
74

Evaluating Software Maintenance Testing Approaches to Support

Test Case Evolution

Othman Mohd Yusop and Suhaimi Ibrahim

Advanced Informatics School

Universiti Teknologi Malaysia, International Campus

54100 Jalan Semarak, Kuala Lumpur, Malaysia

{othmanyusop, suhaimiibrahim}@utm.my

ABSTRACT

Software Maintenance Testing is essential

during software testing phase. All defects

found during testing must undergo a re-test

process in order to eliminate the flaws. By

doing so, test cases are absolutely needed to

evolve and change accordingly. In this

paper, several maintenance testing

approaches namely regression test suite

approach, heuristic based approach,

keyword based approach, GUI based

approach and model based approach are

evaluated based on software evolution

taxonomy framework. Some of the

discussed approaches support changes of

test cases. Out of the review study, a couple

of results are postulated and highlighted

including the limitation of the existing

approaches.

KEYWORDS

Maintenance Testing, Test Case, Test Suite,

Software Change, Software Evolution.

1 INTRODUCTION

Maintenance testing as defined in

ISTQB glossary terms (standard glossary

terms ver2.0) “testing the changes to an

operational system or the impact of a

changed environment to an operational

system”. There are two type of

maintenance testing that relates to

changes in artefacts during the

maintenance phase: confirmation

testing and regression testing.

Maintenance testing phase happens after

the deployment of the system. Over

time, the system is often changed,

updated, deleted, extended, etc during

software evolution. The artefacts that

support the system need to be updated

concurrently to avoid being outdated as

compared to the source codes. [1] shows

80% of overall testing budget went to

retesting the software and 50% of total

software maintenance is consumed by

retest alone.

Confirmation Testing can briefly

define as a re-testing. Defects found

during testing will be corrected and

another test execution will take place to

re-confirm the failure does not exist.

During the retest, originality of test

environment, data and inputs have to be

exactly identical as it was tested in the

first time. If the confirmation testing has

passed, it does not guarantee the defect

has been corrected. It might introduce

defects somewhere else, hence

regression testing is required. In order

to ensure the defect does not propagate

to other functionalities, regression

testing has to be carried out.

More specifically, the purpose of

regression testing is to verify that

modifications in the software or the

environment have not caused unintended

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 74-83
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

75

adverse side effects and that the system

still meets its requirements.

Regression testing is a technique to

validate the unchanged system features

whether it is remained intact and not

impacted by the recent changes made to

the system or otherwise. Whenever there

is a new version of software being

produced, all the test cases in a

regression test suite would be executed.

This technique is ideal candidate for

automation. However, regression

testing will become slower to be

executed when newly added test cases

increase a number of existing test cases.

Therefore to reduce the cost of

regression testing, test case selection is

required.

In this paper some of the maintenance

testing approaches are evaluated to find

the commonalities among the

approaches and to what extent these

approaches provide support within entire

spectrum of software development

activities specifically during

maintenance testing.

This paper is organized as follows:

Section 2 presents an overview of

software maintenance approaches.

Section 3 elaborates software evolution

framework perspective while section 4

discusses two results obtained from the

study. Section 5 talks about threats to

validity and finally followed by the

conclusion section 6.

2 OVERVIEW OF SOFTWARE

MAINTENANCE TESTING

APPROACHES
In this section several maintenance

testing approaches namely Regression

Test Suite approach, Heuristic-Based

Framework approach, Keyword-Based

approach, Graphical User Interface

(GUIs) Regression Testing approach and

Model-Based approach will be evaluated

into several subsections respectively.

2.1 Regression Test Suite Approach

(RTS)

When changes applied in to a system,

impacted artefacts i.e. test suites have to

be changed accordingly during

maintenance phase. [2] came up with a

case study how test suite maintenance

can be done during system evolution that

caused by changes made to the system

during maintenance phase. This case

study make used of reusable test

environments and program. [2]

investigated issues in software

maintenance through exploratory study

and follow-up study on change strategies

in their studies and this study was

inspired by [3].

