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ABSTRACT 

 

In reconfigurable computing systems, 

full reconfigurable FPGA are evolving 

rapidly, due to their flexibility and high 

performance. In this paper, we focus on 

communication cost between partitions 

in order to develop an algorithm to solve 

temporal partitioning problems for full 

reconfigurable architecture. In fact, this 

algorithm optimizes the transfer of data 

required between design partitions. The 

proposed algorithm was tested on 

several examples on the Xilinx Virtex-II 

pro. The results show significant 

reduction in the communication cost 

compared with others famous 

approaches used in this field 
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1 INTRODUCTION 

 

The temporal partitioning problem 

[1][2][3] can be formulated as a graph-

based problem. A program or application 

can be represented by a data flow graph 

(DFG). A DFG is a directed acyclic 

graph      G= (V, E), where V is the set 

of nodes |�| = n = number of nodes in G 

and E is a set of edges. Each node  T� ∈ V  represents a functional 

operation, correspondingly A(T�), 

represents the operation size. A directed 

edge e�, ∈ E exists if there is data 

dependency between node T� and T. We 

define the weight α�, of e�, as the 

amount of data transferred from T� toT. 
A temporal partitioning P of the graph  

G = (V, E), is its division into some 

disjoints partitions such as: P = {P1. . 

.Pk}. The temporal partitioning problem 

has been formulated as follows. 

� Inputs: given a data flow graph G = 

(V, E)  

� Constraints: 

1) � = ⋃ ������ . Where K is a number 

of partitions 

2) All dependency constraint relations 

are satisfied for all K partitions, let ���(��)  denote the dependency 

constraint of a node T�. For tow 

nodes T� and T  , we define  ���(��) ≤ ���(��)  if  T� must be 

scheduled no later than T. 
3) �(��) ≤ �(�), 1 ≤  ≤ !. Where �(��) denoted the area of partition P�   

and  �(�) denoted the total area of 

the reconfigurable processing unit 

(RPU). 

4) ∀P$ ∈ P, e� ∈ E, we have  12 & ' (��)*+,∩./0∅2 345 )*+,6./0∅2 7 ≤ �(�) 

Where �(�) number of programmable 

input/outputs (I/Os) per device. We 

extend the ordering relation ≤ to P as 

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 112-122
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)



113 

 

follow: �� ≤ �� ⇔ e� ∈ E  with �� ∈��   and �� ∈ ��   either �� ≤ ��  or ≤ is not 

defined for �� and ��. The partition P is 

ordered ⇔ an ordering relation ≤ exists 

for P.  An ordered partitioning   is 

characterized by the fact that for a pair 

of partitions, one should be always 

implemented after the other with respect 

to any scheduling relation. 

� Objectives: 

Several objective functions can be 

defined for the temporal partitioning 

problem. One objective could be the 

minimization of the number of partitions 

to reduce the overall reconfiguration 

overhead. Another objective could be the 

minimization of the computation time. 

This can be expressed for example 

through the minimization of the 

maximum computational delay across all 

the partitions. A third objective could be 

the communication cost of the design. 

This aim can be reached by minimizing 

the transfer of data required between 

design partitions. 

The approaches described above have 

used Full Reconfigurable architectures 

(FRA) shown in figure 1, as target 

architecture. FRA has been constructed 

from one or more general purpose 

processors (GPP), an external memory 

and a reconfigurable processing unit 

(RPU). In fact, designers have used the 

temporal partitioning approach to divide 

the application into temporal partitions, 

which are configured one after the one 

on the target RPU. The first partition 

receives input data, performs 

computations and stores the intermediate 

data into an on-board memory. The 

device is then reconfigured for the next 

partition, which computes results based 

on intermediate data from the previous 

partition. A controller interacts with both 

the reconfigurable hardware and the 

memory and is used to load new 

configuration.  
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 Figure1: Full reconfigurable architecture 

 

In this paper, we focus on 

communication cost between partitions 

in order to develop an algorithm to solve 

temporal partitioning problem for full 

reconfigurable architecture. In fact, this 

algorithm optimizes the transfer of data 

required between design partitions and 

the reconfiguration overhead. 

