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ABSTRACT 
 
This paper presents an adaptive 
probabilistic region-based deformable 
model using an explicit representation 
that aims to extract automatically defects 
from a radiographic film. To deal with 
the height computation cost of such 
model, an adaptive polygonal 
representation is used and the search 
space for the greedy-based model 
evolution is reduced. Furthermore, we 
adapt this explicit model to handle 
topological changes in presence of 
multiple defects. 
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1 INTRODUCTION 
 
Radiography is one of the old and still 
effective Non Destructive Testing tools. 
X-rays penetrate welded target and 
produce a “shadow picture” of the 

internal structure of the target [1].  
Automatic detection of weld defect is 
thus a difficult task because of the poor 
image quality of industrial radiographic 
images, the bad contrast, the noise and 
the low defects dimensions. Moreover, 
the perfect knowledge of defects shapes 
and their locations is critical for the 
appreciation of the welding quality. For 
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that purpose, image segmentation is 
applied. It allows the initial separation of 
regions of interest which are 
subsequently classified.  
Among the boundary extraction-based 
segmentation techniques, deformable 
model also called  active contours or 
snakes are recognized to be one of the 
efficient tools for 2D/3D image 
segmentation [2]. Broadly speaking a 
snake is a curve which evolves (under 
the influence of internal forces going 
from within the curves itself and external 
forces computed from the image data) to 
match the contour of an object in the 
image. The bulk of the existing works in 
segmentation using active contours can 
be categorized into two basic 
approaches: edge-based approaches, and 
region-based ones. The edge-based 
approaches are called so because the 
information used to drawn the curves to 
the edges is strictly along the boundary. 
Hence, a strong edge must be detected in 
order to drive the snake. This obviously 
causes poor performance of the snake in 
weak gradient fields. That is, these 
approaches fail in the presence of noise. 
Several improvements have been 
proposed to overcome these limitations 
but still they fail in numerous cases 
[3][4][5][6][7][8][9] [10][11]. With the 
region-based ones [12][13][14][15] 
[16][17][18][19] [20], the inner and the 
outer region defined by the snake are 
considered and, thus, they are well- 
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adapted to situation for which it is 
difficult to extract boundaries from the 
target. We can note that such methods 
are computationally intensive since the 
computations are made over a region 
[18][19]. 

This paper deals with the detection of 
multiple defects in radiographic films, 
and presents a new region based snake 
which exploits a statistical formulation 
and an adaptive active contour nodes 
representation are used. Section 2 details 
the mathematical formulation of the 
method. Section 3 is devoted to the 
development of the proposed 
progression strategy of our model. In 
section 4 we show how we adapt the 
model to the topology in presence of 
multiple defects. Results are shows in 
Section 5.We draw the main conclusions 
in section 6. 
 
2 PROBABILISTIC DEFORMABLE 
MODEL 
 
2.1 Statistical Image Model 

 
Let C = {c0, c1, ..., cN−1} be the boundary 
of a connected image region R1 of the 
plane and R2 the points that do not 
belong to R1. if xi is the gray-level value 
observed at the ith pixel, X = {xi} the 
pixel grey levels, px the grey level 

and p(xi) = p(xi|2) for iR2 ). The 
simplest possible region based model is 
characterized by the following 
hypothesis: conditional independence 
(given the region contour, all the pixels 
are independent); and region 
homogeneity, i.e., all the pixels in the 
inner (outer) region have identical 
distributions characterized by the same 
φx. Thus the likelihood function can be 
written as done in [13] [14] 

density, and x = {1, 2} the density 
parameters (i.e., p(xi) = p(xi|1) for i R1 
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  (1) 

pixel-wise conditional probabilities, of 
the inner and outer regions, respectively. 