Four phases involved during the case

study process: environment setup, build

configuration, execute unit test and

execute functional test as shown in Fig. 1

below:

Figure 1. Case Study Process [2].

Several steps were involved during the

test. First step involves installation of

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 74-83
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

76

baseline version and follows by

executing the baseline to verify its

executable and usable. Change

propagation version will follow the suite

i.e. installation and execution processes.

The adapting task will be logged and

recorded. The results will undergo a

comparative study with different version

of the test cases. Validation of this work

is done via a model called Padgett [4].

The result than postulated into three

classifications: reactivity, researcher

bias and respondent bias.

2.2 Heuristic-Based Framework

Approach (HBF)

Graphic User Interfaces (GUIs) are

believed to make up a large portion of

source code [5]. Testing GUI is different

compared to traditional testing which

involve implementation level of source

code/programming. This is a true when

it comes to test case maintenance

especially during regression testing.

Minor changes in GUI, could impact

malfunction of test cases. [5] has created

an approach which is based on heuristic

model to solve GUI test case

maintenance.

This approach make used of two

techniques: Capture/Replay and

Elements and Actions. Capture/Replay

technique requires end-user gestures

such as mouse maneuverability usage

and keystrokes. These activities are

recorded and played back. The

advantage of this approach, it does not

require a good programming skill. The

issue of this approach raise when there is

change in the interface and consequently

causing test cases to be malfunctions and

broken. Whenever this situation

happens, manual effort is often required

to repair some test cases in test suite.

Elements and Actions approach models a

GUI test case as a sequence of actions.

Examples are shown as in Fig. 2 and

Table 1. Fig. 2 shows a sample of GUI

as captured test cases whereas Table 1

shows the elements and actions captured

during the capture/replay technique

Figure 2. Find Dialog Box [5].

Table 1. Sample of Test Case for Find Dialog

Box [5].

GUI Elements Actions

FindTextBox setText(‘GUI’)

CaseSensitiveCheckBox ‘click’

FindButton ‘click’

CancelButton ‘click’

In Fig. 3 shows the captured new

elements and actions. While in table 2

shows the sample heuristics table.

Figure 3. Modified Find Dialog Box [5].

Table 2. Sample Heuristic Result [5].

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 74-83
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

77

Changes are applied to system and some

of new elements in Find Dialog box

have been updated as Fig. 3. Some of

these changes causing test case as Table

1 invalid unless the test case need to be

updated as well. HBF approach has to be

produced so automated test case can be

formed accordingly to the changes made

as shown in table 2.

2.3 Keyword-Based Approach (KB)

[6] used keyword-based approach for

software testing automation and

maintenance. They categorised test

automation into 5 categories namely: test

management, unit test, test data

generation, performance test and

functional/system/regression test. The

authors picked up test execution for test

automation. Basic principle of this

keyword based approach is test

engineering tasks are separated into

specific roles. Identified roles for test

engineering composed of test designer,

automation engineer and test executor.

As test designer, the person needs to

form test cases using keywords and

documented in using spreadsheet. The

automation engineer will code up the

keywords scripts using scripting tool and

language. Finally the test executor will

run the tests directly from the

spreadsheet. The approach is said to

improve Capture/Playback technique

through reduction the amount of test

script. The approach is as shown in Fig.

4 below and follows by the test result

(Fig. 5) of the research study by the

authors.

Figure 4. Keyword Based Approach [6].

Figure 5. Result as Return of Investment [6].

2.4 Graphical User Interfaces (GUIs)

Regression Testing Approach (GUIs-

RT)

[7] claims the test case maintenance

using GUI is approachable and not many

research have been done on it. This

approach basically provides some useful

insight information on test suite

maintenance through GUI maintenance.

This approach is called GUI regression

testing and it determines the usability of

test suites after changes are imposed on

the system GUIs.

This technique consists of two parts: a

checker and a repairer. A checker is

responsible to categorise test cases into

usable and un-usable. If the test case is

siding to the latter, the repairer will try

to repair the un-usable test cases. Once

done, the repaired test cases are labeled

and stored as repairable test case. Details

of the Fig.6 as shown below:

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 74-83
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

78

Figure 6. Regression Testers’ Components [7].

