However, there 

is no unique solution to this NP-hard 

problem [16-18]. It is unlikely that a 

unique strategy exists that can always 

generate the most optimal number of test 

cases in every configuration.  

 

A number of useful strategies have been 

developed from the last decade.  The 

next subsections give some overview of 

existing t-way strategies based on the 

different type of interaction support 

given earlier (i.e. uniform strength 

interaction, variable strength interaction 

and input-output based relations).  

 

3.1 Uniform Strength Based Strategy 
 

As highlighted earlier, uniform strength 

interaction forms the basis of interaction 

testing, where all input parameters are 

assumed to be uniformly interacting (i.e. 

with constant interaction strength (t) 

throughout). 

 

A significant number of work have 

focused on pairwise (t=2) strategies (e.g. 

Orthogonal Array Test System (OATS) 

[19], IRPS [20], AllPairs [21], In-

Parameter-Order (IPO) [22], Test Case 

Generator (TCG) [23], OATSGen [24], 

ReduceArray2 [25], Deterministic 

Density Algorithm (DDA) [26], CTE-

XL [27], rdExpert [28], and SmartTest 

[29]). As interaction strength is limited 

to t=2, pairwise strategies often yield the 

most minimum test set as compared 

other interaction.  Although useful in 

some class of system, pairwise testing is 

known be ineffective for system with 

highly interacting variables [30-32]. For 

this reason, rather than dwelling on 

pairwise strategies, we are more 

interested on a general strategy for t-way 

test generation. 

 

GTWay [3, 4] is uniform strength t-way 

strategy that relies heavily on its pair 

generation and backtracking algorithm. 

The pair generation algorithm first 

generates all the required interaction 

tuples for the specified interaction. Then, 

the backtracking algorithm iteratively 

traverses all tuples in order to combine 

mergeable tuples to form a complete test 

case in a greedy manner.  

 

Jenny is also an open source uniform 

strength t-way strategy [8]. Jenny 

generates t-way test suite in stages where 

in the first stage; Jenny generates test 

case to cover all the 1-way interaction. 

Moving to the second stage, Jenny will 

extend the first stage test case to greedily 

cover the 2-way interaction pairs. This 

process will be repeated until n
th
 stage is 

reached where n is the interaction 

strength defined by user.  

 

AETG [33, 34]. AETG is the first 

uniform t-way strategy that implements 

the pooling concept for test generation. 

To generate one test data, AETG will 

first randomly generate a number of test 

data candidates. From these test case 

candidates, the strategy will select one 

test data that covered the most 

uncovered tuples as the final test case. In 

case of “tie” situation, the strategy will 

randomly select one test data. “Tie” 

situation happens when more than one 

test data candidates covered the most 

uncovered tuples. To enhance its 

capability (e.g. for better test size), a 
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number of variant AETG 

implementations have been implemented 

such as that of mAETG [35], and TCG 

[23]. The main difference between each 

AETG variants is on the method for the 

generating test data candidates.  

 

Density [36, 37] is a uniform strength t-

way strategy that is dependent on density 

calculation in order to determine the 

final test suite. Density strategy always 

starts with an empty test case. The 

“parameter density” for each unassigned 

parameter will be calculated and 

parameter with the highest parameter 

density will be selected. For the selected 

parameter, “value density” for each 

corresponded value will be calculated. 

The value with the highest value density 

will be fitted into selected parameter. 

The same process will be repeated until 

all parameters have valid assigned value. 

The detailed density determination can 

be found in [36].  

 

IPOG [5] is based a novel one-

parameter-at-a-time approach as in its 

pairwise predecessor IPO [22]. In IPOG, 

the interaction parameters will be 

generated first as the partial test suite 

based on the number of parameters and 

interaction value. The test suite is then 

extended with the values of the next 

parameters by using horizontal and 

vertical extension mechanism. Here, 

horizontal extension extends the partial 

test suite with values of the next 

parameter to cover the most interaction 

tuples. Upon completion of horizontal 

extension, vertical extension may be 

summoned to generate additional test 

cases that cover all uncovered 

interaction tuples. More recently, a 

number of variants have been developed 

to improve the IPOG’s performance (i.e. 

