
112

 An efficient temporal partitioning algorithm to minimize

Communication Cost for reconfigurable computing Systems

Ramzi. Ayadi
1
, Bouaoui. Ouni

1
, Abdellatif. Mtibaa

1

1
Laboratory of Electronic and Microelectronic, Faculty of science at Monastir, Monastir

5000, Tunisia

{ramzi_ayadi, bouraoui.ouni, abdellatif.mtibaa} @yahoo.fr, @fsm.rnu.tn, @enim.rnu.tn

ABSTRACT

In reconfigurable computing systems,

full reconfigurable FPGA are evolving

rapidly, due to their flexibility and high

performance. In this paper, we focus on

communication cost between partitions

in order to develop an algorithm to solve

temporal partitioning problems for full

reconfigurable architecture. In fact, this

algorithm optimizes the transfer of data

required between design partitions. The

proposed algorithm was tested on

several examples on the Xilinx Virtex-II

pro. The results show significant

reduction in the communication cost

compared with others famous

approaches used in this field

KEYWORDS

Temporal partitioning, data flow graph, full

reconfigurable architectures, FPGA

1 INTRODUCTION

The temporal partitioning problem

[1][2][3] can be formulated as a graph-

based problem. A program or application

can be represented by a data flow graph

(DFG). A DFG is a directed acyclic

graph G= (V, E), where V is the set

of nodes |�| = n = number of nodes in G

and E is a set of edges. Each node T� ∈ V represents a functional

operation, correspondingly A(T�),

represents the operation size. A directed

edge e�, ∈ E exists if there is data

dependency between node T� and T. We

define the weight α�, of e�, as the

amount of data transferred from T� toT.
A temporal partitioning P of the graph

G = (V, E), is its division into some

disjoints partitions such as: P = {P1. .

.Pk}. The temporal partitioning problem

has been formulated as follows.

� Inputs: given a data flow graph G =

(V, E)

� Constraints:

1) � = ⋃ ������ . Where K is a number

of partitions

2) All dependency constraint relations

are satisfied for all K partitions, let ���(��) denote the dependency

constraint of a node T�. For tow

nodes T� and T , we define ���(��) ≤ ���(��) if T� must be

scheduled no later than T.
3) �(��) ≤ �(�), 1 ≤ ≤ !. Where �(��) denoted the area of partition P�

and �(�) denoted the total area of

the reconfigurable processing unit

(RPU).

4) ∀P$ ∈ P, e� ∈ E, we have 12 & ' (��)*+,∩./0∅2 345)*+,6./0∅2 7 ≤ �(�)

Where �(�) number of programmable

input/outputs (I/Os) per device. We

extend the ordering relation ≤ to P as

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 112-122
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

113

follow: �� ≤ �� ⇔ e� ∈ E with �� ∈�� and �� ∈ �� either �� ≤ �� or ≤ is not

defined for �� and ��. The partition P is

ordered ⇔ an ordering relation ≤ exists

for P. An ordered partitioning is

characterized by the fact that for a pair

of partitions, one should be always

implemented after the other with respect

to any scheduling relation.

� Objectives:

Several objective functions can be

defined for the temporal partitioning

problem. One objective could be the

minimization of the number of partitions

to reduce the overall reconfiguration

overhead. Another objective could be the

minimization of the computation time.

This can be expressed for example

through the minimization of the

maximum computational delay across all

the partitions. A third objective could be

the communication cost of the design.

This aim can be reached by minimizing

the transfer of data required between

design partitions.

The approaches described above have

used Full Reconfigurable architectures

(FRA) shown in figure 1, as target

architecture. FRA has been constructed

from one or more general purpose

processors (GPP), an external memory

and a reconfigurable processing unit

(RPU). In fact, designers have used the

temporal partitioning approach to divide

the application into temporal partitions,

which are configured one after the one

on the target RPU. The first partition

receives input data, performs

computations and stores the intermediate

data into an on-board memory. The

device is then reconfigured for the next

partition, which computes results based

on intermediate data from the previous

partition. A controller interacts with both

the reconfigurable hardware and the

memory and is used to load new

configuration.

