
 459

T-Way Strategies and Its Applications for Combinatorial Testing

1
 Rozmie R. Othman and

2
 Kamal Z. Zamli

1
 School of Computer and Communication

Universiti Malaysia Perlis (UniMAP)

PO Box 77, d/a Pejabat Pos Besar

01007 Kangar, Perlis, Malaysia

2
 School of Electrical Engineering, Universiti Sains Malaysia,

Engineering Campus, Nibong Tebal

14300 Penang, Malaysia
1
 rozmie.razif.othman@gmail.com,

2
 eekamal@eng.usm.my

ABSTRACT

KEYWORDS

software testing, interaction testing, t-way

strategies, combinatorial testing

1 INTRODUCTION

The demand for multi-functional

software has grown drastically over the

years. To cater for this demand, software

engineers are forced to develop complex

software with increasing number of

input parameters. As a result, more and

more dependencies between input

parameters are to be expected, opening

more possibilities of faults due to

interactions. Although traditional static

and dynamic testing strategies (e.g.

boundary value analysis, cause and

effect analysis and equivalent

partitioning) are useful in fault detection

and prevention [1], however they are not

sufficiently effective to detect faults due

to interaction. As a result, many

researchers nowadays are focusing on

sampling strategy that is based on

interaction testing (termed t-way testing

strategies where t indicates the

interaction strength) [2].

In general, t-way testing strategies offer

three types of interaction possibilities for

generating the test data (i.e. uniform

strength, variable strength, and input

output based relations). Rather than

giving the test engineers (as domain

experts) the flexibility to choose

amongst all interaction possibilities,

some strategies dictate only uniform t-

way interactions (e.g. GTWay [3, 4],

IPOG [5], MC-MIPOG [6], TConfig [7],

and Jenny [8]) while others impose on

variable strength interaction (e.g SA [9],

ACS [10] and VS-PSTG [11]). In fact,

there are also strategies that prescribe

interactions due to input-output based

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

The adoption of t-way strategies (also

termed interaction testing) for combinatorial

testing is the main focus of this paper.

Unlike earlier work, this paper unifies the

different possible use of t-way strategies

including uniform interaction, variable

strength interaction, and input output based

relations. In order to help engineers make

informed decision on the different use of t-

way strategies, this paper highlights the

current state-of-the-art on different t-way

strategy implementations. In doing so, this

paper also discusses a step-by-step example

as practical application.

 460

relationship (e.g. ReqOrder [12], Union

and Greedy [13-15]).

Addressing the aforementioned issues

(and help test engineers make informed

decision on the different use of t-way

strategies), this paper highlights the

current state-of-the-art on different t-way

strategy implementations. In doing so,

this paper also demonstrates a step-by-

step example as practical application.

The rest of this paper is organized as

follows. Section 2 illustrates the running

example for demonstrating uniform

strength, variable strength, and input

output based relations. Section 3

highlights the existing t-way strategies in

the literature. Section 4 demonstrates a

practical application for t-way strategies.

Finally, section 5 gives our conclusions.

2 RUNNING EXAMPLE

To facilitate discussion, consider a

running example of a Pizza Ordering

Application as shown in Figure 1. In

this application, there are 4 options (or

parameters) for the user is to choose

from namely the crust, the flavour, the

toppings, and the deliveries. For each of

the option, there are 2 selections (or

values) available. For simplification, this

pizza ordering options can be

represented using symbolic values (see

Table 1).

Table 1: Parameters and Values Conversion

Actual Parameters and

Their Values

Symbolic

Representations

Crust = {Classic Hand Tossed,

Crunchy Thin}

A = {a1,a2}

Flavour = {Pepperoni Delight,

Vegetarian}

B = {b1,b2}

Toppings = {Pineapple, Beef} C = {c1,c2}

Deliveries = {Eat In, Take

Away}

D = {d1,d2}

Conveniently, as seen in Table 2, the

pizza option representation can also be

translated into a table of 4 columns (or

parameters) and 2 rows (or values).

Table 2: Base Data Values

Base

Values

Input Variables

A B C D

a1 b1 c1 d1

a2 b2 c2 d2

Figure 1: Pizza Ordering Application

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 461

Figure 2: Uniform t-way Interaction Results (t=3)

Table 3: Exhaustive Combination

Base Values

Input Variables

A B C D

a1 b1 c1 d1

a2 b2 c2 d2

All

Combinatorial

Values

a1 b1 c1 d1

a1 b1 c1 d2

a1 b1 c2 d1

a1 b1 c2 d2

a1 b2 c1 d1

a1 b2 c1 d2

a1 b2 c2 d1

a1 b2 c2 d2

a2 b1 c1 d1

a2 b1 c1 d2

a2 b1 c2 d1

a2 b1 c2 d2

a2 b2 c1 d1

a2 b2 c1 d2

a2 b2 c2 d1

a2 b2 c2 d2

Here, at full strength of interaction (i.e.

t=4), we can get all exhaustive

combination. In this case, the exhaustive

combinations would be 2
4
 = 16 (shown

in Table 3).