IPOG-D [38], IPOG-F and IPOG-F2 

[39]). In addition, other researchers also 

have come up with their own version of 

IPOG (i.e. Nie’s version of IPOG called 

IPO_N [40], William’s version of IPOG 

called TConfig [41]) and Younis’s a 

number of version of parallel IPOG 

variants called  MIPOG [42, 43], 

G_MIPOG, and MC-MIPOG. 

 

GA [16] and GA-N [40] are two uniform 

t-way strategies that adopt genetic 

algorithm while ACA [16] is a uniform 

t-way strategy that implements ant 

colony algorithm. For genetic algorithm, 

the test data generation process always 

starts with random test cases (later refers 

as chromosomes). These chromosomes 

will undergo series of mutation 

processes until certain stopping criteria 

are met. The best chromosomes will be 

selected as final test suite. As for ant 

colony algorithm, the test data 

generation process is mimicking the 

colonies of ants travel from place to 

place (which representing the parameter) 

to find food (which represent the end of 

test case) via various route (which 

correspond to values for each 

parameter). The best route (measured 

based on the amount of pheromone left 

by colonies of ants) will represent the 

best value for a test case.  

 

3.2 Variable Strength Based Strategy 
 

SA [9] is perhaps the first variable 

strength t-way strategy in literature. 

Using probability-based transformation 

equations, SA adopts binary search 

algorithm to iteratively find the best test 

case from a large random search space. 

Although generating optimal test suites, 

this approach is very time consuming 

because all interaction elements needs to 

be analyzed exhaustively using binary 

search strategy. 
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ACS [10] is Chen version of test data 

generator that based on ant colony 

algorithm. Unlike ACA, ACS has the 

ability to generate variable strength test 

data suite. Implementation wise, ACS 

still based on ant colony algorithm to 

find the most optimized test suite.  

 

VS-PSTG [11] is the most recent AI-

based t-way strategy for generating t-

way test suite.  As the name suggests, 

VS-PSTG is based on the Particle 

Swarm Optimization (PSO) algorithm, 

which mimics the swarm behavior of 

birds. Internally, VS-PSTG iteratively 

performs local and global searches to 

find the candidate solution to be added 

to the final suite until all the interaction 

tuples are covered.   

 

3.3 Input-Output Based Relations 

Strategy 
 

Union and Greedy [13-15] are the first t-

way strategies that adopts input output 

based relations. In the case of Union, the 

strategy generates the test suite for each 

output variable that cover all associated 

input interaction and then assign random 

value for all the ‘don’t care’. Then, the 

strategy finds the union of all test suites 

in order to reduce the number of 

generated test data.  

 

Similar to Union, the Greedy strategy 

also generates the initial test suite that 

covered all associated input interaction 

by randomly selecting values for all 

don’t care parameters. Nonetheless, 

unlike the Union strategy, the Greedy 

strategy picks only the unselected test 

case from the initial test suite which 

covers the most uncovered interactions 

as the final test suite. In this manner, the 

Greedy strategy often generates a more 

optimal test size than that of the Union 

strategy. 

 

Test Vector Generator (TVG) [44] is a 

freeware tool that supports input output 

based relations. Little is known about 

TVG’s implementation due to limited 

publications. Based on our experience 

with the tool, TVG appears to support 

three different reduction algorithms 

which are t-reduced, plus-one and 

random set.  Comparatively, t-reduced 

algorithm often produces the most 

optimize test suite. 

 

Integrated T-Way Test Data Generator 

(ITTDG) [45] generates a test case by 

iteratively adding the best parameter-

value combination (i.e. a parameter 

value combination that covers the most 

uncovered tuples) until one complete test 

case is formed. In case of more than one 

best parameter-value combination found, 

ITTDG implements pooling concept 

introduces in AETG. The iteration 

continues until all tuples has been 

covered (and the complete test suite has 

been been formed). 

 

Aura [46]  implements a pooling concept 

for the generating final test suite. Here, 

Aura generates each test data candidates 

in a random manner.  Unlike any other 

pooling based strategy, Aura gives the 

flexibility to the user to select the pool 

size. If a larger pool size is selected, the 

more optimized test suite will be 

produced but in the expense of execution 

time. 

