
257

An agent tool for integrating component-

based applications

Ebtehal Alsaggaf 1 and Prof.Dr. Fathy albouraey 2

 Faculty of Computing and Information Technology, King Abdulaziz University KAU, Jeddah, Saudi

Arabia
1Ebte-alawi@hotmail.com , 2fathy55@yahoo.com

ABSTRACT: The concept of building the best component-based application becomes very attractive. But, the reusable

components must comply with specific underlying middleware architecture in order to interact with each other efficiently. This

dependency on the underlying architecture creates compatibility problems. Anyway, software agents provide a powerful new

method for implementing the information systems. Multi-Agent System (MAS) can communicate and cooperate with each other

to solve complex problems and implement complex systems. So, in this research, we will define how component CORBA can

interact with DCOM by using MAS. This will able to make us freedom to choose the best attributes from both systems and

combine them to build the best possible application that specifically suits my environment.

Keywords: CORBA, DCOM , COM, mobile agent, MAS.

1. INTRODUCTION

The software applications become more complex
and computer hardware becomes more powerful and

more affordable distributed computing in future.

Component-based software is emerged as an important

developmental strategy focusing on achieving systems

development. It can be defined as a unit of software that

implements some known functions and hides the

implementation of these functions behind the interfaces

that it exposes to its environment [1]. Component

technology offers many advantages for scientific
computing since it allows reusability, interoperability,

maintability, adaptability, distribution that can used

easily, efficiently in application development. It speeds
the development of applications, operating systems or

other components. It enables the developers to write

distributed applications in the same way of writing non
distributed applications. As a result, scientists can

focus their attention to overall application design and

integration [2].

Many reusable components are available on the

Internet. But, they must comply with specific

underlying middleware architecture in order to interact
with each other efficiently. This dependency on the

underlying architecture creates compatibility problems

between components based on different architectures.
There are three most widely-used component standards,

which are Component Object Model (COM/DCOM)

[1], Common Object Request Broker Architecture
(CORBA) [3, 4] and Java/Remote Method Invocation

(Java/RMI) [3].

The (DCOM) and (CORBA) are two models

that enable software components with different descent
to work together. The aims of component-based

software development are to achieve multiple quality

objectives, including interoperability, reusability,
implementation transparency and extensibility [4].

Anyway, Agents are applied as interaction entities

to mediate differences between components [8]. The

term agent means a variety of things to a variety of

people, commonly it is defined as independent software

program, which runs on behalf of a network user. It can

run when the user is disconnected from the network [4].

However, mobile agent-based computing, being high-

level and flexible, can be a useful tool in rapid
prototyping due to its high level of abstraction and ease

of use. MAS researchers develop communications

languages, interaction protocols, and agent architectures
that facilitate the development of multi-agent systems.

In this study, multi-agent system is proposed to solve

the compatibility problem by designed integration tool

between CORBA and DCOM technologies.

1.1 CORBA and DCOM comparison

Both DCOM and CORBA frameworks provide client-

server type of communications. To request a service, a client

invokes a method implemented by a remote object, which

acts as the server in the client-server model. The service

provided by the server is encapsulated as an object and the

interface of an object is described in an Interface Definition

Language (IDL). The interfaces defined in an IDL file serve

as a contract between a server and its clients. Clients interact

with a server by invoking methods described in the IDL. The

258

actual object implementation is hidden from the client.

CORBA also supports multiple inheritances at the IDL level,

but DCOM does not. Instead, the notion of an object having

multiple interfaces is used to achieve a similar purpose in

DCOM. CORBA IDL can also specify exceptions [9].

