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ABSTRACT

Linear Discriminant Analysis (LDA) is a traditionatatistical method which has proven successful on
classification and dimensionality reduction probégth The procedure is based on an eigenvalue resolatid gives an

exact solution of the maximum of the inertia bus thnethod fails for a nonlinear problem.

To solve this problem used kernel Fisher Discrimtnanalysis (KFDA), carry out Fisher linear Disciant
analysis in a high dimensional feature space définglicitly by a kernel. The performance of KFDAmknds on the

choice of the kernel.

In this paper, we consider the problem of findihg bptimal solution over a given linear kernel fime for the
two primal and dual variable in Fisher Discriminathiis by taking a small sample 20 case about HBéake by taking
three factors (Age, Gender, number of Lymphocytel) avith two level to clear how these observatiatassified by

testing this classified using statistic (Rayleigbe@icient).

KEYWORDS: Linear Fisher Discriminant, Kernel Fisher Discrimim, Rayleigh Coefficient, Cross-Validation,

Regularization
INTRODUCTION

Fisher’s linear Discriminant separates classesatd ty selecting the features that maximize the odtprojected
class means to projected intraclass variariées.

The intuition behind Fisher’s linear DiscriminafL{) consists of looking for a vector of compoundssuch
that, when a set of training samples are projeictiedit, the class centers are far apart whilegfwead within each class is

small, consequently producing a small overlap betwelasses”. This is done by maximizing a cost function knoiwn

some contexts as Rayleigh Coefficied1(w).

Kernel Fisher's Discriminant (KFD) is a nonlineaaton that follows the same principle for Fishenear
Discriminant but in a typically high-dimensionakfere space . In this case, the algorithm is reformulated inme of
J(a), where @ is the new direction of Discriminant. The theoryreproducing kernels in Hilbert spategives the

relation between vectorg/ and a . In either case, the objective is to determinertiost “plausible” direction according

to the statistic] .®) demonstrated that KFD can be applied to classiinaroblems with competitive results. KFD shares

many of the virtues of other kernel based algorththe appealing interpretation of a kernel as ppimgy of an input to a
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high dimensional space and good performance inlifeapplications, among, the most important. Hegre it also suffer
from the deficiencies of kernelized algorithms: simdution will typically include a regularizatiomefficient to limit model

complexity and parameter estimation will rely omgofrom while the latter precludes the use of nigchedels.

Recently, KFDA has received a lot of interest ia literatur&* ®. A main advantage of KFDA over other kernel-
based methods is that computationally simple: dguies the factorization of the Gram matrix computeith given

training examples, unlike other methods which salease (convex) optimization problems.

THEORETICAL PART

Notation and Definitions

We useX to denote the input or instance set, which is &itrary subset ofR”, and Y = {- 1,+1} to denote
the output or class label set. An input-output p(aﬁry) where x(O X and Y Dy is called an example. An example

is called positive or ( negative) if its class laie +ZI(—1). We assume that the examples are drawn randondy an

independently from a fixed, but unknown, probapititstribution over X X Y .

Asymmetric functionK : X' X X - Ris called a kernel (function) if it is satisfiesetfinitely positive semi-

definite property: for anyx;, X, ......,X,, J X, the Gram matrixG O R ™" , defined by

G, = K(x ,xj) (1)

1

is positive semi-definite. Mercer’s theoréti tells us that any kernel functio implicitly maps the input set

X to a high dimensional (possibly infinite) Hilbesnpace}[ equipped with the inner produ(ﬂ}]}[ through a mapping

p: X - H:
K(x z)=(ex).dz2)),,.Ox,z0X

We often write the inner produc<t{dx), dz),>g{ as (U(X)T (U(Z) when the Hilbert space is clear from the
context. This space is called tfeature space, and the mapping is called tfeature mapping. The depend on the kernel
function K and will be denoted agg, and J, . The gram matrixG [JR ™™ defined in (1), will be denote@,
when it is necessary to indicate the dependené@ on.

FISHER DISCRIMINANT

Fisher Discriminant is the earliest approachehéproblem of classification learning. The ideaanhdng this

approach is slightly different from the ideas mali so far, rather than using decompositﬁ;& = Py\xPx we now

decompose the unknown probability measure caoitisiit the learning problem aE’xy = Px‘yPy . The essential different

between these two formal expression becomes appahem considering the model choices :

* In the case of ny = Py‘XP we use hypothesebDj‘[ H y" to model the conditional measul%y‘X of

X
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classesyD y given objectsX OX and marginalize ovePX in the noise free case, each hypothesis defines

such a model byF’Y‘X:XIH:h (y) =|h(x):y. Since our model for learning contains only prenﬁsth X - y

that discriminate between objects, this approasioisetimes called the predictive or discriminatpgroach.