 

ParaOrder and ReqOrder [12] are two 

strategies based on IPOG [5] that 

address input output based relations. 

ParaOrder strategy implements 

horizontal and vertical extension for 

generating the final test suite, much like 
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its predecessor IPOG [5]. The main 

difference between ParaOrder with 

IPOG is the fact that the initial test data 

(i.e. the initial exhaustive test data) for 

the former is generated based on the first 

defined input output relationships while 

the initial test case for the latter is 

generated in-defined-order-of-parameter 

found. In the case of ReqOrder, the 

selection of initial test case does not 

necessarily follow the first defined input 

output relationships rather the selection 

is done based on the highest input output 

relationship coverage. 

 

4 PRACTICAL APPLICATIONS 

 

In order to demonstrate the use of t-way 

strategies in practice, we adopt a reverse 

digital circuits consisting of a single bit 

4-to-1 line multiplexer [31, 32, 47]. 

Here, the aim is to verify the MUX Java 

based software implementation using 

mutation testing based fault injection 

[48]. For this case study, we use ITTDG 

[45] as our test data generator and 

MuJava version 3 [49, 50] as our fault 

injection tool. The schematic diagram 

for the single bit 4-to-1 line MUX is 

shown in Figure 7 while the equivalent 

Java implementation can be found in 

Figure 8. Here, the Java implementation 

requires 6 parameters with each of which 

takes 2 vales (i.e. 6 2 valued 

parameters).  

 
/* Multiplexer class will select input between d0, d1, 

d2 and d3 as its output based on the value of selector 

(s0, s1). 

s1 = false, s0 = false => output = d0 

s1 = false, s0 = true => output = d1 

s1 = true, s0 = false => output = d2 

s1 = true, s0 = true => output = d3 

The symbol “!”, “&&” and “||” represent logical 

operator for NOT, AND and OR respectively 

*/ 

 

public class Multiplexer { 

  

public static String multiplex (boolean s0, 

   boolean s1, boolean d0, 

   boolean d1, boolean d2, boolean d3) 

  { 

   boolean A,B,C,D,E,F,G,H,I,J,output; 

   A = !s1; 

   B = !s0; 

   C = A && B; 

   D = A && s0; 

   E = s1 && B; 

   F = s1 && s0; 

   G = C && d0; 

   H = D && d1; 

   I = E && d2; 

   J = F && d3; 

   output = G || H || I || J; 

   return Boolean.toString(output); 

   } 

} 

Figure 8: Equivalent Java Class For A Single 

Bit 4-to-1 Line MUX 

 
Figure 7: A Single Bit 4-to-1 Line Multiplexer 
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It is important to make sure that software 

implementation follows exactly the 

hardware implementation so that the 

fault injection strategy can be used to 

represent fault in hardware 

implementation. In this experiment, we 

are to compare the effectiveness of 

uniform strength, variable strength, input 

output based relations for fault detection. 

 

Now, we inject fault into the software 

implementation of MUX using MuJava. 

A total of 53 mutants have been 

generated which represent potential 

faults that might happen in hardware 

implementation. Next, we separately 

generate uniform strength test suite, 

variable strength test suite, and input 

output based relations test suite in order 

to kill the mutants using ITTDG 

implementation. 

 

4.1 Uniform Strength Test Suite 
 

We generate 5 uniform strength t-way 

test suite from t = 2 until 6 (i.e. 

exhaustive testing). The number of killed 

mutants by each test data is depicted in 

Table 4. Here, killed mutants represent 

faults that can be detected by the test 

data. 

 
Table 4: Killed Mutants for Uniform Strength t-

way Test Suite 

Strength 

(t) 

Test 

Data 

Size 

Killed 

Mutants 

% 

Killed 

Mutants 

2 7 50 94% 

3 12 53 100% 

4 26 53 100% 

5 32 53 100% 

6 64 53 100% 

 

From Table 4, all mutants can be killed 

completely using a 3-way test data. 