 

2 RELATED WORKS 

 

In the literature, many methods have 

developed by different authors to solve 

the temporal partitioning problem. In 

[4][5][6] authors used traditional 

scheduling methods, such as list 

scheduling. The idea behind the list 

scheduling approach is first to place all 

the nodes of a graph representing the 

problem to be solved in a list. A new 

partition (also called configuration) is 

built stepwise by removing nodes from 

the list and allocating them to the 

partition until the size of the partition 

reached a given size limit (the size of the 

FPGA). A new partition is then created 

and the process is repeated until all the 

nodes from the list are placed in 

partitions. Others authors extended 

existing scheduling of high-level 
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synthesis [7][8]. In [9][10] the authors 

used ILP algorithm. The ILP is a 

mathematical method for determining a 

way to achieve the best outcome, such as 

lowest latency. The main problem of the 

ILP approach is its high execution time; 

therefore, the algorithm can only be 

applied to small examples. In [11] 

authors combined the force directed 

scheduling (FDS) algorithm and network 

flow algorithm to reduce the whole 

latency and the communication cost at 

the same time. In [12] author used 

leveling node method to determine the 

communication cost. However, for each 

end of stage the method is not a min cut 

just only a leveling cut. Also, the 

network flow algorithm has been used to 

reduce the communication cost across 

temporal partitions in [12][13]. The first 

network flow algorithms has been used 

in [12][13][14] and improved in [3]. The 

method is a recursive bipartition 

approach that successively partitions a 

set of remaining nodes in two sets, one 

of which is a final partition, whereas a 

further partition step must be applied on 

the second one. The following 

description shows the initial network 

algorithm as presented in [12][13]. 

 
Begin 
1. Construct graph G’ from 
graph G by net modeling 
2. Pick a pair of node s 
and t in G’ as source and 
sink 
3. Find a min cut C in G’. 
Let X be the sub-graph 
reachable from s through 
augmenting path, and X’ be 
the rest 
4. If (lr ≤ w(X) ≤ ur) then 
stops and return C as 
solution 
5. If (w(X) < Lr) then 
collapse all nodes in X to 

S pick a node v in X’, and 
collapse v to s 
Go to step 3 
6. If (w(X) > ur) then 
collapse all nodes in X’ to 
t pick a node v in X, and 
collapse v to t 
Go to step 3 
End 
 
Where: w(X) is the total area of all 

nodes in X; Lr = (1-ε) Rmax , Rmax is 

the area of the device; ur =(1-ε) Rmax; 

ε=0,05, S is the source node, t is the sink 

node. Let us consider the graph  G of 

figure 2.a, after following the net 

modeling steps, such as presented in 

[12][13], the new  graph  G’ of figure 

2.b  is obtained 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.a: Graph G    Figure 2.b: graph G’ 

 

Let us assume 200 CLBs be the area of 

the device, 100 CLBs be the area of the 

multiplier, 50 CLBs be the area of the 

adder, the comparator and the 

multiplexer. And let us assume a 

memory with 50 bytes available for 

communication and each edge has a 32-

bit width. We applied the network flow 

algorithm on the graph of figure 2.a. the  

result is shown in figure 3, the network 

flow algorithm puts nodes T2, T3, T4 in 

partition P1, nodes T1, T5, T6 in partition 

P2 and node T7 in partition P3. 
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Figure 3: Temporal partitioning 

The network flow may minimize the 

communication cost. However, the 

model is constructed by inserting a great 

amount of nodes and edges in the 

original graph. The resulting graph may 

grow too big. In the worst case, the 

number of nodes in the new graph can be 

twice the number of the nodes in the 

original graph. The number of additional 

edges also grows dramatically and 

become difficult to handle. Further, the 

network flow algorithm, is a heuristic 

algorithm, in fact there is no a 

mathematical model behind him.   

3 DEFINITIONS 

3.1 Definition 1  

 

Given a data flow graph G = (E, V), we 

define: 

� The (n x n) weighted adjacency 

matrix W(G) as follows; n is the 

number of nodes in G: 9�� = ��� 9�� = 0 
� The (n x n) degree matrix D(G) as 

follows: 

��� = deg(��) = ' 9��
4

���  

��� = 0 

� The (n x n) Laplacian  matrix L(G) 

as follows: 

L(G) = D(G) – W(G) 

 

3.2   Definition 2  

 

An n-vector  ϑ is an eigenvector of L(G) 

with eigenvalue λ if and only L(G) 

λ= ϑλ. We denote the set of eigenvectors 

of L (G) by ϑ�,  ϑ>, … . ,  ϑ4 with 

corresponding eigenvalues λ� ≤ λ4 ≤  
µ…..≤ λ4  .The n x n eigenvector matrix A4 = ( ϑ��) has columns  ϑ�,  ϑ>, … . ,  ϑ4and the n x n eigenvalue 

matrix �4 = ( λ��) has diagonal entries, 

and 0 entries elsewhere. 