» Inthe case oP,, =P, P, we model the generation of objeckd] X given the classy 1Y/ = {-l,+1} by

Xy

some assumed probability modEfX where (Hﬂ,lg_l, P)DQ parameterizes this generation process.

ly=y.Q=0
We have the additonal parameterP D[O,l] to describe the probability PY‘ng(y) by
p [Iy:+1 + (1— p).ly:_l. As the model Q contains probability measures from which the gateet training

sample X OXis sampled, this approach is sometimes callede¢hermtive or sampling approach.

In order to classify a new test objeXtDXwith a model in the generative approach we makeofidgayes

theorem, i.e

o) P, e OOPy 0o (Y)

P = —.
Zyuy Px\Y:y,Q:e (X)PY\Q:H (y)

Y|X=x,Q=0

def
In the case of two classes and the zero-one |(&sls(h(X), y)=|h(x)¢y, we obtain for Bayes optimal

classification at a novel test objeat OX ,

h,(x) =argmaxP,,_ (y)
y={-1,+1}

Px\Y=+1,o=e (X) P @
Px\Y:—LQ:e (X)(l - p)

(X,+1) is greater than

=signl In

as the fraction of this expression is greater tloene if, and only if, va\o:a

ny\o:e(xl_l) in the generative approach the task of learninguants to finding the paramete?sD 0 Q or measures
X|¥=y.0=0° and PY‘QZHJ which incur the smallest expected nP&(hej) by virtue of equation (2). Again, we are faced

with the problem that, with out restrictions on timeasureP,

XY=y the best model is the empirical measﬁltgy (X)1

where Xy U] Xis the sample of all training objects of clays Obviously, this is a bad model becau¥g, (X) as-signs
y

zero probability to all test objects not presenthia training sample and thdﬁg (X) =0, i.e. we are unable to make

predictions on unseen objects. Similarly to theiadmf the hypothesis space in the Discriminativedel we most
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constrain the possible generative moﬂaY:y.

Let us consider the class of probability measum@s the exponential family

P

vevazo (%) = 8(6, o (x)expld (r(x)))

or some fixed functio . - N . - and 7 : - using this functional form of the
F fixed functiond, : R, 7,:X - R and7:X - K using this functional f f th

density we see that each decision funclhg‘must be of the following form

a,(6.,)r,(x)exd@, (r(x))).p
a0, )r,(x)exd@,(7(x))){1- p)

v (X) empirical probability measure
XY

h,(x)=sign| In

= sgn+In (€+1—6_1)r(x)+% o

= sign((w, 7(x)) +b)
This result is very interesting as it shows thet,d rather large class of generative modelsfitiad classification
function is a linear function in the model pararmate@ = (9_1, oy ) Now consider the special case that the

distribution P of objects X [J X given classesy D{-l,+]} is a multidimensional Gaussian in some feature

X|Y=y,0=6

spaceK O 7 mapped into by some given feature mapX — K,

“exd 3 cn, 2k, @

Where the parameteﬂy are the mean vectqt, [JR" and the covariance matri§.‘.y OR™, respectively.

>

vl = (2)°

Making the additional assumption that the covasamoatrix X is the same for both models(‘)+l, 9_1 and
PY\Q:g (+ 1) = PY‘Q:Q (_ 1) we see that,
> St 5L
o -1 . -1. . . -1. .
G_KZ p'_?’_zﬂ"'”’ 52’_223’----,_ 2 )

T(X) = (% X5 XX 5ee XX, 10 XX v X
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r,(x)=1

>

3,(0)=(277)"3 " expl~in'z7m) ©
according to equations (3, 5, and 6) then,

i 10, «- [
t()=x. w=E(u,-p). b=, —plE ) 0

This result also follows from substituting (4) efitly in to equation (2) (see Figure (left) The black line

represents the decision boundary. This must aleaya linear function because both models use time gastimated)

covariance matrix>. (ellipses).