The next sub-sections demonstrate the

fact that by relaxing the interaction

strength (t), the test data for testing

consideration can be systematically

reduced. In this case, the possible use of

t-way strategies including uniform

interaction, cumulative interaction,

variable strength interaction, and input

output relation based interaction will be

demonstrated.

2.1 Uniform Strength T-way

Interaction

Here, it is assumed that the interaction of

variable is uniform throughout.

Revisiting Table 2, and considering t=3,

Figure 2 highlights how the reduction is

achieved. Firstly, the interaction is

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 462

Figure 3: Uniform t-way Interaction Results (t=2)

broken down between parameters ABC,

ABD, ACD, and BCD. Here, when

parameters ABC are considered, the

values for parameter D takes don’t care

value (i.e. any random valid values for

parameter D suffices). Similarly, when

parameters ABD are considered, values

for parameter C takes don’t care value.

When parameters ACD are considered,

values for parameter B takes don’t care

value. Finally, when parameters BCD

are considered, values for parameter A

takes don’t care value. Combining these

results, we note that there are some

repetitions of values between some

entries for ABC, ABD, ACD and BCD.

If these repetition is removed, we can get

all the combinations at t=3. Here, we

note that the test suite has been reduced

from 16 (for exhaustive combination) to

13 (for t=3), a saving of 18.75 percent.

2.2 Variable Strength T-way

Interaction

Unlike uniform strength interaction

counterparts, variable strength

interaction considers more than one

interaction strength in the test data

generation process. Practically, a

particular subset of input parameters can

have a higher interaction dependency

than other parameters (indicating failures

due to the interaction of that subset may

have more significant impact to the

overall system). For example, consider a

subset of components that control a

safety-critical hardware interface. We

want to use stronger coverage in that

area (i.e. t=3). However, the rest of our

components may be sufficiently tested

with t=2. In this case, we can assign

variable coverage strength to each subset

of components as well as to the whole

system.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 463

Figure 4: Variable Strength Interaction

Input Variables

A B C D

a1

a2

b1

b2

c1

c2

d1

d2

Base Values

t=2

t=3

Input Variables

A B C D

a1

a2

a1

a1

a2

a2

a2

a1

a2

a1

b1

b2

b1

b2

b1

b2

b1

b1

b2

b2

Combinatorial

Values with t=2

c1

c2

c1

c2

c1

c2

c1

c2

c1

c1

d1

d2

d1

d2

d1

d2

d1

d2

d1

d2

Base Values

a2 b1 c2 d1

Input Variables

A B C D

a1

a2

a1

a1

a2

a2

a2

a1

a2

a1

b1

b2

b1

b1

b1

b1

b2

b2

b2

b2

Variable

Strength

Combinatorial

Values BCD

with t=3

c1

c2

c1

c1

c2

c2

c1

c1

c2

c2

d1

d2

d1

d2

d1

d2

d1

d2

d1

d2

Base Values

+ =

Input Variables

A B C D

a1

a2

a1

a1

a2

a2

a2

a1

a2

a1

b1

b2

b1

b2

b1

b2

b1

b1

b2

b2

Variable

Strength

Combinatorial

Values

c1

c2

c1

c2

c1

c2

c1

c2

c1

c1

d1

d2

d1

d2

d1

d2

d1

d2

d1

d2

Base Values

a2 b1 c2 d1

a1

a2

a2

a2

b1

b1

b2

b2

c1

c2

c1

c2

d2

d2

d1

d1

Removing

repetitions

Total test data = 13

Total test data = 9

Total test data = 8

Figure 5: Cummulative t=2 & t=3 Interaction Results

To illustrate variable strength t-way

interaction, we adopt the same example

as Table 2. Now, we assume that all

interaction is uniform at t=2 for all

parameters (i.e. based on our result in

Figure 3). Then, we consider t=3, only

for parameters B,C,D. Combining both

interactions yield result shown in Figure

4. Here, the test suite has been reduced

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 464

Figure 6: Input Output Based Relations Interaction

from 16 (for exhaustive case) to 13, a

saving of 18.75 percent.

As a special case for variable strength

interaction, we can also consider

cumulative strength, t=3 and t=2.

Revisiting Table 2, we can derive the

test suite for t=2 using the same

technique as t=3 (see Figure 5).