Controller

Reconfigurable

device

Memory

Reconfiguration and Accesses to

Memory

Start

Idle

End process

End

Partition

A

D

B

E

C

End

Partition

Execution Partition

Write/Read
Execution

 Partition

Write/Read

 Figure1: Full reconfigurable architecture

In this paper, we focus on

communication cost between partitions

in order to develop an algorithm to solve

temporal partitioning problem for full

reconfigurable architecture. In fact, this

algorithm optimizes the transfer of data

required between design partitions and

the reconfiguration overhead.

2 RELATED WORKS

In the literature, many methods have

developed by different authors to solve

the temporal partitioning problem. In

[4][5][6] authors used traditional

scheduling methods, such as list

scheduling. The idea behind the list

scheduling approach is first to place all

the nodes of a graph representing the

problem to be solved in a list. A new

partition (also called configuration) is

built stepwise by removing nodes from

the list and allocating them to the

partition until the size of the partition

reached a given size limit (the size of the

FPGA). A new partition is then created

and the process is repeated until all the

nodes from the list are placed in

partitions. Others authors extended

existing scheduling of high-level

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 112-122
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

114

synthesis [7][8]. In [9][10] the authors

used ILP algorithm. The ILP is a

mathematical method for determining a

way to achieve the best outcome, such as

lowest latency. The main problem of the

ILP approach is its high execution time;

therefore, the algorithm can only be

applied to small examples. In [11]

authors combined the force directed

scheduling (FDS) algorithm and network

flow algorithm to reduce the whole

latency and the communication cost at

the same time. In [12] author used

leveling node method to determine the

communication cost. However, for each

end of stage the method is not a min cut

just only a leveling cut. Also, the

network flow algorithm has been used to

reduce the communication cost across

temporal partitions in [12][13]. The first

network flow algorithms has been used

in [12][13][14] and improved in [3]. The

method is a recursive bipartition

approach that successively partitions a

set of remaining nodes in two sets, one

of which is a final partition, whereas a

further partition step must be applied on

the second one. The following

description shows the initial network

algorithm as presented in [12][13].

Begin
1. Construct graph G’ from
graph G by net modeling
2. Pick a pair of node s
and t in G’ as source and
sink
3. Find a min cut C in G’.
Let X be the sub-graph
reachable from s through
augmenting path, and X’ be
the rest
4. If (lr ≤ w(X) ≤ ur) then
stops and return C as
solution
5. If (w(X) < Lr) then
collapse all nodes in X to

S pick a node v in X’, and
collapse v to s
Go to step 3
6. If (w(X) > ur) then
collapse all nodes in X’ to
t pick a node v in X, and
collapse v to t
Go to step 3
End

Where: w(X) is the total area of all

nodes in X; Lr = (1-ε) Rmax , Rmax is

the area of the device; ur =(1-ε) Rmax;

ε=0,05, S is the source node, t is the sink

node. Let us consider the graph G of

figure 2.a, after following the net

modeling steps, such as presented in

[12][13], the new graph G’ of figure

2.b is obtained

Figure 2.a: Graph G Figure 2.b: graph G’

Let us assume 200 CLBs be the area of

the device, 100 CLBs be the area of the

multiplier, 50 CLBs be the area of the

adder, the comparator and the

multiplexer. And let us assume a

memory with 50 bytes available for

communication and each edge has a 32-

bit width. We applied the network flow

algorithm on the graph of figure 2.a. the

result is shown in figure 3, the network

flow algorithm puts nodes T2, T3, T4 in

partition P1, nodes T1, T5, T6 in partition

P2 and node T7 in partition P3.

4

6

1 2 3

4

6

5

7

1 2 3

5
8

9

7

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 112-122
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

115

Figure 3: Temporal partitioning

The network flow may minimize the

communication cost. However, the

model is constructed by inserting a great

amount of nodes and edges in the

original graph. The resulting graph may

grow too big. In the worst case, the

number of nodes in the new graph can be

twice the number of the nodes in the

original graph. The number of additional

edges also grows dramatically and

become difficult to handle. Further, the

network flow algorithm, is a heuristic

algorithm, in fact there is no a

mathematical model behind him.