Thus, instead of running an exhaustive 

testing (which require 64 test cases), a 3-

way testing (which consists of 12 test 

cases) is sufficient. Here, 81% of 

reduction has been achieved by using 3-

way testing. 

 

4.2 Variable Strength Test Suite 
 

Here, we analyze the potential of 

applying variable strength interaction. 

As depicted in Table 4, it can be noticed 

from that 94% of mutants is killed at t=2 

and 100% of mutants is killed at t=3. By 

judiciously input parameters with t=3 

variable strength t-way test suite can be 

generated accordingly. Table 5 shows 

several variable strength configurations 

to test the same MUX and their 

percentage of mutants killed. 

 

Result from Table 5 shows that using a 

pairwise testing (i.e. 2-way testing) for 

all parameters and 3-way testing for the 

first 4 parameters killed all mutants. 

Here we can see that, by using variable 

strength interaction, only 11 test cases 

are required to kill all the mutants 

(instead of 12 test cases as in the case of 

uniform interaction). Using variable 

strength interaction, 83% of reduction 

can be achieved (as compared to 

exhaustive testing). 

 
Table 5: Killed Mutants for Variable Strength 

Test Suite 
6 2-valued parameters, t=2 

Sub 

Strength 

Test Data 

Size, N 

Killed 

Mutants 

% Killed 

Mutants 

{s1,s0, d0} 

@ t=3 
10 51 96% 

{s1,s0, d0, 

d1} @ t=3 
11 53 100% 

{s1,s0, d0, 

d1, d2} @ 

t=3 

12 53 100% 

{s1,s0, d0, 

d1, d2, d3} 

@ t=3 

12 53 100% 
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4.2 Input Output Relations Based 

Relation Test Suite 
 

Analyzing Figure 7, we deduce that 5 

groups of inputs are affecting the output. 

They are:- 

• Group 1 includes input from s1, s0, 

d0. 

• Group 2 includes input from s1, s0, 

d1. 

• Group 3 includes input from s1, s0, 

d2. 

• Group 4 includes input from s1, s0, 

d3. 

• Group 5 includes input from d0, d1, 

d2. 

 

Based on the above information, an 

input output based relations test suite is 

generated. The test size, number of 

killed mutants and percentage of killed 

mutants for input-output interaction are 

shown in Table 6. 

 
Table 5: Killed Mutants for Input-Output Based 

Relations Test Suite 

Test Data 

Size 

Killed 

Mutants 

% Killed 

Mutants 

8 53 100% 

 

Based on result shown in Table 5, we 

note that only 8 tests are required to kill 

all the mutants with 88% reduction (as 

compared to exhaustive testing). 

 

5 CONCLUSIONS AND 

DISCUSSION 

 

While the overall results suggest that 

input output based relations produce the 

smallest size test suite, this conclusion 

cannot be generalized to all other 

applications. The type of interaction is 

highly dependent on the problem at 

hand. It is the engineer’s experience and 

knowledge on the system under test 

(SUT) that determines the best 

interaction to choose from. 

 

As a rule of thumb, uniform strength 

interaction is summoned when no 

knowledge is known about the SUT. 

Variable strength interaction is useful 

when the effects of some sets of 

parameters are known to be significant 

to the overall operation of the SUT.  As 

the name suggests, input output based 

relations interaction is helpful when the 

overall IO behavior of SUT can be 

established. 

 

Summing up, this paper has presented 

three different types of interactions (i.e. 

uniform interaction, variable strength 

interaction and input-output based 

relations) that can be possibly been used 

for interaction testing. In addition, this 

paper also analyzes a number of existing 

t-way strategies based on types of 

interaction supported. Last but not least, 

this paper also elaborates on practical 

application where the use of different 

types of interactions is demonstrated 

within a single SUT. From the result, it 

can be concluded that in term of 

effectiveness, all three types of 

interactions can detect all errors 

(mutants) injected to the system.  

Finally, while much useful research 

work has been done in the last decade 

(i.e. as evident by the large number of 

developed strategy implementations), the 

adoption of interaction testing for 

studying and testing real life systems has 

not been widespread [51]. In order to 

address this issue, more research into the 

algorithms and techniques are required 

to facilitate its adoption in the main 

stream of software engineering.  
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