 

2.2 Probabilistic approach to Contour 
Progression 

 
The purpose being the estimation of the 
contour C of the region R1 with K snake 
nodes, then this can be done by 
exploiting the presented image model by 
using the MAP estimation since: 
 
p(C|X) = p(C)p(X|C)                            (2) 
 
and then 
 

                 (3) 

 
Since we assume there is no shape prior 
and no constraints are applied to the 
model, then p(C) can be considered as 
uniform constant and then removed from 
the estimation. Moreover Model image 
parameters must be added in the 
estimation, then: 
 

                         (4) 

 
Hence the MAP estimation is reduced to 
ML (Maximum likelihood) one. 
Estimating C implies also the estimation 
of the parameter model x. Under the 
maximum likelihood criterion, the best 
estimates of x and C denoted by  and 

 are given by: 
 

               (6)  
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respect to C and x would be 
computationally very difficult, then an 
iterative scheme is used to solve the 
equation: 
 

The log function is included as it allows 
some formal simplification without 
affecting the location of the maximum. 
Since solving (6) simultaneously with 
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                (8) 

 
Where and  are the ML estimates 

of C and x respectively at the iteration t. 
 
2.3 Greedy Progression 
 
The implementation of the deformable 
model evolution (according to(7)) uses 
the greedy strategy, which evolves the 
curve parameters in an iterative manner 
by local neighborhood search around 

neighborhood is the set of the eight 
nearest pixels. 
.  
 
3 SPEEDING THE PROGRESSION  
 
Two strategies have been associated to 
improve the evolution velocity of the 
model and make it faster then the 
original model. Moreover, the 
convergence criterion has been modified 
such as the convergence of each cycle is 
reached quickly. 
 
3.1 Search Space Reducing and 
Normal Evolution 
 
We first choose to change the search 
strategy of the pixels being candidates to 
maximize . For each 

snake node, instead of searching the new 
position of this node among the 8-
neighborhood positions, the space search 
is reduced from 1 to 1/4 by limiting the 
search to the two pixels laying in normal 
directions of snake curve at this node as 
shown in Figure.1. 
 

Figure 1.  The new neighborhood: from the eight 

nearest pixels to the four nearest pixels in the normal 
directions 

3.2 Polygonal Representation and 
Adaptive Segments Length 
 
An obvious reason for choosing the 
polygonal representation is for the 
simplicity of its implementation. 
Another advantage of this description is 
when a node is moved; the deformation 
of the shape is local. Moreover, it could 
describe all shapes when a large number 
of nodes are used. However increase the 
nodes number will decrease the 
computation speed. To improve 
progression velocity, nodes number 
increases gradually along the snake 
evolution iterations through an 
insertion/deletion procedure. Indeed, 
initialization is done with few points and 
when the evolution stops, points are 
added between the existing points to 
launch the evolution, whereas other 
points are removed. 
 
3.2.1 Deletion and Insertion Processes.  
 
The model progression will be achieved 
through cycles, where the model nodes 

ˆ tCx̂
t

t CXp   
C

x
t/(logmaxargˆ 11 ),ˆ

C

t CXpC                    (7) x
t ),/(logmaxargˆ 1

log ( / , x )p X C  t

snake points to select new ones which 
 maximize . The used 

log ( / , x )p X C  t
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number grows with an insertion/deletion 
procedure. In the cycle 0, the contour 
initialization begins with few points. 
Thus, solving (7) is done quickly and 
permits to have an approximating 
segmentation of the object as this first 
contour converges. 
In the next cycle, points are added 
between initial nodes and a mean length 
MeanS of obtained segments is 
computed. As the curve progresses 
towards its next final step, the maximum 
length allowed will be related to MeanS 
so that if two successive points ci and 
ci+1 move away more than this length, a 
new point is inserted and then the 
segment [ci ci+1] is divided as shown in 
figure 2.  
 
 

 

Figure 2. Regularization procedure: maintaining 

the continuity by adding nodes 

 
On the other hand, if the distance of two 
consecutive points is less than a defined 
threshold (TH), these two points are 
merged into one point placed in the 
middle of the segment [ci ci+1] as 
illustrated in figure 3. Moreover, to 
prevent undesired behavior of the 
contour, like self intersections of 
adjacent segments, every three 
consecutive points ci−1, ci, ci+1 are 
checked, and if the nodes ci−1 and ci+1 

are closer than MeanS/2, ci is removed 
(the two segments are merged) as 
illustrated in Figure.4. This can be 
assimilated to a regularization process to 
maintain curve continuity and prevent 
overshooting. 
When convergence is achieved again 
(the progression stops) new points are 
added and a new MeanS is computed. A 
new cycle can begin. The process is 
repeated until no progression is noted 
after a new cycle is begun or no more 
points could be added. This is achieved 
when the distance between every two 
consecutive points is less then the 
threshold TH. Here, the end of the final 
cycle is reached. 
 