We assume that the eigenvectors are 

normalized, i.e. for 1 ≤  ≤ B,  ϑ� ϑ�C =D. The eigenvectors of L(G) have many 

desirable properties, including [15]: 

� The eigenvectors are all mutually 

orthogonal; hence they form a basis 

in n-dimensional space. 

� λ� = 0 EBF  ϑ� = G �√4 , �√4 , … … , �√4IC
 

� L(G) has n non-negative, real-valued 

eigenvalues 0 = λ1 ≤ λ2 ≤,…,≤ λn 

�   L(G)ϑ� =  λ� ϑ� 

� For every vector  L =  MN�,N>, … … , N4O  ∈ P4 ; we have : 

LQRL = 12 ' ' 9�,�
4

���
4

��� )N� − N�2>
 

 

3.3 Definition 3 

 

Given a temporal partitioning of G = (E, 

V) into k disjoint partitions P = {P1, 

P2…Pk}; the communication cost,           

CCost (Pm), of partition Pm has been 

defined in [13] as follow:  

 TTUVW(�X)
=  12 Y∑ 9�,�C+∈.[;;C,∈].[]|�X| ^        (1) 

   This implies that: 

P3 

P2 

 
P1 

1 2 3 

4 

6 

5 

7 
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�TTUVW = ' TTUVW(�X)_
���  

=  |�|2 ' ∑ 9�,�C+∈.[;;C,∈].[]|�X|]�X]
�

���       (2) 

Where: TCCost is the total 

communication cost. |�X| is the number 

of nodes inside partition �X. ]�X] be the 

number of nodes outside the partition �X. Hence, we have |�X| + ]�X] =|�| = B. 

4 PROPOSED ALGORITHM 

Our algorithm aims to solve the 

following problem: Given a DFG G = 

(V,E) and a set of constraints: Find the 

way of graph partitioning in optimal 

number of temporal partitions that 

minimize the communication cost 

between partitions of the graph while 

respecting all constraints. 

Our algorithm is composed by two main 

steps. The first step aims to find an 

initial partitioning Pin that minimizes 

communication cost of the graph. Next, 

if the area constraint is satisfied after the 

first step then we adopts the initial 

partitioning, else we go to the second 

step. Hence, the second step aims to find 

the final partitioning P of the graph 

while satisfying the area constrain. If the 

second step cannot find a feasible 

scheduling then we relax the number of 

partition by one and the algorithm goes 

to the first step. And, we restart to find a 

feasible solution in the new number 

partitions. 

 

4.1 First step: initial partitioning 

 

As shown in Eq. (2) the total 

communication cost minimization 

problem can be solved by minimizing 

the total cut size between design 

partitions. In this section, we present a 

good solution for this problem. 

 

Lemma1: 

 

Given a temporal partitioning of G = (E, 

V) into k disjoint partitions P = {P1, 

P2…Pk} .We define the indicator vector LX  as follow: LX( ) = MLX(1), LX(2), … . , LX(B)OQ , 

where m = 1, 2,..., k and i = 1,2,…n are 

defined as: 

 LX( ) = �a].[] if �� ∈ �X; 0 otherwise. 

  We have: �TTUVW = ∑ LXQ_��� RLX  (3) 

 

Poof: 

According Properties of Laplacian 

matrix LXQ RLX = LXQ �LX =  LXQ 9LX= ' ��
4

��� NX>  ( ) ' ' 9�,�
4

���
4

��� NX( )NX(c)
= 12 '(��

4
��� +��)NX

− ' ' 9�,�
4

���
4

��� NX( )NX(c) 
= 12 d'(��

4
��� + ��  )NX>  ( )

− 2 ' ' 9�,�
4

���
4

��� NX( )NX(c)
+ ' ��

4
��� NX>  (c)7

= 12 ' ' 9�,�
4

���
4

��� )NX( ) − NX(c)2>
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= 12 Y∑ 9�,�C+∈.[;;C,∈].[]|�X|
+ ∑ 9�,�C+∈.[;;C,∈].[]]�X] ^
= |�|2 e' ∑ 9�,�C+∈.[;;C,∈].[]|�X|]�X]