Combining the test suite with t=3, yields

the following result (see Figure 6). Here,

we note that T suite for t=2 is not

necessarily a subset of T suite for t=3. In

this case, the test suite has been reduced

from 16 (for exhaustive case) to 14, a

saving of 12.5 percent.

2.3 Input Output Relation Based

Interaction

Similar to variable strength t-way

interaction, input output relation based

interaction does not deal with uniform

interaction. Also, unlike other interaction

possibilities discussed earlier, the

reduction is performed by considering

the knowledge on the input and output

relationship amongst the parameter

values involved (i.e. derived based on

some statistical analysis such as Design

of Experiments (DOE). In this manner,

any input output relations based strategy

implementation can address both

uniform and variable strength

interactions.

To illustrate the input output based

interaction, we revisit Table 1 with the

following input output relationship.

i. Only two outputs are

considered, f1 an f2.

ii. f1 is a function of A,B,C, that

is, f1=f(A,B,C).

iii. f2 is a function of A,D, that is,

f2=f(A,D).

Ideally, these input output relationship

are not to be assumed as they come from

experimental results. Upon establishing

these assumptions, we can derive the test

suite accordingly. Figure 6 illustrates the

complete results. Here, the test suite has

been reduced from 16 (for exhaustive

case) to 9, a saving of 43.75 percent.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 465

3 OVERVIEW OF EXISTING T-

WAY STRATEGIES

The main aim of any t-way strategies is

to cover the interaction tuples of interest

in an optimal manner (i.e. at most once

whenever possible), hence,

systematically minimizing the test cases

for testing consideration. However, there

is no unique solution to this NP-hard

problem [16-18]. It is unlikely that a

unique strategy exists that can always

generate the most optimal number of test

cases in every configuration.

A number of useful strategies have been

developed from the last decade. The

next subsections give some overview of

existing t-way strategies based on the

different type of interaction support

given earlier (i.e. uniform strength

interaction, variable strength interaction

and input-output based relations).

3.1 Uniform Strength Based Strategy

As highlighted earlier, uniform strength

interaction forms the basis of interaction

testing, where all input parameters are

assumed to be uniformly interacting (i.e.

with constant interaction strength (t)

throughout).

A significant number of work have

focused on pairwise (t=2) strategies (e.g.

Orthogonal Array Test System (OATS)

[19], IRPS [20], AllPairs [21], In-

Parameter-Order (IPO) [22], Test Case

Generator (TCG) [23], OATSGen [24],

ReduceArray2 [25], Deterministic

Density Algorithm (DDA) [26], CTE-

XL [27], rdExpert [28], and SmartTest

[29]). As interaction strength is limited

to t=2, pairwise strategies often yield the

most minimum test set as compared

other interaction. Although useful in

some class of system, pairwise testing is

known be ineffective for system with

highly interacting variables [30-32]. For

this reason, rather than dwelling on

pairwise strategies, we are more

interested on a general strategy for t-way

test generation.

GTWay [3, 4] is uniform strength t-way

strategy that relies heavily on its pair

generation and backtracking algorithm.

The pair generation algorithm first

generates all the required interaction

tuples for the specified interaction. Then,

the backtracking algorithm iteratively

traverses all tuples in order to combine

mergeable tuples to form a complete test

case in a greedy manner.

Jenny is also an open source uniform

strength t-way strategy [8]. Jenny

generates t-way test suite in stages where

in the first stage; Jenny generates test

case to cover all the 1-way interaction.

Moving to the second stage, Jenny will

extend the first stage test case to greedily

cover the 2-way interaction pairs. This

process will be repeated until n
th
 stage is

reached where n is the interaction

strength defined by user.

AETG [33, 34]. AETG is the first

uniform t-way strategy that implements

the pooling concept for test generation.

To generate one test data, AETG will

first randomly generate a number of test

data candidates. From these test case

candidates, the strategy will select one

test data that covered the most

uncovered tuples as the final test case. In

case of “tie” situation, the strategy will

randomly select one test data. “Tie”

situation happens when more than one

test data candidates covered the most

uncovered tuples. To enhance its

capability (e.g. for better test size), a

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 466

number of variant AETG

implementations have been implemented

such as that of mAETG [35], and TCG

[23]. The main difference between each

AETG variants is on the method for the

generating test data candidates.

Density [36, 37] is a uniform strength t-

way strategy that is dependent on density

calculation in order to determine the

final test suite. Density strategy always

starts with an empty test case. The

“parameter density” for each unassigned

parameter will be calculated and

parameter with the highest parameter

density will be selected. For the selected

parameter, “value density” for each

corresponded value will be calculated.

The value with the highest value density

will be fitted into selected parameter.

The same process will be repeated until

all parameters have valid assigned value.

The detailed density determination can

be found in [36].