 

Figure 3. Regularization procedure: Avoiding 
overshooting by merging nodes 
 
 
 

 
Figure 4. Regularization procedure: Avoiding 
overshooting by merging segments 
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3.3 Convergence criterion  
 
In the fast greedy algorithm presented 
above, a cycle’s iteration will be stopped 

if the convergence criterion of the 
process is achieved. This criterion 
consists of a combination of two 
criterions. Suppose that A(k,S) is the area 
delimited by the model at the kth iteration 
of a cycle S. Then, the criterion AC(k,S) is 
defined as follows: 
 

),(

),(),1(

),( Sk

SkSk

Sk A

AA
AC






                   (9) 

 
Working alone, this criterion is not self-
satisfied thus we add to it an other one 
which is related to the length of the 
snake cord length Suppose that L(k,S) is 
the length of the snake cord at the kth 
iteration of the Sth cycle, then second 
criterion LC(k,S) is defined as follows: 
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In this method, theses two criterions are 
used instead of the ML value’s one 

because they have exhibit quickest 
convergence than the ML variation 
which continues to grow even if the 
snake is doing very little jumping around 
its real final contours. This is mainly due 
to the digital nature of the image. 
 
3.4 Algorithms 
 
Since the method kernel is the Maximum 
Likelihood (ML) estimation of the 
model nodes by optimizing the search 
strategy (reducing the neighborhood), 
we begin by presenting the algorithm 
related to the ML criterion, we have 
named AlgotithmML. Next to this 

algorithm we present the algorithm of 
the regularization we have just named 
Regularization. These two algorithms 
will be used by the algorithm which 
describes the evolution of the snake over 
a cycle. We have called this algorithm 
AlgorithmCycle. The overall method 
algorithm named OverallAlgo is given 
after the three quoted algorithms. For all 
these algorithms MeanS and TH are the 
mean segment length and the threshold 
shown in the section 3.2, α is a constant 
related to the continuity maintenance of 
the snake model. ε is the convergence 
threshold, AC and LC are the area 
delimited by the polygon C and the cord 
length of this polygon respectively 
 
3.3.1 Algorithm 1. AlgorithmML 
 
input: M nodes C = [c0, c1, . . 
.  cM−1], 
 
output: CML, ACML, LCML

 

 
Begin; 
 

Step0: Estimate x(1,2) inside 

and outside C; 
 
Step1: Update the polygon 
according to: 

  ),c..,n..,cc/X(plogmaxargC xM,j,,
)c(Nnj

ML
j

j

21




N(cj) is the set of the four 
nearest pixels laying in the 
normal direction of cj. This will 
be repeated for all the polygon 
points; 
 
Step2: Estimate  ML

x for CML and 

ACML and LCML as: 
ACML is the pixel number inside 
the polygon CML and ACML is the 
polygon (CML) cord length of the  
 
End 
 
3.3.2 Algorithm 2. Regularization 
 
input : M nodes C = [c0, c1, . . 
. , cM−1], MeanS, TH, α 
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output: CReg 
 
Begin; 
 
Step0: Compute the M segments 
length: S lenght(i) ; 
 
Step1:  
for all i (i=1,...,M) do 
 if S length(i) < TH then 
  Remove ci and ci+1 and replace 

them by a new one in the  
  middle  of [cici+1] 
 end 

 if S length(i) > α∗ MeanS then 
  insert a node in the middle of 
  [cici+1] 
 end 
end 
 
Step 2 : 
for all triplet(ci−1, ci, ci+1) do 
 if ci−1 and ci+1 are closer 
           than MeanS/2 then 
     Remove ci 
 end 
end 
End 
 