�
���      f

⟹ ' LXQ RLX
�

X��
= |�|2 e ' ∑ 9�,�C+∈.[;;C,∈].[]|�X|]�X]

�
X��      f

= �TTUVW     
 

 

Observation 1: 

Using equation 3, the problem of 

communication cost minimization can be 

expressed as:  

Minimize(TCCost)=>Minimize(trace (hij khi)       
 

The standard form of a trace 

minimization problem can be solved by 

choosing Xp as the matrix that contains 

the first k eigenvectors corresponding to 

the k smallest eigenvalues of matrix 

L(G)  as columns 

 

 

Lemma2: 

Given a (n×n) matrix Mp as follow:        

 l�,� = �|.[|  if Ti and Tj ∈ Pm; 0 

otherwise 

 We have: LXQ RLX = lm   

Proof: 

The ij
th

 of  LmLmQ  is  ∑ LX( )�X�� LX(c). 

The term LX( )LX(c) will be non-zero 

if and only if both Ti and Tj, are in Pm, 

hence the sum is  
�|.[|  when Ti and Tj are 

in the same partition; 0 otherwise. 

  

 

Lemma3: 

To calculate the lower number of 

partitions required to obtain solution we 

divide the area of all nodes, by the 

available reconfigurable resource. In 

other words, given a graph G = (V, E) 

partitioned into K disjoints temporal 

partitions; P = {P1, P2…Pk}; the lower 

number of temporal partitions Kmin 

is: n(o) n(p)  , where A(G) is the area of the 

graph and A(H) is the area of the device. 

Proof: 

Given a function F(K) defined as 

follows: 

q(!) = �(r) − ' �(��)_
���  

Then, Min(F(k)) correspond to 

Max(∑ �(��)_��� ). 

 

Or ∀ ��  ∈ �; 
 ' �(��)_
��� ≤ ' lEN�(��)_

��� ⇒ 

lEN e' �(��)_
��� f = ' lEN�(��)_

���= tlEN)�(��)2 ⇒ tX�4 = �(r)lEN�(��) 

Or ∀ ��  ∈ �; 
 �(��) ≤ �(�) ⇒ lEN�(��) = �(�) ⇒ tX�4 = �(r)�(�)  (4) 

The above descriptions are summarized by the 

following steps, form step 1 to step 7  

 
1) Compute the minimum number of 
partitions K= Kmin = vwxyz({) ∕wxyz(})~  
2) Compute the laplacian matrix 
L(G) of G  
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3) Compute k lowest eigenvalues 
of L(G)  

4) Construct the (n x k) matrix 
XP that have the K eigenvectors 
as columns.  

5) Compute Z = XP X
t
P  

6) Construct the (n x n) matrix 
Mp = Mi,j from Z. Mi,j = 1 if Zi,j 
≥1/n, 0 otherwise.  

7) Generate the initial 
partitioning from matrix Mp  
8) If the area constraint is 
satisfied then final 
partitioning = initial 
partitioning; else go to step 2 
(we mean by go to step 2: go to 
final partitioning step) 

 

4.2 Second step: final partitioning  

 

In this step, we start from the initial 

partitioning Pin given by the first step 

and the set of partitions Pi ∈ Pin, where 

A(Pi) > A(H). Our technique balances 

nodes from partition Pi to Pj or inversely 

until the satisfaction of the area 

constraint.  The balance of nodes is 

based on the force F(Ti,Pi→Pj) 

associated with partition Pi on a node Ti 

to be scheduled into partition Pj and on 

the force F(Ti,Pj→Pi) associated with 

partition Pj on a node Ti to be scheduled 

into partition Pi. For instance let us 

assume that Pi < Pj; Pi, Pj ∈ Pin. 

These forces are calculated as follow:   

F(Ti,Pi→Pj) =  δ1(Ti) * OF(Ti)  (11) 

 ��(��) = 0, if there is a node �� ∈ �� 
and �� is an output of  ��, otherwise  ��(��) = 1.    �q(��) = (��(��) + 1)     (12) 
Given tow nodes    �� EBF ��  ∈  ��   ��(��) = ' ��,�C,∈.+

��        (13) 

Where: ��,� = 1 if  �� is an input of ��, 0 

otherwise  

F(Ti,Pj→Pi)= δ2(Ti) * InF(Ti)   (14) �>(��) = 0, if there is a node �� ∈ ��  and �� is an input of ��, otherwise �>(��) =1.     DBq(��) = (��(��) + 1)     (15) 

Given two nodes   �� EBF ��  ∈  �� ��(��) = ' ∅�,�C,∈.,
��      (16) 

Where: ∅�,� = 1 if ��  is an output of ��, 0 

otherwise. 