Figure 1: RPC structure

 DCOM CORBA

Top layer: Basic programming architecture

 Common base

class
IUnknown CORBA::Object

Object class

identifier
CLSID interface name

Interface

identifier
IID interface name

Client-side object

activation
CoCreateInstance()

a method

call/bind()

Object handle interface pointer object reference

Middle layer: Remoting architecture

 Name to

implementation

mapping

Registry
Implementation

Repository

 Type

information for

methods

Type library
Interface

Repository

Locate

implementation
SCM ORB

Activate

implementation
SCM OA

Client-side stub proxy stub/proxy

Server-side stub stub skeleton

Bottom layer: Wire protocol architecture

Server endpoint

resolver
OXID resolver ORB

Server endpoint object exporter OA

Object reference OBJREF
IOR (or object

reference)

Object reference

generation
object exporter OA

Marshaling data

format
NDR CDR

Interface

instance

identifier

IPID object_key

Table 1. Table of the Summary of corresponding terms and entities

In both DCOM and CORBA, the interactions

between a client process and an object server are

implemented as object-oriented RPC-style

communications. Figure 1 shows a typical RPC

structure. In DCOM, the client stub is referred to as the

proxy and the server stub is referred to as the stub. In
contrast, the client stub in CORBA is called the stub

and the server stub is called the skeleton. Sometimes,

the term "proxy" is also used to refer to a running
instance of the stub in CORBA.

Their main differences are summarized in Table 1.

First, DCOM supports objects with multiple interfaces

and provides a standard QueryInterface() method to

navigate among the interfaces. This also introduces the

notion of an object proxy/stub dynamically loading

multiple interface proxies/stubs in the remoting layer.

Such concepts do not exist in CORBA. Second, every

CORBA interface inherits from CORBA::Object, the

constructor of which implicitly performs such common
tasks as object registration, object reference generation,

skeleton instantiation, etc. In DCOM, such tasks are

either explicitly performed by the server programs or

handled dynamically by DCOM run-time system.

Third, DCOM's wire protocol is strongly tied to RPC,

but CORBA's is not. Finally, we would like to point out

that DCOM specification contains many details that are

considered as implementation issues and not specified

by CORBA. As a result, they used the Orbix
implementation in many places in order to complete the

side-by-side descriptions [5].

1.2 Software agents

 Software agents, one of the most exciting new

developments in computer software technology, can be

used for quickly and easily building integrated

enterprise systems. The idea of having a software agent

that can perform complex tasks on our behalf is

intuitively appealing [9]. The natural next step is to use

MAS that communicate and cooperate with each other

to solve complex problems and implement complex
systems. Software agents provide a powerful new

method for implementing these information systems.

Mobile agent-based computing is an attractive, though
not widely accepted model for structuring distributed

solutions. The most distinctive feature of this model is

the mobile agent: a migrating entity, with the capability

to transfer its current state and code to a different

network location. Compared to remote communication,

migration could reduce network traffic. Furthermore,

mobile agents can function independently of their

dispatching host and contact it later only to return a

small set of results. Relevant application domains for
mobile agents are distributed information retrieval,

monitoring and filtering [7].

There are several reasons for the quite limited
acceptance of the mobile agent technology. First, it's

quite difficult to identify a distributed problem whose

259

solution can be based on mobile agents only, instead of

an equivalent or even better "classical" message-passing

or Web Services solution. Another major concern is

security: how to protect agents and servers from one
another. Nevertheless, mobile agent-based computing,

being high-level and flexible, can be a useful tool in

rapid prototyping. Due to its high level of abstraction
and ease of use, it can also be applied as a teaching tool

in introducing students to distributed computing [8].

However, applications require multiple Agents that can

work together. A MAS is a loosely coupled network of

software agents that interact to solve problems [6, 7].

The difficulty arises from the need to understand how to

combine elements of various content languages and

interaction protocols in order to construct meaningful

and appropriate messages [10] but, it has the following

advantages [7]:
1. A MAS distributes computational resources and

capabilities across a network of interconnected

Agents. A MAS is decentralized and thus does not

suffer from the "single point of failure" problem in

centralized systems.

2. A MAS allows for the interconnection and

interoperation of multiple existing systems.