3.3.3 Algorithm 3. AlgorithmCycle 
 

input : Initial nodes 
0
cyC  

 0
1

0
2

0
0  N,cy,cy,cy c,...,c,c , MeanS, 

TH, α,ε 
 
output: The estimate 

cyĈ , and 

cyĈ
A and 

cyĈ
L of the current cycle 

 
Begin 
 
Step0: Set t = 0 (iteration 
counter) and 0

cy
t
cy CC   

Compute MeanS of the N initial 
segments 
 
Step1: Estimate ),(t

cy,x 21   inside 

and outside t
cyC  

Compute t
cyĈ

A and t
cyĈ

L of t
cyC  

LC1= t
cyĈ

L and AC1= t
cyĈ

A  

Perform AlgorithmML( t
cyC ) 

 
Step2 : Recover ACML, LCML and CML 
AC2 = ACML, LC2=LCML 1t

cyC  = CML 

Perform Regularization(
1t

cyC  

,MeanS, TH, α) 

Recover 
gReC  

If(|AC1− AC2|)/AC1 > ε and  
(|LC1− LC2|)/LC1 > ε  then 
  t

cyC = CReg 

   go to step 1 
else 
  t

cycy CĈ  , 
2CĈ

AA
cy

 , 
2CĈ

LL
cy

    

   go to end 
end 
End 
 

3.3.4 Algorithm 4. OverallAlgo 
 
input : Initial nodes C0, MeanS, 
TH, α, ε 
 
output: Final contour Ĉ  
 
Begin 
 
Step0: Compute MeanS of the all 
segments of C0 
 
Step1:Perform AlgorithmCycle(C0, 
ε, TH, α, MeanS) 
 
Step2: Recover 

cyĈ
A , 

cyĈ
L and the 

model nodes 
cyĈ  

 
Step3:Insert new nodes to launch 
the evolution 
 if no node can be inserted then 

  cyĈĈ    

  Go to End 
 end 
 
Step4:Creation of CNew because of 
the step 3 
 
Step5:Perform AlgorithmML(CNew) 
Recover ACML, LCML, Recover CML 
 If  (|ACML− 

cyĈ
A |)/

cyĈ
A < ε and 

     (|LCML− 
cyĈ

L |)/ 
cyĈ

L <ε then   

   cyĈĈ   
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  go to End 
 end 
 
Step6:C0 = CML 
Go to step 1 
End 
 

4. HANDELING THE 
TOPOLOGYCAL CHANGES 
 
The proposed adaptive deformable 
model can be used to represent the 
contour of a single defect. However, if 
there is more than one defect in the 
image, this model can behave so that it 
splits, handles the topological changes 
and determines the corresponding 
contour of each defect. We will describe 
here the determination of critical points 
where the model is split for multiple 
defect representation. 
The validity of each contour will be 
verified so that invalid contour will be 
removed. 
 
4.1 The Model Behavior in the 
Presence of Multiple Defects 
 

 
Figure 5. The model initialization for two 
objects 

 
In presence of multiple defects as in 
figure 5, the model curve will try to 
surround all these defects. From this will 
result one or more self intersections of 
the curve, depending of the number of 
the defects and their positions with 
respect to the initial contour. The critical 
points where the curve is split are the 
self intersection points. The apparition of 
self intersection implies the creation of 
loops which are considered as valid if 

they are not empty. It is known that an 
explicit deformable model is represented 
by a chain of ordered points. Then, if 
self intersections occur, their points are 
inserted in the snake nodes chain first 
and then, are stored in a vector named 
Vip in the order they appear by running 
through the nodes chain. Obviously each 
intersection point will appear twice in 
this new chain. For convenience, we 
define a loop as a points chain which 
starts and finishes with the same 
intersection point without encountering 
another intersection point. After a loop is 
detected, isolated and its validity is 
checked, then, the corresponding 
intersection point is removed from Vip 
and thus can be considered as an 
ordinary point in the remaining curve. 
This will permit to detect loops born 
from two or more self intersections. 
 