{x € R | (w,x) =0}

{XER | feveri0mn, 900 = v 020}

generative approach proiective aporoach

Figure 1: Fisher Discriminant

An appealing feature of this classifier is thatats a clear geometrical interpretation which wappsed for the

first time by R. A. Fisher. Instead of working witA -dimensional vectorsX we consider only their projection onto a

hyperplane with normaw LK . Let py(W) = Ex\v:y [W'¢(X)] be the expectation of the projections of mapped

objects X from class Y onto the linear Discriminant having normal W and
0'5 (W) = Ex\vzy l(W'(dX) - uy(W))ZJ the variance of these projections. Then chooseslirectionw 1K of

the linear Discriminant a direction along which timaximum of the relative distance between ﬂlg(W) is obtained,

that is, the directioW _ along which the maximum of

I(w)= (et (W) = g2, (w))’ )@

o, (w)+ ' (w)

is attained. Intuitively, the numerator measuresittier class distance of points from the two da{sf 1,—1}

whereas the denominator measures the intra-clatnde points in each of the two classes see ajsoeH1) right, that a
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geometrical interpretation of the Fisher Discrinminabjective function (8), given a weight vectar 1K , each mapped
training objectX is projected ontdN by virtue of t = (x,w). The objective function measures the ratio ofittier-class
distance(u,,(w) - 2, (w))’ and the intra-class distaneg, (w)+ o2 (w).Thus the functiond is maximized if the inter-
class distance is large and the intra-class distemsmall. In general, the Fisher linear DiscriamtW _ suffer from the
problem that its determination is a very difficaiathematical and algorithmical problem, Howeverthia particular case

of Px\v:y,o:e = Normal (,uy,Z)z, a closed form solution to this problem is obtdi noticing thatT = W'¢(X)
is also normally distributed withT‘Y:y’ng = Normal (W',uy,W'ZW). Thus, the objective function given in equation

(8) can be written as

)= Wi ) 1wl ), - p)w

= == ©)
WXwW+wXw 2 w'Xw
Which is known as the generalized Rayleigh quotieving the maximizeW ., ,
—5-1
We, =2 (u+1 - “—1) (10)

This expression equals the weight vecWr found by considering the optimal classificatiomeanthe assumption

of a multidimensional Gaussian measure for thesotanditional distributioan‘Y:y

Unfortunately, as with the discriminative approaeh,do not know the

parameters 6= (p+l,p_l, Z)DQ but have to "learn" them from the given training mpée
z= (X, y) OZ™. we shall employ the Bayesian idea of expressurgoaor belief in certain parameters via some iprio

measurePQ. After having seen the training sampte we update our prior beliePQ , giving a posterior belief::‘Q‘Zm .
=z

Since we need one particular parameter value wegutetthe MAP estimat , that is, we choose the value & which

attains the maximum a-posterior beIiE?Q‘ 3. If we choose a (improper) uniform pridPQ then the parameter

ZM=z
0 equals the parameter vector which maximize theliibod and is therefore also known as the maxiniketihood

estimator, these estimates are given by

fy=— DX, )A::E > Z(Xi _ﬁy)(xi _ﬁy)' (11)

m, (<'5% 2 v+ (x Y
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*Note that /4, (W) OR is areal number whereagl, (W) UR is an a —dimension vector in feature space .
3For details see Linear Kernel Classifiers p.80.

Where is the data matrix obtained by applyigg X — K to each training objecX LI X and my equals the

number of training examples of cladé. Substituting the estimates into the equationg€3ults in the so-called Fisher

Linear DiscriminantW ., . The pseudo code of this algorithm is given in épgix (A) © *

KERNEL FISHER DISCRIMINANT

In an attempt to "kernelize" the algorithm of Fishénear Discriminant its note that a crucial reganent is that
i OR™ has full rank which is impossible if di("K) =n>>m. Since the idea of using kernels reduces
computational complexity in these cases we seeithiatimpossible to apply a kernel trick directly this algorithm.
Therefore, let us proceed along the following ro@éven the data matrixX R ™" we project thelM data vectors

X; COR" into the m-dimensional space spanned by the mappatdng objectsX — XX and then estimate the mean

vector and the covariance matrix iR " using equation (11). The problem with this approadhat X is at most of rank