IPOG [5] is based a novel one-

parameter-at-a-time approach as in its

pairwise predecessor IPO [22]. In IPOG,

the interaction parameters will be

generated first as the partial test suite

based on the number of parameters and

interaction value. The test suite is then

extended with the values of the next

parameters by using horizontal and

vertical extension mechanism. Here,

horizontal extension extends the partial

test suite with values of the next

parameter to cover the most interaction

tuples. Upon completion of horizontal

extension, vertical extension may be

summoned to generate additional test

cases that cover all uncovered

interaction tuples. More recently, a

number of variants have been developed

to improve the IPOG’s performance (i.e.

IPOG-D [38], IPOG-F and IPOG-F2

[39]). In addition, other researchers also

have come up with their own version of

IPOG (i.e. Nie’s version of IPOG called

IPO_N [40], William’s version of IPOG

called TConfig [41]) and Younis’s a

number of version of parallel IPOG

variants called MIPOG [42, 43],

G_MIPOG, and MC-MIPOG.

GA [16] and GA-N [40] are two uniform

t-way strategies that adopt genetic

algorithm while ACA [16] is a uniform

t-way strategy that implements ant

colony algorithm. For genetic algorithm,

the test data generation process always

starts with random test cases (later refers

as chromosomes). These chromosomes

will undergo series of mutation

processes until certain stopping criteria

are met. The best chromosomes will be

selected as final test suite. As for ant

colony algorithm, the test data

generation process is mimicking the

colonies of ants travel from place to

place (which representing the parameter)

to find food (which represent the end of

test case) via various route (which

correspond to values for each

parameter). The best route (measured

based on the amount of pheromone left

by colonies of ants) will represent the

best value for a test case.

3.2 Variable Strength Based Strategy

SA [9] is perhaps the first variable

strength t-way strategy in literature.

Using probability-based transformation

equations, SA adopts binary search

algorithm to iteratively find the best test

case from a large random search space.

Although generating optimal test suites,

this approach is very time consuming

because all interaction elements needs to

be analyzed exhaustively using binary

search strategy.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 467

ACS [10] is Chen version of test data

generator that based on ant colony

algorithm. Unlike ACA, ACS has the

ability to generate variable strength test

data suite. Implementation wise, ACS

still based on ant colony algorithm to

find the most optimized test suite.

VS-PSTG [11] is the most recent AI-

based t-way strategy for generating t-

way test suite. As the name suggests,

VS-PSTG is based on the Particle

Swarm Optimization (PSO) algorithm,

which mimics the swarm behavior of

birds. Internally, VS-PSTG iteratively

performs local and global searches to

find the candidate solution to be added

to the final suite until all the interaction

tuples are covered.

3.3 Input-Output Based Relations

Strategy

Union and Greedy [13-15] are the first t-

way strategies that adopts input output

based relations. In the case of Union, the

strategy generates the test suite for each

output variable that cover all associated

input interaction and then assign random

value for all the ‘don’t care’. Then, the

strategy finds the union of all test suites

in order to reduce the number of

generated test data.

Similar to Union, the Greedy strategy

also generates the initial test suite that

covered all associated input interaction

by randomly selecting values for all

don’t care parameters. Nonetheless,

unlike the Union strategy, the Greedy

strategy picks only the unselected test

case from the initial test suite which

covers the most uncovered interactions

as the final test suite. In this manner, the

Greedy strategy often generates a more

optimal test size than that of the Union

strategy.

Test Vector Generator (TVG) [44] is a

freeware tool that supports input output

based relations. Little is known about

TVG’s implementation due to limited

publications. Based on our experience

with the tool, TVG appears to support

three different reduction algorithms

which are t-reduced, plus-one and

random set. Comparatively, t-reduced

algorithm often produces the most

optimize test suite.

Integrated T-Way Test Data Generator

(ITTDG) [45] generates a test case by

iteratively adding the best parameter-

value combination (i.e. a parameter

value combination that covers the most

uncovered tuples) until one complete test

case is formed. In case of more than one

best parameter-value combination found,

ITTDG implements pooling concept

introduces in AETG. The iteration

continues until all tuples has been

covered (and the complete test suite has

been been formed).

Aura [46] implements a pooling concept

for the generating final test suite. Here,

Aura generates each test data candidates

in a random manner. Unlike any other

pooling based strategy, Aura gives the

flexibility to the user to select the pool

size. If a larger pool size is selected, the

more optimized test suite will be

produced but in the expense of execution

time.

ParaOrder and ReqOrder [12] are two

strategies based on IPOG [5] that

address input output based relations.