3. A MAS efficiently retrieves, filters, and globally

coordinates information from sources that are
spatially distributed.

4. In MAS, computation is asynchronous.

5. A MAS enhances overall system performance,
efficiency, reliability, extensibility, robustness,

maintainability, responsiveness, flexibility, and

reuse.

2 RELATED WORK

2.1 COM-CORBA Interoperability

This book is the first complete guide to do the

architects of COM-CORBA bridge to make distributed
objects work in a heterogeneous environment,

developers must bridge the gap between Microsoft

COM/DCOM and the industry CORBA standard. It
starts with easy-to-understand descriptions of both

COM and CORBA, exploding the myth of complexity

that surrounds these technologies. Next, it delivers a

step-by-step guide to building your own working,

scalable and transparent COM/CORBA systems,

integrating Windows and UNIX. It has CD-ROM which

includes MS-Access source code for all examples, plus

trial versions of IONAs Orbix COMet, the first

commercial bridge for linking COM and CORBA
modules, and OrbixWEB 3.0 tools for building Internet-

based CORBA Server applications [1].

2.2 Multi-Technology Distributed Objects and

their Integration

In this article discussing the basic incompatibility

points, and overviewing the basic strategies for bridging

the gap between CORBA, DCOM, and RMI. Most of

the work in the area, they surveyed concerns bridging
CORBA and DCOM. This is expected considering the

widespread deployment of Microsoft’s operating

systems and the acceptance of CORBA as the most
mature middleware architecture. Moreover, the early

presence of a variety of COM components and ORB

products from commercial companies led developers to

use those products. As a result the bridging between

CORBA and DCOM was an urgent need.

They can distinguish two basic approaches for

bridging, the static bridging, and the dynamic bridging.

Under static bridging, the creation of an intermediate

code to make the calls between the different systems is

required. The disadvantage of the static bridge is that
any changes on the interfaces require a change in the

bridge. In dynamic bridging there is no code depended

on the types of calls,the implementation belongs to

commercial companies which have released many

bridge tools, compliant with OMG’s specification.

Some of these products are PeerLogic’s

COM2CORBA, IONA’s OrbixCOMet Desktop, and

Visual Edge’s ObjectBridge. All the above products

realize one of the interface mappings that OMG
specifies [2].

Many attempts have been undertaken to bridge the

gap between the underlying object architectures,until
now the use of a single middleware product is the most

reliable solution.

2.3 A Component-Based Architecture for Multi-

Agent Systems

This study introduced a formal multilayered

component-based architecture towards developing

dependable MAS. They had not investigated any

specific approach for verifying the MAS design yet.
In a large system, some problem solving required

agents that have the BDI set, the MAS is not only

heterogeneous but also has a heavy overhead on the
system execution. This complexity must be resolved at

the architecture level so that in an implementation the

complexity does not arise. In [6], they introduced a

formal multilayered component-based architecture

towards developing dependable MAS. They had not

investigated any specific approach for verifying the

MAS design yet. However, it seems feasible that they

could provide a uniform platform for both programming

and verifying MASs, if they provided reasoning rules
for Lucx.

After we studied the above researches, it can be

feasible for us to design MAS as integration tool for
component-based application by investigating specific

260

widely component standards, which are DCOM and

CORBA.

3 THE CURRENT WORK

There are several phases to develop the best

component-based application, the first phase is analysis

phase which is concerned on user requirements and

then present system model which is corresponds to use

cases in object oriented design. The second phase is

design which specifies the different roles to be

developed in the software system, and their interactions.

It is composed of the role model and the interaction

model. The third phase is implementation. The last
phase is testing phase which defines the types of used

tests. These phases called Software Development

Cycle.