[7] Repaired test case is an effective way

to reduce cost of creating new test cases.

Each component details have been

explained by the authors in their research

studies and will not recurring into this

sub-section. Results are compared

through several case studies and Bit-

vector and Graph Matching Checker

execution time were taken as shown in

Table 3 and Fig. 7 respectively below:

Table 3. Time Taken at a Glance [7].

Figure 7. Comparing Bit-Vector with Graph

Matching Checker [7].

2.5 Model-Based Approach (MB)

[8] proposed a model-based approach for

maintenance testing. Models are the

main source for this approach and tools

that support models and source codes are

presumably established i.e. support auto

generation between models and source

code. UML classes and sequence

diagrams are two input factors for test

case generation. Whilst generating test

cases out of models, an infrastructure

composing of test related model and

fine-grained traceability are created. The

infrastructure or the approach as

depicted in Fig. 8 below:

Figure 8. The Approach Overview [8].

This approach is divided into two

phases. First phase is the creation of

models and traceability, and the second

phase utilises created models and

traceability from the first phase as well

as the modified UML models. During

first phase, two steps are executed: (1)

sequence diagram into model-based

control flow graph (mbcfg)

transformation and (2) then converting

mgcfg information into test generation

hierarchy and keeps safe the traceability

model. Abstract test cases are produced

and during further transformation the

abstract test cases will turn into concrete

test script skeletons.

The second phase involves four

activities: (1) comparing the models to

find differences hence differencing

model, (2) converting sequence diagram

into modified mbcfg, (3) mbcfg and

differencing model will used during pair

wise graph traversal between original

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 74-83
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

79

and modified mbcfg, and finally (4) test

cases are classify through selected

dangerous entities identification. This

approach support modification at model

level i.e. classes and sequence diagrams.

3 EVALUATION OF SOFTWARE

EVOLUTION FRAMEWORK

[9] taxonomy provides a framework for

software evolution. This framework is

not focusing on why the changes took

place or who involves with the changes,

instead it answers other non-trivial

aspect of changes such as mechanisms of

change and influence factors through

investigating of how, when, what and

where, software has changed. The

framework is a conceptual ground that

supports various evolution mechanisms

and tools that emerged due to changes in

software system.

The taxonomy is composed of features

of consideration called dimensions.

These dimensions are determined and

classified into either characterising

mechanisms or influencing factors. Each

of these dimensions will be placed under

four types of logical groups: temporal

properties, object of change, system

properties and change support. These

logical subjects and dimensions stated

aspects of software changes in term of

when, where, what and how [9].

Temporal properties group contains time

aspect of when evolution changes

happened and its frequent occurrence.

Under this group, time change

dimension has been specified into three

different phases of change: static, load-

time and dynamic; change history refers

to history of changes made to the

software both parallel or sequential

history and it has to be supported by

versioning tool; change frequency

property states changes interval into

periodically, continuously or arbitrarily;

and anticipation describes a foreseen

changes at early stage of development

i.e. requirement phase [9]. Anticipation

change helps reduce effort of

implementing changes compared to

unanticipated change [10].

Object of change describes the location

of where changes are made. Supporting

mechanisms that are needed: artefacts, it

could be static artefacts or dynamic

artefacts; granularity of artefacts, from

fine-grained, medium and coarse; impact

of change determines range of impacted

artefacts; and change propagation,

following up the changes if they span to

non-local artefacts or different level of

abstraction [9].

System properties indicates the what part

and it composed of; availability that

indicates either the software system is

permanently or occasionally available;

activeness state the system either it is

reactively or proactively evolved;

openness indicates how open and closed

the system to new extensions; and finally

the safety is a feature to distinguish

between static safety and dynamic

safety[9].

The change support describes the how

part. Some features involve in this

logical theme are; degree of automation,

is a feature to differentiate among fully

automated, partially automated or

manually change; degree of formality

indicates the degree of formalism used

during the change process and formal

methods [11] may be used during the

process; change type characterises

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 74-83
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

80

between structural and semantic

changes.