ParaOrder strategy implements

horizontal and vertical extension for

generating the final test suite, much like

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 468

its predecessor IPOG [5]. The main

difference between ParaOrder with

IPOG is the fact that the initial test data

(i.e. the initial exhaustive test data) for

the former is generated based on the first

defined input output relationships while

the initial test case for the latter is

generated in-defined-order-of-parameter

found. In the case of ReqOrder, the

selection of initial test case does not

necessarily follow the first defined input

output relationships rather the selection

is done based on the highest input output

relationship coverage.

4 PRACTICAL APPLICATIONS

In order to demonstrate the use of t-way

strategies in practice, we adopt a reverse

digital circuits consisting of a single bit

4-to-1 line multiplexer [31, 32, 47].

Here, the aim is to verify the MUX Java

based software implementation using

mutation testing based fault injection

[48]. For this case study, we use ITTDG

[45] as our test data generator and

MuJava version 3 [49, 50] as our fault

injection tool. The schematic diagram

for the single bit 4-to-1 line MUX is

shown in Figure 7 while the equivalent

Java implementation can be found in

Figure 8. Here, the Java implementation

requires 6 parameters with each of which

takes 2 vales (i.e. 6 2 valued

parameters).

/* Multiplexer class will select input between d0, d1,

d2 and d3 as its output based on the value of selector

(s0, s1).

s1 = false, s0 = false => output = d0

s1 = false, s0 = true => output = d1

s1 = true, s0 = false => output = d2

s1 = true, s0 = true => output = d3

The symbol “!”, “&&” and “||” represent logical

operator for NOT, AND and OR respectively

*/

public class Multiplexer {

public static String multiplex (boolean s0,

 boolean s1, boolean d0,

 boolean d1, boolean d2, boolean d3)

 {

 boolean A,B,C,D,E,F,G,H,I,J,output;

 A = !s1;

 B = !s0;

 C = A && B;

 D = A && s0;

 E = s1 && B;

 F = s1 && s0;

 G = C && d0;

 H = D && d1;

 I = E && d2;

 J = F && d3;

 output = G || H || I || J;

 return Boolean.toString(output);

 }

}

Figure 8: Equivalent Java Class For A Single

Bit 4-to-1 Line MUX

Figure 7: A Single Bit 4-to-1 Line Multiplexer

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 469

It is important to make sure that software

implementation follows exactly the

hardware implementation so that the

fault injection strategy can be used to

represent fault in hardware

implementation. In this experiment, we

are to compare the effectiveness of

uniform strength, variable strength, input

output based relations for fault detection.

Now, we inject fault into the software

implementation of MUX using MuJava.

A total of 53 mutants have been

generated which represent potential

faults that might happen in hardware

implementation. Next, we separately

generate uniform strength test suite,

variable strength test suite, and input

output based relations test suite in order

to kill the mutants using ITTDG

implementation.

4.1 Uniform Strength Test Suite

We generate 5 uniform strength t-way

test suite from t = 2 until 6 (i.e.

exhaustive testing). The number of killed

mutants by each test data is depicted in

Table 4. Here, killed mutants represent

faults that can be detected by the test

data.

Table 4: Killed Mutants for Uniform Strength t-

way Test Suite

Strength

(t)

Test

Data

Size

Killed

Mutants

%

Killed

Mutants

2 7 50 94%

3 12 53 100%

4 26 53 100%

5 32 53 100%

6 64 53 100%

From Table 4, all mutants can be killed

completely using a 3-way test data.

Thus, instead of running an exhaustive

testing (which require 64 test cases), a 3-

way testing (which consists of 12 test

cases) is sufficient. Here, 81% of

reduction has been achieved by using 3-

way testing.

4.2 Variable Strength Test Suite

Here, we analyze the potential of

applying variable strength interaction.

As depicted in Table 4, it can be noticed

from that 94% of mutants is killed at t=2

and 100% of mutants is killed at t=3. By

judiciously input parameters with t=3

variable strength t-way test suite can be

generated accordingly. Table 5 shows

several variable strength configurations

to test the same MUX and their

percentage of mutants killed.

Result from Table 5 shows that using a

pairwise testing (i.e. 2-way testing) for

all parameters and 3-way testing for the

first 4 parameters killed all mutants.

Here we can see that, by using variable

strength interaction, only 11 test cases

are required to kill all the mutants

(instead of 12 test cases as in the case of

uniform interaction). Using variable

strength interaction, 83% of reduction

can be achieved (as compared to

exhaustive testing).

Table 5: Killed Mutants for Variable Strength

Test Suite
6 2-valued parameters, t=2

Sub

Strength

Test Data

Size, N

Killed

Mutants

% Killed

Mutants

{s1,s0, d0}

@ t=3
10 51 96%

{s1,s0, d0,

d1} @ t=3
11 53 100%

{s1,s0, d0,

d1, d2} @

t=3

12 53 100%

{s1,s0, d0,

d1, d2, d3}

@ t=3

12 53 100%

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 470

4.2 Input Output Relations Based

Relation Test Suite

Analyzing Figure 7, we deduce that 5

groups of inputs are affecting the output.