3.1 System Analysis

Implementing distributed computing presents many

challenges with respect to middleware in general and

CORBA and DCOM specifically. Depending on both

the business and technical problems that need to be

solved, the greatest probability is make Integration

between CORBA & DCOM to build the best
component-based application from hybrids of the best

technology and tools available at the time and the

concept of building application which contains
components from both CORBA & DCOM, is giving

you the freedom to choose the best attributes from both

technologies [1,2].

How do we make this Integration?

For many organizations, a business and technology

need exists for “Integrating” between CORBA and

DCOM. This generally means providing a bridge

between CORBA and COM, and two mappings.
In order to transparently couple components from

DCOM and CORBA, some of bridging software is

needed to handle the translation of types and object
references between the two systems.

What actually required building abi-directional
Bridge between CORBA & DCOM. ?

We should to be able to do the following [1]:

• Transparently contact object in one system to

other.

• Use data types from one system as though they

were native type in the other system.

• Maintain identity & integrity of the types as they

pass through the bridge in order to reconstitute

them later.

We can distinguish two basic approaches for
bridging, the static bridging, and the dynamic bridging .

Static bridging: This provides statically generated

marshalling code to make the actual call between the

object systems. Separate code is needed for each

interface that is to be exposed to other object system.

Static bridging also implies that is an interface-specific

package (DLLs, configuration files, ect.) which needs
to be deployed with client application.

Dynamic bridging: This provides a single point of

access between the two systems which all calls go
through. No marshalling code is required to expose

each new interface to the other object system.

In either case, a proxy is needed on the client side

to intercept and pass on the call to remote machine,

with a stub on the server side to receive it. (Of course, if

the call is being made in-process, it will occur directly

between the calling object and the target object, with no

proxy or stub required) Hence, all that is required to

provide a bridge between CORBA and DCOM is to

provide some thing (bridge call) which belongs to the
current object system and sent the bridge call to MAS.

Under static bridging in the two technologies, the

creation of an intermediate code to make the calls

between the different systems is required. That

intermediate code would be called the bridge object

which could be sent and receive the call function to and

from MAS. In dynamic bridging, the operation is based

on the existence of a dynamic mechanism which can

manage any call in spite of the interfaces [1, 2].
 To make the Integration, we will first consider the

bridge between the client and server and the bridge

between two components for both technologies which
we found them the same bridge thus needing to build

two mapping tables: function table [Tablt3] and data

type table [Tablt2].

DCOM CORBA
short short

unsigned short short

long int

Unsigned long int

double double

float float

char char

Boolean Boolean

byte byte

TABLE 2: DATA TYPE TABLE

DCOM CORBA
IUnknown CORBA::Object

QueryInterface -

Addref -

Release -

CoCreateInnstance
a method

call/bind()

UUID -

CLSID interface name

get() get()

set() set()

261

TABLE 3: FUNCTION TABLE

The same bridge use in both ways. In our model,
the integrator (bridge) is a MAS, which can contain a

set of software agents that may run on one computer,

and may be distributed on different computers in the
network. The system contains different agents having

different functions and tasks.

Based of the features of Multi-Agent system MAS,

it is natural to introduce MAS in our system where it

can be applied to bridging and mapping the two most

widespread technologies.

When the component need to call another

component in the same techniques nothing to do else if

the component need to call another component in
different techniques then send a message to MAS.

3.2 System Architecture

The objectives of design this system model is to

make Integration between CORBA and DCOM

technologies in the way in which DCOM and CORBA

are differ and resemble, organizing the comparison

according to some studied criteria .This system consists

of Combine Agent, Mapper Agent, Manager Agent,

Agent library, DCOM component and CORBA

component. The sequence of the work among Agents as
the following:

1. The Manager Agent receives the massage of the

call function which sent by CORBA component (for
example), the main job is achieved by the Manger

Agent. The functions of Manger Agent are:

• Receive this call and determine the kind of

technology.

• Send this call to Mapper Agent.

• Manages all active Agents.

• Last, sent the mapping call to other technology.