 
Figure 6. At the top self intersection of the 
polygonal curve, at down zoomed self 
intersections 

 
This can be explained from an example: 
Let Cn = {c1, c2, ..., cn}, with n=8, be the 
nodes chain of the curve shown in the 
Figure 6, with c1 as the first node (in 
white in the figure). These nodes are 
taken in the clock-wise order in the 
figure. This curve, which represents our 
snake model, has undergone two self 
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intersections, represented by the points 
we named cint1 and cint2, when it tries to 
surround the two disks. These two points 
are inserted in the chain nodes 
representing the model to form the new 
model points as following:  
Cnew

n = {cnew
1 , cnew

2 , ..., cnew
n }, with 

n=12 and cnew
3=cint1, cnew

5=cint2, cnew
9= 

cint2, c
new

11=cint1. After this modification, 
the vector Vip is formed as:                    
V ip=[cint1cint2 cint2 cint1]=[cnew

3 c
new

5 c
new

9 
cnew

11 ]. Thus, by running through the 
snake nodes chain in the clock-wise 
sense, we will encounter Vip(1) then 
Vip(2) and so on...By applying the loop 
definition we have given, and just by 
examining Vip, the loops can be 
detected. Hence, the first detected loop is 
the one consisting of the nodes between 
Vip(2) and Vip(3). ie. {cnew

5 , cnew
6  

cnew
8}, (cnew

5 being equal to cnew
9 ).  

 

 
Figure 7. First detected loop 

 
This first loop, shown on the Figure 7, is 
separated from the initial curve, its 
validity is checked (not empty) and cnew

5 
, cnew

9 are deleted from Vip and then 
considered as ordinary nodes in the 
remaining curve. Now, Vip equals [cnew

3 
cnew

11]. Therefore, the next loop to be 
detected is made up of the nodes that are 
between cnew

3 and cnew
11. It should be 

noted that we have to choose the loop 
which do not contain previous detected 
loops nodes (except self-intersection’s 

points).  
In this case the new loop consists of the 
node’s sequence {cnew

11, c
new

12 , c
new

1 , ..., 
cnew

2} (cnew
3 being equal to cnew

11 ).  This 

loop, which is also separated from the 
remaining snake curve, is illustrated in 
the Figure 8. 
 

 
Figure 8. Second detected loop 

 
Once Vip is empty, we check the 
remaining nodes in the remaining snake 
curve. These nodes constitute also a loop 
as shown in Figure 9. 
 

 
Figure 9. Third detected loop, it is empty and 
then it is an invalid one 
 
To check the validity of a loop, we had 
just to see the characteristics of the outer 
region of the snake model at the first self 
intersections, like for example the mean 
or(and) the variance. If the inside region 
of the current loop have similar 
characteristics of the outside region of 
the overall polygonal curve at the first 
intersection (same characteristics of the 
background) then this loop is not valid 
and, it will be rejected. On the other 
hand, a loop which holds few pixels (a 
valid loop must contain a minimum 
number of pixels we have named 
MinSize) is also rejected because there 
are no weld defects that have such little 
sizes. The new obtained curves (detected 
valid loops) will be treated as 
independent ones, i.e. the algorithms 
quoted before are applied separately on 
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each detected loop. Indeed, their 
progressions depend only on the object 
they contain. 
 
5 RESULTS 
 
The explicit deformable model we 
proposed is tested first on a synthetic 
image consisting of one complex object 
(Figure 10). This image is corrupted 
with a Gaussian distributed noise.  
 

 
Fig. 10. The first synthetic test image 

 
The image pixels grey levels are then 
modeled with a Gaussian distribution 
with mean and variance μ and σ 
respectively. The estimates of  x  with 
x=1, 2 are the mean and the variance of 
pixels grey levels inside and outside the 
polygon representing the snake. The 
Gaussian noise parameters of this image 
are {μ1, σ1} = {70, 20} for the object 
and {μ2, σ2} = {140, 15} for the 
background. 
First, we begin by focusing on the model 
behavior without regularization. Figure 
11 gives an example of the absence of 
regularization procedures effect. Indeed, 
the creation of undesirable loops is then 
inescapable. 
We show then, the evolution time we 
have gained when using both of a 
normal evolution for Maximum 
likelihood criterion evolution instead of 
the original one (choosing the next 
position among the eight nearest 
neighbors) and an adaptive model nodes 
number. 