3 DEFINITIONS

3.1 Definition 1

Given a data flow graph G = (E, V), we

define:

� The (n x n) weighted adjacency

matrix W(G) as follows; n is the

number of nodes in G: 9�� = ��� 9�� = 0
� The (n x n) degree matrix D(G) as

follows:

��� = deg(��) = ' 9��
4

���

��� = 0

� The (n x n) Laplacian matrix L(G)

as follows:

L(G) = D(G) – W(G)

3.2 Definition 2

An n-vector ϑ is an eigenvector of L(G)

with eigenvalue λ if and only L(G)

λ= ϑλ. We denote the set of eigenvectors

of L (G) by ϑ�, ϑ>, … . , ϑ4 with

corresponding eigenvalues λ� ≤ λ4 ≤
µ…..≤ λ4 .The n x n eigenvector matrix A4 = (ϑ��) has columns ϑ�, ϑ>, … . , ϑ4and the n x n eigenvalue

matrix �4 = (λ��) has diagonal entries,

and 0 entries elsewhere.

We assume that the eigenvectors are

normalized, i.e. for 1 ≤ ≤ B, ϑ� ϑ�C =D. The eigenvectors of L(G) have many

desirable properties, including [15]:

� The eigenvectors are all mutually

orthogonal; hence they form a basis

in n-dimensional space.

� λ� = 0 EBF ϑ� = G �√4 , �√4 , … … , �√4IC

� L(G) has n non-negative, real-valued

eigenvalues 0 = λ1 ≤ λ2 ≤,…,≤ λn

� L(G)ϑ� = λ� ϑ�

� For every vector L = MN�,N>, … … , N4O ∈ P4 ; we have :

LQRL = 12 ' ' 9�,�
4

���
4

���)N� − N�2>

3.3 Definition 3

Given a temporal partitioning of G = (E,

V) into k disjoint partitions P = {P1,

P2…Pk}; the communication cost,

CCost (Pm), of partition Pm has been

defined in [13] as follow:

 TTUVW(�X)
= 12 Y∑ 9�,�C+∈.[;;C,∈].[]|�X| ^ (1)

 This implies that:

P3

P2

P1

1 2 3

4

6

5

7

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 112-122
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

116

�TTUVW = ' TTUVW(�X)_
���

= |�|2 ' ∑ 9�,�C+∈.[;;C,∈].[]|�X|]�X]
�

��� (2)

Where: TCCost is the total

communication cost. |�X| is the number

of nodes inside partition �X.]�X] be the

number of nodes outside the partition �X. Hence, we have |�X| +]�X] =|�| = B.

4 PROPOSED ALGORITHM

Our algorithm aims to solve the

following problem: Given a DFG G =

(V,E) and a set of constraints: Find the

way of graph partitioning in optimal

number of temporal partitions that

minimize the communication cost

between partitions of the graph while

respecting all constraints.

Our algorithm is composed by two main

steps. The first step aims to find an

initial partitioning Pin that minimizes

communication cost of the graph. Next,

if the area constraint is satisfied after the

first step then we adopts the initial

partitioning, else we go to the second

step. Hence, the second step aims to find

the final partitioning P of the graph

while satisfying the area constrain. If the

second step cannot find a feasible

scheduling then we relax the number of

partition by one and the algorithm goes

to the first step. And, we restart to find a

feasible solution in the new number

partitions.

4.1 First step: initial partitioning

As shown in Eq. (2) the total

communication cost minimization

problem can be solved by minimizing

the total cut size between design

partitions. In this section, we present a

good solution for this problem.

Lemma1:

Given a temporal partitioning of G = (E,

V) into k disjoint partitions P = {P1,

P2…Pk} .We define the indicator vector LX as follow: LX() = MLX(1), LX(2), … . , LX(B)OQ ,

where m = 1, 2,..., k and i = 1,2,…n are

defined as:

 LX() = �a].[] if �� ∈ �X; 0 otherwise.