M — 2 because it is un outer product matrix of two ceedevectors. In order to remedy this situation welaphe

technique of regularization to the resultingl® X IM covariance matrix, i.e. we penalize the diagaridahis matrix by

adding Al to it where large value oAl corresponds to increasing penalization. As a eqgusnce, the projection m-

dimensional mean vectd¢ , LOR™ and covariance matrie [J R ™™ are given by

1 1 '
k, =— » Xx, =—GH\l,_,,..I, _
y m, (&Zy):mz i m, (yl—y ym—y)

1 ]
S=2 XX'XX' = k k [+Al
m( D{ery , )

:1(36 - Zmykyky')w}l

m yo{+1,-1}

Where themM X M matrix G with Gij = <)§ , Xj> = k()g , Xj) is the Gram matrix. Usinc_ky and S in
place of|1y and X in the equations (7) results so-called kernel dfidbiscriminant. We note that the m-dimensional

vector computed corresponds to the linear expansim!ﬁficients& OR™ of a weight vectorW, _ in feature space

D
because the classification of a novel test obpé@ X by the Kernel Fisher Discriminant is carried ontthe projected

data pointXX ,i.e.
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h(x) = sign((&, XX) + 6)= sign(iZ::c“rik(x ,X)+ 6)

=5k, -k.) b =%(k'_ Sk, -k Sk, 12)

It is worth mentioning that we would have obtairthd same solution by exploiting the fact that ¢ihgective

function (8) depends only on inner products betwaapped training objectX; and the unknown weight vectoW . By

m
virtue of Representer Theorerfi the solution can be written aw ., = Z:(liXi which inserted into (8), yields a
i=1

function in @ whose maximizer is given by equation (8). theupseode of this algorithm is given in Appendix (B)?

RAYLEIGH COEFFICIENT

To find the optimal linear Discriminant we needntaximize a Rayleigh coefficient ( cf. Equation (9)sher's
Discriminant can also be interpreted as a featdtgetion technique is defined by the separabdiiyerion (8). From this
point of view, we can think of the Rayleigh coeiffist as a general tool to fined features whickediyer much of what is
considered to be interesting ( e.g. variance in R@A and at the same time avoid what is congdedisturbing (e.g.
within class variance in Fisher's Discriminant)eTratio in (9) is maximized when one covers as magpossible of the
desired information while avoiding the undesirece Wave already shown in Fishers Discriminant thistproblem can be
solved via a generalized eigenproblem. By usingstirae technique, one can also compute second, ¢fird generalized
eigenvectors from the generalized eigenproblemefample in PCA where we are usually looking forenthan just one

feature”
REGULARIZATION

The optimizing Rayleigh coefficient for Fisher’'s doriminant in a feature space poses some problEors.
example if the matrix 2 is not strictly positive and numerical problems camise the matrix2 not even to be positive

semi-definite. Furthermore, we know that for susbadearning it is
“for details see learning Kernel Classifiers p.48

absolutely mandatory to control the size and corigl®f the function class we choose our estimétes). This
issue was not particularly problematic for lineasd@iminant since they already present a rathepkrhypothesis class.

Now, using the kernel trick, we can represent atneexely rich class of possible non-linear solutiows can always
achieve a solution with zero within class variafice. W'>W ). Such a solution will, except for pathologicakes, be

over fitting.

To impose a certain regularity, the simplest pdss#inlution to add a multiple of the identity matto2 , i.e.

replaceZ by 2, where

S, =S+ (120
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This Can Be Viewed in Different Ways

« If A issufficiently large this makes the problem feasible and numericallyenstable as 2, becomes positive

definite.

» Increasing A decreases the variance inherent to the estidatéor A — oo the estimate become less and less
sensitive to the covariance structure. In fact, foF oo the solution will lie in the direction om, —m,. The

estimate of this "means" however, converges vesydad is very stabl@.

«  For asuitable choice of A , this can be seen as decreasing the bias in sdrapéel estimation of eigenvaltie
The point here is, that the empirical eigenvalueao€ovariance matrix is not an unbiased estimafothe
corresponding eigenvalue of the true covariancerixpate. as we see more and more examples, thgedar
eigenvalue does not converge to the largest eideevaf the true covariance matrix. One can show tha

largest eigenvalues are over-estimated and thaniadlest eigenvalues are under-estimated

However, the sum of all eigenvalues (i.e. the thadees converge since the estimation of the camee matrix itself

(when done properly) is unbiased.