4 RESULT REVIEWS OF

MAINTENANCE TESTING

APPROACHES

Evaluation of the existing maintenance

testing approaches will be done by

benchmarking against [9] software

evolution framework. [9] defined their

framework criteria based on

characterising factors of change

mechanism and its influence factors.

For this particular review, research

candidate has done cross checking

against one of the dimensions namely

Object of Change (where). Other

dimensions are not going to be included

in this review. This is due to research

candidate nature research is based on

scopes such as change of artefacts,

granularities, impact and change

propagation.

4.1 Result Review I

[9] classified the location of changes or

answering where changes happened, as

the second logical of his taxonomy.

Within this dimension, there are four

influencing factors had been highlighted

namely artefacts, granularity, impact

and change propagation. Artefacts are

sub-categorised into static evolution and

dynamic evolution. Level of artefacts

abstraction will be divided into three

sub-categories granularity; coarse,

medium and fine. The impact of the

changes indicates whether the changes

influencing at local or global/system-

wide level of abstraction. Changes made

can spread out to other entities; this

influencing factor is called change

propagation.

Table 4. Object of Change for Maintenance Testing Approaches – Result Review I.

Object of Change RTS HBF KB GUIs-RT MB

Artefacts

• Static

Evolution

Test Suites

�

Test Cases

�

Test Cases

�

Test Cases

�

Classes and

sequence

diagrams �

Granularity

• Coarse � � �

• Medium �

• Fine �

Impact

• Locally � � � � �

• System Wide � � � � �

• Level of

abstraction

Test Cases Graphic User

Interface

Testing

Script

Test Suite Model

Change Propagation � � � � �

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 74-83
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

81

Based on table 4, all maintenance testing

approaches are checked against the

object of change dimension. For

influencing factor artefacts, RTS caters

set of test cases or a test suite. The

granularity of the artefacts is still coarse

or at file level. Though the impact can

span from locally impacted or system

wide impacted. RTS does cover the

change propagation by having change

propagation cycle in its approach.

HBF has similar set of artefacts when

compared to RTS. HBF goes a little

detail on level of artefacts which is test

case instead of test suite. Since HBF

covering element of artefacts based on

graphical user interface, each of the field

inside the window is treated as a single

possible test case, thus HBF provides

finer granularity as opposed to RTS. The

impact can be traced out locally or

widely despite no change propagation

tracing was provided.

KB uses keywords to build up test cases.

The level of test case is still coarse in

term of its granularity. All the keywords

are typed out manually into a test script

and will be used to assist a programming

task during test automation. It has

locally impact and does not support

change propagation.

GUIs-RT is another approach which

took graphical elements as its test cases

artefacts. The focus is more towards

maintaining user interface therefore all

test cases are sourced by graphical

elements. Level of granularity is still at

coarse level and the impact is able to

trace out locally and widely except with

no change propagation.

Finally MB approach make used of

model as input artefacts. Specifically

classes and sequence diagram will be

used as the sources. Two UML elements

are considered as medium granularity

and the impact can be traced out locally

with change propagation support.

4.2 Result Review II

Besides evaluating the approaches based

on [9] taxonomy perspective, research

candidate did some comparative study

among the maintenance testing

approaches. Some generic features or

commonality namely contribution,

limitation, level of abstraction,

traceability support, version control

support, tool support, result of research

and validity to threat were included and

tabulated as the following table 5:

Table 5. Maintenance Testing Approaches Commonality Features – Result Review II.

Commonality

Features

RTS HBF KB GUIs-RT MB

Contribution

Test Suite

Automation

Support GUI

test cases

Support Test

Automation

through

Keywords

Support Test

Suite

maintenance

during GUI

regression

testing

method

Model based

test case

generation and

maintenance

Limitation

Manually

execution for

encapsulated

function

Larger GUI

size causes

adverse effect

to its accuracy

Scalability

Issues

Obsolete test

cases still

can occured

If more

modified

operations were

called, adverse

in precision

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 74-83
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