 We have: �TTUVW = ∑ LXQ_��� RLX (3)

Poof:

According Properties of Laplacian

matrix LXQ RLX = LXQ �LX = LXQ 9LX= ' ��
4

��� NX> () ' ' 9�,�
4

���
4

��� NX()NX(c)
= 12 '(��

4
��� +��)NX

− ' ' 9�,�
4

���
4

��� NX()NX(c)
= 12 d'(��

4
��� + ��)NX> ()

− 2 ' ' 9�,�
4

���
4

��� NX()NX(c)
+ ' ��

4
��� NX> (c)7

= 12 ' ' 9�,�
4

���
4

���)NX() − NX(c)2>

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 112-122
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

117

= 12 Y∑ 9�,�C+∈.[;;C,∈].[]|�X|
+ ∑ 9�,�C+∈.[;;C,∈].[]]�X] ^
= |�|2 e' ∑ 9�,�C+∈.[;;C,∈].[]|�X|]�X]

�
��� f

⟹ ' LXQ RLX
�

X��
= |�|2 e ' ∑ 9�,�C+∈.[;;C,∈].[]|�X|]�X]

�
X�� f

= �TTUVW

Observation 1:

Using equation 3, the problem of

communication cost minimization can be

expressed as:

Minimize(TCCost)=>Minimize(trace (hij khi)

The standard form of a trace

minimization problem can be solved by

choosing Xp as the matrix that contains

the first k eigenvectors corresponding to

the k smallest eigenvalues of matrix

L(G) as columns

Lemma2:

Given a (n×n) matrix Mp as follow:

 l�,� = �|.[| if Ti and Tj ∈ Pm; 0

otherwise

 We have: LXQ RLX = lm

Proof:

The ij
th

 of LmLmQ is ∑ LX()�X�� LX(c).

The term LX()LX(c) will be non-zero

if and only if both Ti and Tj, are in Pm,

hence the sum is
�|.[| when Ti and Tj are

in the same partition; 0 otherwise.

Lemma3:

To calculate the lower number of

partitions required to obtain solution we

divide the area of all nodes, by the

available reconfigurable resource. In

other words, given a graph G = (V, E)

partitioned into K disjoints temporal

partitions; P = {P1, P2…Pk}; the lower

number of temporal partitions Kmin

is: n(o) n(p) , where A(G) is the area of the

graph and A(H) is the area of the device.

Proof:

Given a function F(K) defined as

follows:

q(!) = �(r) − ' �(��)_
���

Then, Min(F(k)) correspond to

Max(∑ �(��)_���).

Or ∀ �� ∈ �;
 ' �(��)_
��� ≤ ' lEN�(��)_

��� ⇒

lEN e' �(��)_
��� f = ' lEN�(��)_

���= tlEN)�(��)2 ⇒ tX�4 = �(r)lEN�(��)

Or ∀ �� ∈ �;
 �(��) ≤ �(�) ⇒ lEN�(��) = �(�) ⇒ tX�4 = �(r)�(�) (4)

The above descriptions are summarized by the

following steps, form step 1 to step 7

1) Compute the minimum number of
partitions K= Kmin = vwxyz({) ∕wxyz(})~
2) Compute the laplacian matrix
L(G) of G

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 112-122
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

118

3) Compute k lowest eigenvalues
of L(G)

4) Construct the (n x k) matrix
XP that have the K eigenvectors
as columns.

5) Compute Z = XP X
t
P

6) Construct the (n x n) matrix
Mp = Mi,j from Z. Mi,j = 1 if Zi,j
≥1/n, 0 otherwise.

7) Generate the initial
partitioning from matrix Mp
8) If the area constraint is
satisfied then final
partitioning = initial
partitioning; else go to step 2
(we mean by go to step 2: go to
final partitioning step)

4.2 Second step: final partitioning

In this step, we start from the initial

partitioning Pin given by the first step

and the set of partitions Pi ∈ Pin, where

A(Pi) > A(H). Our technique balances

nodes from partition Pi to Pj or inversely

until the satisfaction of the area

constraint. The balance of nodes is

based on the force F(Ti,Pi→Pj)

associated with partition Pi on a node Ti

to be scheduled into partition Pj and on

the force F(Ti,Pj→Pi) associated with

partition Pj on a node Ti to be scheduled

into partition Pi. For instance let us

assume that Pi < Pj; Pi, Pj ∈ Pin.