Another possible regularization strategy woulddoadd a multiple of the kernel matrik to S, i.e. replaceSwith
5,=2+AK  (120)

The regularization value compute by using Crosdedtibn, the pseudocode of this algorithms given in
Appendix (C)

PRACTICAL PART
Introduction

In this paper By taking a small sample size 20 nlz®n we want clear how these observations dladsby
testing this classified using statistic (Rayleigbe@icient), the concepts is maximizing the diseubetween group means

with minimizing the distance within groups to olstdhe optimal solution by using one of non-line&hér Discriminant

its Kernel Fisher Discriminant In primal and duafiable with two Ievels(i 1).

From Appendix (A), Fisher Discriminant in primal variable by taking =0%=0.57373 computed by

Generalize (leave one out) cross-validation, segeAdix (C) have a vector of coefficients i.e.

[ -0.00036586255644
0.7018707835583(
0.00000288439743
0.12734620424504
0.0001748322478]

| -0.00647802238546
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_ 15.30624865897635
J(w)

~ 1.95616008675995
=7.8246401740385¢

b =2.513798662130466

From the value of statistic Rayleigh coefficientiwprimal variable clear that the distance betwgreups greater
than the distance within groups means the sepafabetween-class scatter matrix is maximized are within-class

scatter matrix is minimized that is the required #me solution is feasible

From Appendix (B), Fisher Discriminant in dual variable we obtain wector of coefficients by taking

A =0%=057373 computed by Generalize (leave one outysevalidation, see Appendix (C) have a vector of

coefficients i.e.

[ 0.29550838750165 |
-0.06642138540834
-0.18558876869894
0.20721956728792
-0.17264733149947
-0.09128713039280
0.15375898367567
-0.12637156473608
-0.14521088850987
-0.20323900402064
-0.07198508958214
0.289147638036707
-0.08299990338278
0.30975821838471
-0.06619518644743
0.21484677137107
-0.04201028371129
-0.17393706302716
-0.13183748187324

| -0.06857726984628

_ 22.78845124064311
J(a)=

.16584918206410
=1.3740466402410< + 00z

b = -0.366755860887264

From the value of statistic Rayleigh coefficienttwdlual variable clear that the distance betweeunpg greater
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than the distance within groups means the sepafabetween-class scatter matrix is maximized ara whthin-class

scatter matrix is minimized that is the required #&me solution is feasible

CONCLUSIONS

By taking a small sample 20 case about HIV disesifle three factors (Age, Gender, number of Lymphecy

cell) with two levels, the value of statistic Raygle coefficient with both primal and dual variabldear that the distance

between groups greater than the distance withingganeans the separate of between-class scattax manaximized

and the within-class scatter matrix is minimizaedce both primal and dual solution are feasiblenttiere exist an optimal

(finite) solution, means the patients are clasgiffecorrect.
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APPENDICES
Appendix (A)

Pseudo code for (Fisher Discriminant Analysis iimgait variable)
Require: A feature mappingg: X — K O 7}
Require: A training samplez = ((Xl, yl), ...... ,(Xm, Y ))

Determine the numbeM,; and M, of samples of class1 and -1

o1 ~ _ 1

/J+1:_ z(p(xl) ; /’1—1:_ z(p(x')
L1 (x ,+1)0z m, (%,~1)0z

- 1(& ' . A A

= E(z (p(Xi )(P(Xi ) My, m—l”—l”—l] +Al,
i=1

W= i_l(ﬁﬂ _l’i—l)

!

3(w)= Wl =pa)) -1l —p) —ps) w

wWXw+wIw 2 wW'Xw

b= % (ﬁ'—1i_lﬁ—1 - i’\l,—li _1!:‘—1)
Appendix (B)
Pseudo code for (Fisher Discriminant Analysis ialdtwariable)
Require: A training sampl& = ((Xl, yl), ...... ,(Xm, Y ))
Require: A kernel functionK : X x X' — R and regularization parameté[J R *

Determine the numbem,; and M, of samples of class1 and -1

G= (k(xi 1 X; ))m’r:l OR™"

i

S=2 (GG ~m K Kiy - Mk K)+ I,
m
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o= S_l(k 4~k —1)

_ k—l)(k +1 k—l) w
w'Sw

J(w)= % dvl(k L

1 _ _ m,
b= E(k Sk, -k Sk, )+ |n(m—j

return the vectowr of expansion coefficients and offset] R

Appendix C

Algorithm for cross-validatio®®

S=x(xx)"x’

%~ f(x)

cev(f)=o? = l}lZN:{ltrace(S)T
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