2. The Mapper Agent. Separate the formula and

sent all sub formula to corresponding agent, as the

following:

• The Interface Agent takes and reads its Interface,

comparing CORBA Interface to its corresponding

DCOM from library Agent and then written the

equivalent one of new mapping Interface

• The function Agent takes and reads its function,

comparing CORBA function to its corresponding

DCOM from library Agent and then written the

equivalent one of new mapping function.

• The data type Agent takes and reads its data,

comparing CORBA data type to its corresponding

DCOM from library Agent and then written the
equivalent one of new mapping data type.

3. Agent library has three tables: function table

[Tablt 3] and data type table [Tablt 2] and Table of the

corresponding terms and entities [Tablt 1]. These tables

are be fixed and stored in the database. The function

table has two columns, one for DCOM functions and

the other column is for the corresponding function in
CORBA. The same technique will be applied for data

type table in which each data type of DCOM arranged

to its corresponding data type in CORBA , Table of the
corresponding terms and entities summarizes the

corresponding terms and entities in the two

architectures.

4. Agent library will come then after receiving a

message from Interface Agent, function Agent or The

data type Agent .For example, if Interface Agent will

send message to Agent library that will execute a query

to the database using JDBC (Java Data Base

Connectivity). The result of query will be represented

as object. This will result in an array of objects (may be
one object).

5. The Combine Agent takes the result of mapping

from data type Agent, function Agent and Interface

Agent. Then combine them to building anew DCOM

formal and sent this formal to the Manger Agent which

sending them to the DCOM

6. The DCOM component receives the call

formula to complete the operation, and then produce the

result of function which will return back to MAS.
7. The MAS will be applied the same technique

for a DCOM result to produce a new CORBA formal

after mapping in it (which may be the replying of call
function).

At the end, The Integration between CORBA &

DCOM technologies will be completed (see Figures 2,

3).

Figure 2: CORBA to DCOM steps in MAS

262

Figure 3: DCOM to CORBA steps in MAS

3.3 System Detailed Design

Detailed design phase consists of the following steps:

• Design Interaction diagram for the whole

system and for each agent which presents the

agents and messages between them.

• Design Block interfaces by written all functions

and their parameters for each agent

• Design database schema.

3.3.1. Interaction Diagram

Figure 4: Interaction Diagram for the whole system

Figure 5: Interaction Diagram for the Manager Agent

Figure 6: Interaction Diagram for the Mapper Agent

Figure 7:.Interaction Diagram for the Interface Agent

Figure 9: Interaction Diagram for the library Agent

Figure 9: Diagram for the combine Agent

3.3.2. Block interfaces

In this section we built block interfaces by written all
functions and their parameters for each agent as

following:

263

Manager Agent Functions

recive_massege()

determine_call()

send_call_CORBA()

send_call_DCOM()

Retrieve_map-CORBA()

Retrieve_map_DCOM()

send _CORBA()

send _DCOM()

Mapper Agent Functions

sent_interface()

sent_function()

sent_datatype()

library Agent Functions

query_interface()

query _fun()

query _data()

obtain_map_interface()

obtain_map_fun()

obtain_map_data()

Interface Agent Functions

map_interface()

sent-map_interface()

function Agent Functions

map_fun()

sent-map_fun()

data type Agent Functions

map_data()

sent-map_data()

Combine Agent Functions

Combine_agent(agent1,agent2,agent3)

Send_result()

3.3.3. Database schema

This structure represents the data base tables in the

model:

4 DISCUSSION

This section will briefly discuss some of the

advantages of our system model. Some of these

advantages are applicable to all distributed computing

technologies, including CORBA and DCOM. In

additional, it will also add the advantages of MAS that

we have mentioned in section 1.4, thus our system

model can able to make how to combine elements of

various Interfaces , data types and functions in order to
construct meaningful and appropriate messages .So it

will have the following advantages:

• The components will able to interact with each

other for two components, hosted on different

component architectures. In 3.3 section, we

describe the details of design interaction diagram

for the whole system and for each agent.