They are:-

• Group 1 includes input from s1, s0,

d0.

• Group 2 includes input from s1, s0,

d1.

• Group 3 includes input from s1, s0,

d2.

• Group 4 includes input from s1, s0,

d3.

• Group 5 includes input from d0, d1,

d2.

Based on the above information, an

input output based relations test suite is

generated. The test size, number of

killed mutants and percentage of killed

mutants for input-output interaction are

shown in Table 6.

Table 5: Killed Mutants for Input-Output Based

Relations Test Suite

Test Data

Size

Killed

Mutants

% Killed

Mutants

8 53 100%

Based on result shown in Table 5, we

note that only 8 tests are required to kill

all the mutants with 88% reduction (as

compared to exhaustive testing).

5 CONCLUSIONS AND

DISCUSSION

While the overall results suggest that

input output based relations produce the

smallest size test suite, this conclusion

cannot be generalized to all other

applications. The type of interaction is

highly dependent on the problem at

hand. It is the engineer’s experience and

knowledge on the system under test

(SUT) that determines the best

interaction to choose from.

As a rule of thumb, uniform strength

interaction is summoned when no

knowledge is known about the SUT.

Variable strength interaction is useful

when the effects of some sets of

parameters are known to be significant

to the overall operation of the SUT. As

the name suggests, input output based

relations interaction is helpful when the

overall IO behavior of SUT can be

established.

Summing up, this paper has presented

three different types of interactions (i.e.

uniform interaction, variable strength

interaction and input-output based

relations) that can be possibly been used

for interaction testing. In addition, this

paper also analyzes a number of existing

t-way strategies based on types of

interaction supported. Last but not least,

this paper also elaborates on practical

application where the use of different

types of interactions is demonstrated

within a single SUT. From the result, it

can be concluded that in term of

effectiveness, all three types of

interactions can detect all errors

(mutants) injected to the system.

Finally, while much useful research

work has been done in the last decade

(i.e. as evident by the large number of

developed strategy implementations), the

adoption of interaction testing for

studying and testing real life systems has

not been widespread [51]. In order to

address this issue, more research into the

algorithms and techniques are required

to facilitate its adoption in the main

stream of software engineering.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 471

ACKNOWLEDGEMENTS

This research is partially funded by the

generous MOHE fundamental grants –

“Investigating T-Way Test Data

Reduction Strategy Using Particle

Swarm Optimization Technique” and

USM RU grants – “Development of

Variable-strength Interaction Testing

Strategy for T-Way Test Data

Generation”.

6 REFERENCES

1. Zamli, K. Z., Younis, M. I., Abdullah, S. A.

C., Soh, Z. H. C.: Software Testing: First

ed. KL Malaysia: Open University

Malaysia, 2008.

2. Kuhn, D. R., Lei, Y., Kacker, R.: Practical

Combinatorial Testing: Beyond Pairwise.

IEEE IT Professional. 10 (3), 19-23 (2008)

3. Zamli, K. Z., Klaib, M. F. J., Younis, M. I.,

Isa, N. A. M., Abdullah, R.: Design And

Implementation Of A T-Way Test Data

Generation Strategy With Automated

Execution Tool Support. Information

Sciences. 181(9), 1741-1758 (2011)

4. Klaib, M. F. J.: Development Of An

Automated Test Data Generation And

Execution Strategy Using Combinatorial

Approach. PhD. Thesis, School of

Electrical And Electronics, Universiti Sains

Malaysia, (2009)

5. Lei, Y., Kacker, R., Kuhn, D. R., Okun, V.,

Lawrence, J.: IPOG: A General Strategy

For T-Way Software Testing. In:

Proceedings of the 14th Annual IEEE

International Conference and Workshops

on The Engineering of Computer-Based

Systems, pp. 549-556, Tucson, AZ (2007)

6. Younis, M. I., Zamli, K. Z.: MC-MIPOG:

A Parallel T-Way Test Generation Strategy

For Multicore Systems. ETRI Journal.