These forces are calculated as follow:

F(Ti,Pi→Pj) = δ1(Ti) * OF(Ti) (11)

 ��(��) = 0, if there is a node �� ∈ ��
and �� is an output of ��, otherwise ��(��) = 1. �q(��) = (��(��) + 1) (12)
Given tow nodes �� EBF �� ∈ �� ��(��) = ' ��,�C,∈.+

�� (13)

Where: ��,� = 1 if �� is an input of ��, 0

otherwise

F(Ti,Pj→Pi)= δ2(Ti) * InF(Ti) (14) �>(��) = 0, if there is a node �� ∈ �� and �� is an input of ��, otherwise �>(��) =1. DBq(��) = (��(��) + 1) (15)

Given two nodes �� EBF �� ∈ �� ��(��) = ' ∅�,�C,∈.,
�� (16)

Where: ∅�,� = 1 if �� is an output of ��, 0

otherwise.

In general, due to the scheduling of one

node, other node schedules will also be

affected. At each iteration, the force of

every node being scheduled in every

possible partition is computed. Then, the

distribution graph is updated and the

process repeats until no more nodes

remain to be scheduled.

5 EXPRIMENTS:

In our experiences, we used four

approaches, list scheduling [6], initial

network flow [13], improved network

flow [3] and the proposed algorithm. In

our experiences, we evaluated the

performance of each algorithm in term

of total communication cost, whole

latency of the graph and run time of the

algorithm. The graphs shown in table 2

and table 4 were chosen to be

implemented on FPGA Vertex-II

XC2V1000. The Vertex-II XC2V1000

has the following characteristics, table 1:

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 112-122
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

119

Table 1: characteristics of the device

Number of lines 40

Number of Columns 32

Size (CLB) 1280

input / output ports 432

Configuration time CT 7,73 ms

We have conducted two kinds of

experiment. In the first experiment we

considered the 4x4 and 16x16 DCT data

flow graph. In the second one, we

considered the combinational circuits

c3540 and c6288:

The figure 4 shows the Color Layout

Descriptor ‘’CLD’’ is a low-level visual

descriptor that can be extracted from

images or video frames. The process of

the CLD extraction consists of four

stages: Image partitioning, selection of a

single representative color for each

block, DCT transformation and non

linear quantization and Zig-Zag

scanning.

Figure 4: Block diagram of the CLD

extraction

Since DCT is the most computationally

intensive part of the CLD algorithm, it

has been chosen to be implemented in

hardware, and the rest of subtasks

(partitioning, color selection,

quantization, zig-zag scanning and

Huffman encoding) were chosen for

software implementation. The model

proposed by [16] is based on 16 vector

products. Thus, the entire DCT is a

collection of 16 tasks, where each task is

a vector product as presented in Figure

5.

Figure 5: vector products

There are two kinds of tasks in the task

graph.’’ T1’’ and ‘’T2’’, whose structure

is similar to vector product, but whose

bit widths differ. Table 2 gives the

characteristic of 4x4 DCT, 16x16 DCT

task graphs.

Table 2: Benchmark characteristics (DCT

task graphs).

DFGs Nodes Edges Area (CLBs)

DCT 4X4 224 256 8045

DCT

16X16

1929 2304 13919

The c3540 and c6288 are benchmarks of

the combinational circuit commonly

used to test CAD algorithms. In these

circuits, every gate corresponds to a

node which has an area size as shown in

Table 3. We can easily transform a

combinational circuit into a DFG with

weighted nodes by a transform program.

Table 4 gives the characteristic of c3540

and c6288 task graphs.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 112-122
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

120

Table 3: Area of the logical gates expressed in

circuit.

Logical gate Area (CLBs)

Buffer 2

INT 3

AND 5

OR 7

NAND 8

NOR 12

XOR 14

XNOR 18

Table4: Benchmark characteristics

(combinational circuit).