82

Level of

Abstration

Test Suite GUI elements

i.e. buttons,

textbox

Words Test Suite Models,

classes, source

code

Traceability

Support

� � � � �

Version

Control

� � � � �

Tool Support
� GUIAnalyzer � GUITAR RTStool &

DejaVOO

Validity to

Threat

Padgett model

developed by
[4] to validate

the approach

Not stated

Capture/Playback

was comparative

case study

Subject

application,
Performance

and

Effectiveness,
comparative

algorithms

Using these
criteria:

efficiency,

precision and
safety [12]

Result of

Research

Role splitting

strategy is
favourable

over the others

Accuracy can

be sought using
multiple

heuristic sets

Comparatively
Keyword is

better that

Capture/Playback
approach which

is very costlier

and manually
done

Efficient and
effective new

regression

GUI test
approach

Combinational

between model-

based test
generation and

regression

selection test

5 THREATS TO VALIDITY

The sources used to evaluate the

approaches are based on accepted

published international journals and

conference papers. Justifications are

based on the software evolution

taxonomy mentioned in [9]. Whereas

another evaluation was based on

common criteria such as limitation,

contribution, etc. Though without any

formal methods, the results were based

on our understanding and experiences in

the field before such results were

postulated.

6 CONCLUSION

In this paper we presented the evaluation

results for maintenance testing

approaches. These inputs can be used for

future references in case research

candidate wishes to further the research

study.

7 REFERENCES

1. Harrold, M.J.: Reduce, reuse, recycle, recover:

Techniques for improved regression testing.

2009 IEEE International Conference on Software

Maintenance. pp. 5-5. , Edmonton, AB, Canada

(2009).

2. Skoglund, M., Runeson, P.: A case study on

regression test suite maintenance in system

evolution. 20th IEEE International Conference

on Software Maintenance, 2004. Proceedings.

pp. 438-442. , Chicago, IL, USA (2004).

3. Rajlich, Gosavi: A Case Study of Unanticipated

Incremental Change. Proceedings of the

International Conference on Software

Maintenance (ICSM'02). p. 442. IEEE Computer

Society (2002).

4. Robson, C.: Real World Research: A Resource

for Social Scientists and Practitioner-Researchers

(Regional Surveys of the World). {Blackwell

Publishing Limited} (2002).

5. McMaster, S., Memon, A.M.: An Extensible

Heuristic-Based Framework for GUI Test Case

Maintenance. Proceedings of the IEEE

International Conference on Software Testing,

Verification, and Validation Workshops. pp.

251-254. IEEE Computer Society (2009).

6. Wissink, T., Amaro, C.: Successful Test

Automation for Software Maintenance. 2006

22nd IEEE International Conference on Software

Maintenance. pp. 265-266. , Philadelphia, PA,

USA (2006).

7. Memon, A.M., Soffa, M.L.: Regression testing of

GUIs. Proceedings of the 9th European software

engineering conference held jointly with 11th

ACM SIGSOFT international symposium on

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 74-83
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

83

Foundations of software engineering. pp. 118-

127. ACM, Helsinki, Finland (2003).

8. Naslavsky, L., Ziv, H., Richardson, D.J.: A

model-based regression test selection technique.

2009 IEEE International Conference on Software

Maintenance. pp. 515-518. , Edmonton, AB,

Canada (2009).

9. Buckley, J., Mens, T., Zenger, M., Rashid, A.,

Kniesel, G.: Towards a taxonomy of software

change: Research Articles. J. Softw. Maint. Evol.

17, 309–332 (2005).

10. Kniesel, G., Noppen, J., Mens, T., Buckley, J.:

Unanticipated Software Evolution. Object-

Oriented Technology ECOOP 2002 Workshop

Reader. pp. 92-106-106. Springer Berlin /

Heidelberg (2002).

11. Goguen, J.A.: Formal methods: Promises and

problems. IEEE SOFTWARE. 14, 73--85 (1997).

12. Rothermel, G., Harrold, M.J.: Analyzing

Regression Test Selection Techniques. IEEE

Trans. Softw. Eng. 22, 529-551 (1996).

International Journal on New Computer Architectures and Their Applications (IJNCAA) 1(1): 74-83
The Society of Digital Information and Wireless Communications, 2011 (ISSN 2220-9085)