32(1), 73-83 (2010)

7. Williams, A. W.: Software Component

Interaction Testing: Coverage Measurment

and Generation of the Configurations. Ph.D

Thesis, School of Information Technology

and Engineering, University of Ottawa,

Ottawa, Canada, (2002)

8. Jenny Test Tool,

http://www.burtleburtle.net/bob/math/jenny

.html

9. Cohen, M. B., Gibbons, P. B., Mugridge,

W. B., Colbourn, C. J., Collofello, J. S.:

Variable Strength Interaction Testing Of

Components. In: Proceedings of 27th

Annual International Computer Software

and Applications Conference, pp. 413-418,

Dallas, USA (2003)

10. Chen, X., Gu, Q., Li, A., Chen, D.: Variable

Strength Interaction Testing With An Ant

Colony System Approach. In: Proceedings

of 16th Asia-Pacific Software Engineering

Conference, pp. 160-167, Penang,

Malaysia (2009)

11. Ahmed, B. S., Zamli, K. Z.: A Variable

Strength Interaction Test Suites Generation

Strategy Using Particle Swarm

Optimization. Journal of Systems and

Software, Article in Press (2011)

12. Wang, Z., Nie, C., Xu, B.: Generating

Combinatorial Test Suite For Interaction

Relationship. In: Proceedings of 4th

International Workshop on Software

Quality Assurance (SOQUA2007), pp. 55-

61, Dubrovnik, Croatia (2007)

13. Schroeder, P. J.: Black-Box Test Reduction

Using Input-Output Analysis. PhD Thesis,

Department of Computer Science, Illinois

Institute of Technology, Chicago, IL,USA,

(2001)

14. Schroeder, P. J., Faherty, P., Korel, B.:

Generating Expected Results For

Automated Black-Box Testing. In:

Proceedings of 17th IEEE International

Conference on Automated Software

Engineering (ASE’02), pp. 139-148,

Edinburgh, Scotland, UK (2002)

15. Schroeder, P. J., Korel, B.: Black-Box Test

Reduction Using Input-Output Analysis.

SIGSOFT Software Engineering Notes.

25(5), 173-177 (2000)

16. Shiba, T., Tsuchiya, T., Kikuno, T.: Using

Artificial Life Techniques To Generate Test

Cases For Combinatorial Testing. In:

Proceedings of the 28th Annual

Intl.Computer Software and Applications

Conf. (COMPSAC’04), pp. 72-77, Hong

Kong (2004)

17. Younis, M. I., Zamli, K. Z., Klaib, M. F. J.,

Soh, Z. H. C., Abdullah, S. A. C., Isa, N. A.

M.: Assessing IRPS As An Efficient

Pairwise Test Data Generation Strategy.

International Journal of Advanced

Intelligence Paradigms. 2(3), 90-104 (2010)

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 472

18. Nie, C., Leung, H.: A Survey of

Combinatorial Testing. ACM Computing

Surveys. 43(2), (2011)

19. Krishnan, R., Krishna, S. M., Nandhan, P.

S.: Combinatorial Testing: Learnings From

Our Experience. ACM SIGSOFT Software

Engineering Notes. 32(3), 1-8 (2007)

20. Younis, M. I., Zamli, K. Z., Isa, N. A. M.:

IRPS: An Efficient Test Data Generation

Strategy For Pairwise Testing. In:

Proceedings of the 12th International

Conference on Knowledge-Based

Intelligent Information and Engineering

Systems, Part I, pp. 493-500, Zagreb,

Croatia: Springer-Verlag, (2008)

21. Allpairs Test Case Generation Tool,

http://www.satisfice.com/tools.shtml

22. Lei, Y., Tai, K. C.: In-Parameter-Order: A

Test Generation Strategy For Pairwise

Testing. In: Proceedings of 3rd IEEE

International Conference on High

Assurance Systems Engineering

Symposium, pp. 254-261, Washington DC,

USA (1998)

23. Tung, Y. W., Aldiwan, W. S.: Automatic

Test Case Generation For The New

Generation Mission Software System. In:

Proceedings of IEEE Aerospace

Conference, pp. 431-437, Big Sky, MT,

USA (2000)

24. Harrell, J. M.: Orthogonal Array Testing

Strategy (OATS) Technique: Seilevel, Inc.,

2001.

25. Daich, G. T.: Testing Combinations Of

Parameters Made Easy [Software Testing].

In: Proceedings of IEEE Systems Readiness

Technology Conference (AUTOTESTCON

2003),, pp. 379-384 (2003)

26. Colbourn, C. J., Cohen, M. B., Turban, R.

C.: A Deterministic Density Algorithm For

Pairwise Interaction Coverage. In:

Proceedings. of the Intl. Conference on

Software Engineering (IASTED 2004), pp.

345–352 (2004)

27. Lehmann, E., Wegener, J.: Test Case

Design By Means Of The CTE XL. In:

Proceedings of the 8th European

International Conference on Software

Testing, Analysis & Review (EuroSTAR

2000), Copenhagen, Denmark (2000)

28. Copeland, L.: A Practitioner's Guide To

Software Test Design. Massachusetts, USA:

STQE Publishing, 2004.