In general, due to the scheduling of one 

node, other node schedules will also be 

affected.  At each iteration, the force of 

every node being scheduled in every 

possible partition is computed. Then, the 

distribution graph is updated and the 

process repeats until no more nodes 

remain to be scheduled.  

5 EXPRIMENTS: 

In our experiences, we used four 

approaches, list scheduling [6], initial 

network flow [13], improved network 

flow [3] and the proposed algorithm. In 

our experiences, we evaluated the 

performance of each algorithm in term 

of total communication cost, whole 

latency of the graph and run time of the 

algorithm. The graphs shown in table 2 

and table 4 were chosen to be 

implemented on FPGA Vertex-II 

XC2V1000. The Vertex-II XC2V1000 

has the following characteristics, table 1: 
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Table 1: characteristics of the device 

Number of lines 40 

Number of Columns 32 

Size (CLB) 1280 

input / output ports 432 

Configuration time CT 7,73 ms 

  

We have conducted two kinds of 

experiment. In the first experiment we 

considered the 4x4 and 16x16 DCT data 

flow graph. In the second one, we 

considered the combinational circuits 

c3540 and c6288: 

 

The figure 4 shows the Color Layout 

Descriptor ‘’CLD’’ is a low-level visual 

descriptor that can be extracted from 

images or video frames. The process of 

the CLD extraction consists of four 

stages: Image partitioning, selection of a 

single representative color for each 

block, DCT transformation and non 

linear quantization and Zig-Zag 

scanning. 

  

 
Figure 4: Block diagram of the CLD 

extraction 

Since DCT is the most computationally 

intensive part of the CLD algorithm, it 

has been chosen to be implemented in 

hardware, and the rest of subtasks 

(partitioning, color selection, 

quantization, zig-zag scanning and 

Huffman encoding) were chosen for 

software implementation. The model 

proposed by [16] is based on 16 vector 

products. Thus, the entire DCT is a 

collection of 16 tasks, where each task is 

a vector product as presented in Figure 

5. 

 
Figure 5: vector products 

 

There are two kinds of tasks in the task 

graph.’’ T1’’ and ‘’T2’’, whose structure 

is similar to vector product, but whose 

bit widths differ. Table 2 gives the 

characteristic of 4x4 DCT, 16x16 DCT 

task graphs. 
 

Table 2: Benchmark characteristics (DCT 

task graphs). 

DFGs Nodes Edges Area (CLBs) 

DCT 4X4 224 256 8045 

DCT 

16X16 

1929 2304 13919 

 

The c3540 and c6288 are benchmarks of 

the combinational circuit commonly 

used to test CAD algorithms. In these 

circuits, every gate corresponds to a 

node which has an area size as shown in 

Table 3. We can easily transform a 

combinational circuit into a DFG with 

weighted nodes by a transform program. 

Table 4 gives the characteristic of c3540 

and c6288 task graphs. 
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Table 3:  Area of the logical gates expressed in 

circuit. 

Logical gate Area (CLBs) 

Buffer 2 

INT 3 

AND 5 

OR 7 

NAND 8 

NOR 12 

XOR 14 

XNOR 18 

 
Table4: Benchmark characteristics 

(combinational circuit). 

DFGs Nodes Edges 
Area 

(CLBs) 

c3540 1038 1016 6426 

c6288 2247 2140 10644 

 

The table 5 and table 6 gives the 

different solutions provided by the list 

scheduling, the initial network flow 

technique, the enhance network flow and 

the proposed algorithm. Firstly, our 

algorithm has always the lowest number 

of partitions. In fact, as configuration 

time of currently dynamically 

reconfigurable hardware is too large. 

Thus, the configuration overhead will be 

a problem because the configuration 

time mainly occupies the time required 

to switch a partition to another partition. 

Therefore, since our algorithm has the 

lowest number of partitions, it has the 

lowest latency. Results show an average 

improvement of 20, 5% in tem of design 

latency for the DCT task graph and 14, 

16% for the combinational circuit task 

graph.  Secondly, the table 5 and table 6 

shows that our partitioning algorithm 

minimizes communication overhead 

between partitions for dynamically 

reconfigurable hardware. The results 

show an average improvement of 28, 

87%, 13, 18%, and 6, 31% for actual 

applications, compared with three 

conventional algorithms for the DCT 

task graph and 27,89% , 6,145% and 1, 

51% for the combinational circuit task 

graph.  