Deformation in progress,  iter = 10 Deformation in progress,  iter = 15

Deformation in progress,  iter = 16 Deformation in progress,  iter = 42

 
Figure. 11 Undesirable loops creation without 
regularization 
 
To do this test, we begun by choose the 
model nodes as the regularly sampled 
points of the model (The nodes number 
depends only on the model cord length). 
In the figure below the initialization is 
done with a circle crossing the shape 
(Figure 12. A) where the re-sampling 
step equals to two pixels. The two 
models final results are shown after the 
initialization in figures 12.B and 12.C  
 

 
 Figure. 12 A: initialization, B: final contour for 
the original evolution (choosing the next position 
among the eight nearest neighbors), C: final 
contour for a normal evolution 

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(4): 209-222
 The Society of Digital Information and Wireless Communications, 2011 (ISSN: 2220-9085) 



 

219 
 

From the final contour point of view of, 
the two evolutions give approximately 
the same results. However, when we 
checked the execution time, we saw that 
the normal evolution algorithm permits 
to speed up the model progression. 
Indeed, beginning from the same 
initialization, the progression time to our 
proposed method final contour is four 
times less than the original one. 
Nevertheless, even the normal evolution 
has reduced the progression time, the 
progression remains slow because of the 
big nodes number of a regular re-
sampled region-based model. We try to 
let the nodes number unchanged to speed 
up the progression. The execution time 
has dropped and unfortunately, the 
results quality also as shown in the 
figure 13.  

 
Figure. 13 Results of the normal evolution 
model with an unchanged model nodes number.   
 
Now we show in figure 14 the behavior 
of the proposed model and what brings 
the association of the algorithms 
AlgorithmML, AlgorithmCycle, 
Regularization and Algorithm to the 
evolution on the same synthetic test 
image with the same initialization. We 
have noticed that the earlier iterations 
are the quickest ones because of low 
nodes number and it get slower in the 
latest iterations because of the need of a 
lot of points to describe the shape. The 
model can track concavities and 
although the noisy considered image, the 
object contour is correctly estimated and 
the execution time was 45% less then the 

case of regular sampled deformable 
model. In this application we choose α = 
1.5, TH = 2, ε = 10−4. The computation 
time is  
 

 
Figure 14. The proposed model progression in 
case of synthetic images, A: initialization,  B, C, 
D, E, F, G, H: different intermediate results in 
the chronological order. I: final result 
 
Furthermore, the model is tested on weld 
defect radiographic images containing 
one defect as shown in Figure 15. 
Because the industrial or medical 
radiographic images follow, in general, 
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Gaussian distribution and that is due 
mainly to the differential absorption 
principle which governs the formation 
process of such images. The initial 
contours are sets of eight points 
describing circles crossing the defect in 
each image, the final ones match 
perfectly the defects boundaries. 
 

 
Figure 15: The proposed model progression in 
case of radiographic images: A1 initial contours, 
A2 intermediate contours, A3 final contours 
 
After having tested the model behavior 
in presence of one defect, we show in 
the next three figures its capacity of 
handling topological changes in presence 
of multiple objects in the first next 
image (figure 16: Same characteristics as 
the figure 10) and multiple defects in the 
image (figure.17, figure.18). 

 
Figure 16 The model progression in presence of 
multiple different object in a synthetic image 
 

 
Figure 17 The proposed model progression in 
presence of multiple defects 
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Figure 16 The proposed model progression in 
presence of multiple defects 
 
The minimal size of an obect/defect is 
chosen to be equal to three pixels ( 
MinSize = 3). The snake surrounds the 
objects/defects, splits and fits 
successfully their contours. 
 
6. CONCLUSION  
 
We have described a new approach of 
boundary extraction of weld defects in 
radiographic images. This approach is 
based on statistical formulation of 
contour estimation improved with the 
use of the combination of four 
algorithms to speed up the progression 
and increase in an adaptive way the 
model nodes number. 
Moreover the proposed snake model can 
split successfully in presence of multiple 
contours and handle the topological 

changes. The performance of this 
method is confirmed by the experiments, 
on synthetic and radiographic images, 
which show the ability of the proposed 
method to give quickly a good 
estimation of the contours by fitting 
almost boundaries. 
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