DFGs Nodes Edges
Area

(CLBs)

c3540 1038 1016 6426

c6288 2247 2140 10644

The table 5 and table 6 gives the

different solutions provided by the list

scheduling, the initial network flow

technique, the enhance network flow and

the proposed algorithm. Firstly, our

algorithm has always the lowest number

of partitions. In fact, as configuration

time of currently dynamically

reconfigurable hardware is too large.

Thus, the configuration overhead will be

a problem because the configuration

time mainly occupies the time required

to switch a partition to another partition.

Therefore, since our algorithm has the

lowest number of partitions, it has the

lowest latency. Results show an average

improvement of 20, 5% in tem of design

latency for the DCT task graph and 14,

16% for the combinational circuit task

graph. Secondly, the table 5 and table 6

shows that our partitioning algorithm

minimizes communication overhead

between partitions for dynamically

reconfigurable hardware. The results

show an average improvement of 28,

87%, 13, 18%, and 6, 31% for actual

applications, compared with three

conventional algorithms for the DCT

task graph and 27,89% , 6,145% and 1,

51% for the combinational circuit task

graph.

As conclusion our algorithm has a good

trade-off between computation and

communication. Hence, our algorithm

can be qualified to be a good temporal

partitioning candidate. In fact, an

optimal partitioning algorithm needs to

balance computation required for each

partition and reduce communication

required between partitions so that

mapped applications can be executed

faster on dynamically reconfigurable

hardware.

6 CONCLUSION:

Dynamically reconfigurable computing

systems have the potential for achieving

high performance at a relatively low cost

for a wide range of applications. In this

paper, we have proposed a new temporal

partitioning algorithm for reconfigurable

computing systems to reduce maximum

communication cost. Our algorithm is

composed by two main steps. The first

step aims to minimize the transfer of

data required between design partitions.

To satisfy area constraints, we use the

balance of nodes technique. The

experiments on benchmark circuits such

as DCT combinational circuits task

graphs have shown the effectiveness of

the proposed algorithm.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 112-122
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

121

Table 5: Design results (DCT task graphs).

Graph 4X4 DCT Task graph

Algorithms
Proposed

algorithm

List

scheduling

Initial

Network

flow

improved

Network

flow

Improvement

Versus List

scheduling

Improvement

Versus

Initial

Network

flow

Improvement

Versus

improved

Network

flow

Number of

Partitions
7 9 9 9

T.C cost 570 744 634 589 23,38% 10,09% 3,22%

M.C cost 110 105 83 81

Whole

latency

5,770 ns

+ 7*

CT≅7* CT

4770 ns+

9* CT≅9*

CT

4395ns +

9* CT≅9*

CT

4570 ns 9*

CT≅9* CT
22% 22% 22%

Run time 0,2 sec 0,12 sec 0,12 sec 0,12 sec

Graph 16X16 DCT Task graph

Number of

Partitions
11 15 15 15

T.C cost 2023 3106 2378 2193 34,86% 14,92% 7,75%

M.C cost 365 297 265 228

Whole

latency

8420 ns

+ 11*

CT≅11*

CT

6610 ns+

15*

CT≅15*

CT

6420ns+15*

CT≅15* CT

7730ns+15*

CT≅15* CT
26% 26% 26%

Run time 2 sec 1,55 sec 1,55 sec 1,55 sec

Average improvement in communication cost 28,87% 13, 18% 6, 31%

Average improvement in latency 20,5% 20,5% 20,5%

Table 6: Design results (combinational circuit task graph).