As conclusion our algorithm has a good 

trade-off between computation and 

communication. Hence, our algorithm 

can be qualified to be a good temporal 

partitioning candidate.  In fact, an 

optimal partitioning algorithm needs to 

balance computation required for each 

partition and reduce communication 

required between partitions so that 

mapped applications can be executed 

faster on dynamically reconfigurable 

hardware. 

6 CONCLUSION: 

Dynamically reconfigurable computing 

systems have the potential for achieving 

high performance at a relatively low cost 

for a wide range of applications. In this 

paper, we have proposed a new temporal 

partitioning algorithm for reconfigurable 

computing systems to reduce maximum 

communication cost. Our algorithm is 

composed by two main steps. The first 

step aims to minimize the transfer of 

data required between design partitions. 

To satisfy area constraints, we use the 

balance of nodes technique.  The 

experiments on benchmark circuits such 

as DCT combinational circuits task 

graphs have shown the effectiveness of 

the proposed algorithm. 
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Table 5: Design results (DCT task graphs). 

Graph 4X4 DCT Task graph 

Algorithms 
Proposed 

algorithm 

List 

scheduling 

Initial     

Network 

flow 

improved 

Network 

flow 

Improvement 

Versus List 

scheduling 

Improvement 

Versus 

Initial 

Network 

flow 

Improvement 

Versus 

improved 

Network 

flow 

Number of 

Partitions 
7 9 9 9    

T.C cost 570 744 634 589 23,38% 10,09% 3,22% 

M.C cost 110 105 83 81    

Whole 

latency 

5,770 ns 

+ 7* 

CT≅7* CT 

4770 ns+ 

9* CT≅9* 

CT 

4395ns + 

9* CT≅9* 

CT 

4570 ns 9* 

CT≅9* CT 
22% 22% 22% 

Run time 0,2 sec 0,12 sec 0,12 sec 0,12 sec    

Graph 16X16 DCT Task graph 

Number of 

Partitions 
11 15 15 15    

T.C cost 2023 3106 2378 2193 34,86% 14,92% 7,75% 

M.C cost 365 297 265 228    

Whole 

latency 

8420 ns 

+ 11* 

CT≅11* 

CT 

6610 ns+ 

15* 

CT≅15* 

CT 

6420ns+15* 

CT≅15* CT 

7730ns+15* 

CT≅15* CT 
26% 26% 26% 

Run time 2 sec 1,55 sec 1,55 sec 1,55 sec    

Average improvement in  communication cost 28,87% 13, 18% 6, 31% 

Average improvement in  latency 20,5% 20,5% 20,5% 

 

Table 6: Design results (combinational circuit task graph).

Graph c3540 Task graph 

Algorithms 
Proposed 

algorithm 

List 

scheduling 

Initial     

Network 

flow 

improved 

Network 

flow 

Improvement 

Versus List 

scheduling 

Improvement 

Versus 

Initial 

Network 

flow 

Improvement 

Versus 

improved 

Network 

flow 

Number of 

Partitions 
4 5 5 5    

T.C cost 550 783 588 561  29,75% 6,46% 1,96% 

M.C cost 147 171 128 126    

Whole 

latency 

3575 ns 

+4* 

CT≅4* CT 

4240 ns+ 

5* CT≅5* 

CT 

4240ns + 

5* CT≅5* 

CT 

4240 ns 5* 

CT≅5* CT 
20% 20% 20% 

Run time 0,2 sec 0,82 sec 0,82 sec 0,82 sec    

Graph c6288 Task graph 

Number of 

Partitions 
11 12 12 12    

T.C cost 829 1121 886 835 26,04% 6,43% 1,07% 

M.C cost 80 132 89 86    

Whole 

latency 

6860 ns 

+ 11* 

CT≅11* 

CT 

6780 ns+ 

12* 

CT≅12* 

CT 

6780ns+12* 

CT≅12* CT 

6780ns+12* 

CT≅12* CT 
8,33% 8,33% 8,33% 

Run time 2 sec 1,97 sec 1,97 sec 1,97 sec    

Average improvement in  communication cost 27,89% 6, 145% 1, 51% 

Average improvement in  latency 14,16% 14,16% 14,16% 
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