• Speeding up development processes: Since

applications can be built from existing pre-built

components, this helps to maintain the speed up of
development process tremendously.

• Improving deployment flexibility: Organizations

can easily customize an application for different

areas by simply changing certain components in the

overall application.

• Lowering maintenance costs: Certain functions of

an application can be grouped into discreet
components, which can be upgraded without

retrofitting the whole application.

• Improving scalability: Since applications are built

from many objects, the objects can be redeployed to

different machines when needs arise or even

264

multiple copies of the same components can run

simultaneously on different machines.

Moreover, it will achieve multiple quality objectives

for developing it, including:
1. Interoperability and reusability by using block

interfaces which have all functions and their

parameters for each agent in the MAS model
2. Implementation transparency and extensibility were

done by using all functions and their parameters for

each agent and also by representing the database

schema which include three tables that stored in it

(see 3.3 sections).

Finally, we will build a software integration tool for

component-based application by using MAS.

5 CONCLUSION AND FUTURE WORK

As a result the bridging between CORBA and
DCOM was an urgent need. For software component to

integrate with each other, it is difficult if not impossible

for two objects conforming to dissimilar technologies to

interact with each other. The above model is the way

which uses the software agents to build a software

integration tool between CORBA and DCOM

technologies which will give us the freedom to choose

the best attributes from both systems and combine them

to build the best possible component-based application.
This model combine the advantages of MAS ,

CORBA and DCOM technologies ,thus it able to

transparently contact object in one system to other rely

on the features of MAS and it also use data types from

one system as though they were native type in the other

system by Agent library with DB. This will maintain

identity and integrity of the types as they pass through

the bridge in order to reconstitute them later. This will

achieve multiple quality objectives, including

interoperability, reusability, implementation
transparency and extensibility

In the future work, we want to improve our model

to support integration tool for all Component
technologies to build a software component-based

application by using MAS. MAS will be modifying by

adding new two mapping for each new technology

which it adding to it. Finally, the system that we have

designed stills a basic model. So, we will interest to

complete the system developing and implementing it.

6 References

[1] R Geraghty, S Joyce, T Moriarty and G. Noone,

"Com-Corba interoperability", Prentice Hall PTR

Upper Saddle River, NJ, USA, 1999.

[2] Raptis, K., D. Spinellis, and S. Katsikas, "Multi-
technology distributed objects and their

integration. Computer Standards & Interfaces",

vol. 23 no. 3, pp. 157-168, 2001.

[3] "The CORBA Programming Model", 2008,

http://download.oracle.com/docs/cd/E15261_01/tu
xedo/docs11gr1/tech_articles/CORBA.html

[4] IBM, "Is web services the reincarnation of

CORBA?" ,2001,
http://www.ibm.com/developerworks/webservices

/library/ws-arc3/

[5] Pritchard J.," COM and CORBA side by side:

architectures, strategies, and implementations",

Addison-Wesley Professional ,1999.

[6] Wan, K.Y. and V. Alagar. "A Component-Based

Architecture for Multi-Agent Systems", IEEE

Computer Society ,2006.

[7] Agent Technology ,Green Paper ,"Agent Working

Group ",OMG Document ec/2000-03-01,Version
0.91, 2000.

[8] Dr. R.A. Adey, A.K. Noor, B.H.V. Topping,

"Advances in Engineering Software", vol. 30 no.

8, 2010.

[9] Manvi, S.S. and P. Venkataram, "Applications of

agent technology in communications: a review.

Computer communications", vol. 27 no. 15, pp.

1493-1508 ,2004.

[10] Shepherdson, J.W., H. Lee, and P. Mihailescu,
"mPower—a component-based development

framework for multi-agent systems to support

business processes", BT Technology Journal, vol.
25 no.3, pp. 260-271, 2007.