Graph c3540 Task graph

Algorithms
Proposed

algorithm

List

scheduling

Initial

Network

flow

improved

Network

flow

Improvement

Versus List

scheduling

Improvement

Versus

Initial

Network

flow

Improvement

Versus

improved

Network

flow

Number of

Partitions
4 5 5 5

T.C cost 550 783 588 561 29,75% 6,46% 1,96%

M.C cost 147 171 128 126

Whole

latency

3575 ns

+4*

CT≅4* CT

4240 ns+

5* CT≅5*

CT

4240ns +

5* CT≅5*

CT

4240 ns 5*

CT≅5* CT
20% 20% 20%

Run time 0,2 sec 0,82 sec 0,82 sec 0,82 sec

Graph c6288 Task graph

Number of

Partitions
11 12 12 12

T.C cost 829 1121 886 835 26,04% 6,43% 1,07%

M.C cost 80 132 89 86

Whole

latency

6860 ns

+ 11*

CT≅11*

CT

6780 ns+

12*

CT≅12*

CT

6780ns+12*

CT≅12* CT

6780ns+12*

CT≅12* CT
8,33% 8,33% 8,33%

Run time 2 sec 1,97 sec 1,97 sec 1,97 sec

Average improvement in communication cost 27,89% 6, 145% 1, 51%

Average improvement in latency 14,16% 14,16% 14,16%

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 112-122
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

122

7 REFERENCES

1. Bobda,C “Introduction to Reconfigurable

Computing Architectures, Algorithms, and

Applications”, Book, Springer Publishers

(2007).

2. Joao M.P. Cardoso, “On Combining

Temporal Partitioning and Sharing of

Functional Units in Compilation for

Reconfigurable Architectures”, IEEE Trans.

Computers, Vol. 52 No. 10, 2003, pp : 1362-

1375

3. Yung-Chuan J and Yen-Tai L “Temporal

partitioning data flow graphs for

dynamically reconfigurable computing”

IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, Volume 15 ,

Issue 12 (December 2007), pp: 1351 – 1361

4. Bouraoui Ouni, Ramzi Ayadi, Mohamed

Abid, Novel temporal partitioning algorithm

for run time reconfigured systems, Journal

of Engineering and Applied Sciences (3)

(2008).

5. Cardoso JMP. On combining temporal

partitioning and sharing of functional units

in compilation for reconfigurable

architectures. IEEE Trans Comput

2003;52(10):1362–75.

6. S. Trimberger, “Scheduling designs into a

time-multiplexed FPGA,” in Proc. ACM Int.

Symp. Field Program. Gate Arrays, 1998,

pp: 153–160.

7. Spillane J, Owen H. Temporal partitioning

for partially-reconfigurable field

programmable gate. Reconfigurable

Architectures Workshop in PS/SPDP’98.

8. Ouni B, Ayadi R, Mtibaa A. Partitioning and

scheduling technique for run time

reconfigured systems. Int J Comput Aided

Eng Technol 2011;3(1):77–91.

9. Jeong Byungil. Hardware software

partitioning for reconfigurable architectures.

MS theses. School of Elec. Eng. Seoul

National University; 1999

10. Wu GM, Lin JM, Chang YW. Generic ILP-

based approaches for time multiplexed

FPGA partitioning. IEEE Trans Comput –

Aided Des 2001;20(10):1266–74.

11. Bouraoui Ouni, Abdellatif Mtibaa, El-Bay

Bourennane scheduling approach for run

time reconfigured systems, International

Journal of Computer Sciences and

Engineering Systems (4) (2009).

12. Liu. H and Wong. D. F, “Network flow

based circuit partitioning for time-

multiplexed FPGAs,” in Proc. IEEE/ACM

Int. Conf. Comput.- Aided Des., 1998,

pp:497–504.

13. Liu. H and Wong. D. F ““Network flow

based multi-way partitioning with area and

pin constraints” IEEE trans on computer

aided design of integrated circuits and

systems. Vol 17, NO 1, January 1998, pp:

: 50 - 59

14. Wai-Kei M and Young E.F. “Temporal logic

replication for dynamically reconfigurable

FPGA partitioning,” IEEE Trans. Computer-

Aided Design, vol. 22, Issue 7, July 2003,

pp:952-959.

15. B. Mohar, The Laplacian spectrum of

graphs, in: Proceedings of the 6th

Quadrennial International Conference on the

Theory and Applications of Graphs, 1988,

pp. 871-898.

16. Abdellatif Mtibaa, Bouraoui Ouni,

Mohamed Abid. An efficient list scheduling

algorithm for time placement problem.

Comput Electr Eng 2007;33(4):285–98.

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 112-122
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