29. SmartTest - Pairwise Testing,

http://www.smartwaretechnologies.com/sm

arttestprod.htm

30. Kuhn, D. R., Wallace, D. R., Gallo, A. M.:

Software Fault Interaction And Implication

For Software Testing. IEEE Transaction on

Software Engineering. 30(6), 418-421

(2004)

31. Younis, M. I., Zamli, K. Z.: Assessing

Combinatorial Interaction Strategy For

Reverse Engineering Of Combinational

Circuits. In: Proceedings of the IEEE

Symposium on Industrial Electronics and

Applications (ISIEA 2009), Kuala Lumpur,

Malaysia (2009)

32. Younis, M. I., Zamli, K. Z.: A Strategy For

Automatic Quality Signing And

Verification Processes For Hardware And

Software Testing. Advances in Software

Engineering. 1-7 (2010)

33. Cohen, D. M., Dalal, S. R., Fredman, M. L.,

Patton, G. C.: The AETG System: An

Approach To Testing Based On

Combinatorial Design. IEEE Transactions

on Software Engineering. 23(7), 437-444

(1997)

34. AETG Web,

http://aetgweb.argreenhouse.com/pricing.sh

tml

35. Cohen, M. B.: Designing Test Suites For

Software Interaction Testing. PhD Thesis,

School of Computer Science, University of

Auckland, (2004)

36. Bryce, R. C., Colbourn, C. J.: A Density-

Based Greedy Algorithm For Higher

Strength Covering Arrays. Software

Testing, Verification and Reliability. 19(1),

37-53 (2009)

37. Bryce, R. C., Colbourn, C. J.: The Density

Algorithm For Pairwise Interaction Testing.

Software Testing, Verification and

Reliability. 17(3), 159-182 (2007)

38. Lei, Y., Kacker, R., Kuhn, R., Okun, V.,

Lawrence, J.: IPOG/IPOG-D: Efficient Test

Generation For Multi-Way Combinatorial

Testing. Journal of Software Testing,

Verification and Reliability. 18(3), 125-148

(2008)

39. Forbes, M., Lawrence, J., Lei, Y., Kacker,

R., Kuhn, D. R.: Refining The In-

Paramater-Order Strategy For Constructing

Covering Arrays. Journal of Research of the

National Institute of Standards and

Technology. 113(5), 287-297 (2008)

40. Nie, C., Xu, B., Shi, L., Dong, G.:

Automatic Test Generation For N-Way

Combinatorial Testing. In: Reussner, R.,

Mayer, J., Stafford, J. A., Overhage, S.,

Becker, S., Schroeder, P. J. (eds.) Quality

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

 473

of Software Architectures and Software

Quality. vol. 3712, pp. 203-211, Springer,

Berlin / Heidelberg (2005)

41. TConfig,

http://www.site.uottawa.ca/~awilliam/

42. Younis, M. I., Zamli, K. Z., Isa, N. A. M.:

MIPOG - Modification Of The IPOG

Strategy For T-Way Software Testing. In:

Proceeding of The Distributed Frameworks

and Applications (DFmA), Penang,

Malaysia (2008)

43. Younis, M. I.: MIPOG: A Parallel T-Way

Minimization Strategy For Combinatorial

Testing. PhD. Thesis, School of Electrical

And Electronics, Universiti Sains Malaysia,

(2010)

44. TVG, http://sourceforge.net/projects/tvg

45. Othman, R. R., Zamli, K. Z.: ITTDG:

Integrated T-way Test Data Generation

Strategy for Interaction Testing. Scientific

Research and Essays, Article in Press

(2011)

46. Ong, H. Y., Zamli, K. Z.: Development of

Interaction Test Suite Generation Strategy

With Input-Output Mapping Supports.

Scientific Research and Essays, Article in

Press (2011)

47. Younis, M. I., Zamli, K. Z., Othman, R. R.:

Effectiveness of the Cumulative vs. Normal

Mode of Operation for Combinatorial

Testing. In: IEEE Symposium on Industrial

Electronics and Applications (ISIEA2010),

pp. 350-354, Penang, Malaysia (2010)

48. Mano, M. M., Kime, C. R.: Logic and

Computer Design Fundamental: Pearson

Education International, 2004.

49. Ma, Y., Offutt, J., Kwon, Y.: MuJava: An

Automated Class Mutation System. Journal

of Software Testing, Verification and

Reliability. 15(2), 97-133 (2005)

50. MuJava Version 3,

http://cs.gmu.edu/~offutt/mujava/

51. Czerwonka, J.: Pairwise Testing In Real

World. In: Proceedings of 24th Pacific

Northwest Software Quality Conference,

pp. 419-430, Portland, Oregon, USA (2006)

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(2): 459-473
The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085)

