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ABSTRACT 

Linear Discriminant Analysis (LDA) is a traditional statistical method which has proven successful on 

classification and dimensionality reduction problems (5). The procedure is based on an eigenvalue resolution and gives an 

exact solution of the maximum of the inertia but this method fails for a nonlinear problem.  

To solve this problem used kernel Fisher Discriminant analysis (KFDA), carry out Fisher linear Discriminant 

analysis in a high dimensional feature space defined implicitly by a kernel. The performance of KFDA depends on the 

choice of the kernel.  

In this paper, we consider the problem of finding the optimal solution over a given linear kernel function for the 

two primal and dual variable in Fisher Discriminant, this by taking a small sample 20 case about HIV disease by taking 

three factors (Age, Gender, number of Lymphocyte  cell) with two level to clear how these observations classified by 

testing this classified using statistic (Rayleigh Coefficient).  

KEYWORDS: Linear Fisher Discriminant, Kernel Fisher Discriminant, Rayleigh Coefficient, Cross-Validation, 

Regularization 

INTRODUCTION 

Fisher’s linear Discriminant separates classes of data by selecting the features that maximize the ratio of projected 

class means to projected intraclass variances. (3)  

The intuition behind Fisher’s linear Discriminant (FLD) consists of looking for a vector of compounds w such 

that, when a set of training samples are projected into it, the class centers are far apart while the spread within each class is 

small, consequently producing a small overlap between classes(11). This is done by maximizing a cost function known in 

some contexts as Rayleigh Coefficient, ( )wJ .  

Kernel Fisher’s Discriminant (KFD) is a nonlinear station that follows the same principle for Fisher Linear 

Discriminant but in a typically high-dimensional feature space F . In this case, the algorithm is reformulated in terms of  

( )αJ , where α  is the new direction of Discriminant. The theory of reproducing kernels in Hilbert space(1) gives the 

relation between vectors α and w . In either case, the objective is to determine the most “plausible” direction according 

to the statistic J .(8) demonstrated that KFD can be applied to classification problems with competitive results. KFD shares 

many of the virtues of other kernel based algorithms: the appealing interpretation of a kernel as a mapping of an input to a 
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high dimensional space and good performance in real life applications, among, the most important. However, it also suffer 

from the deficiencies of kernelized algorithms: the solution will typically include a regularization coefficient to limit model 

complexity and parameter estimation will rely on some from while the latter precludes the use of richer models.  

Recently, KFDA has received a lot of interest in the literature(14, 9). A main advantage of KFDA over other kernel-

based methods is that computationally simple: it requires the factorization of the Gram matrix computed with given 

training examples, unlike other methods which solve dense (convex) optimization problems. 

THEORETICAL PART 

Notation and Definitions  

We useX to denote the input or instance set, which is an arbitrary subset of nR , and { }11,-Y +=  to denote 

the output or class label set. An input-output pair ( )yx,  where yY    X ∈∈ andx is called an example. An example 

is called positive or ( negative) if its class label is ( )11 −+ . We assume that the examples are drawn randomly and 

independently from a fixed, but unknown, probability distribution over YX × . 

Asymmetric function R→×  XX:K is called a kernel (function) if it is satisfies the finitely positive semi-

definite property: for any X∈mxxx ,......,, 21 , the Gram matrix mm×∈RG , defined by  

( )jiij xxKG ,=                                               (1) 

is positive semi-definite. Mercer’s theorem (12) tells us that any kernel function K  implicitly maps the input set 

X  to a high dimensional (possibly infinite) Hilbert space H  equipped with the inner product 
H

⋅⋅, through a mapping 

:H X →:φ  

( ) ( ) ( ) X
H

∈∀= zxzxzxK ,,,,, φφ  

We often write the inner product ( ) ( )
H

,, zx φφ  as ( ) ( )zx T φφ , when the Hilbert space is clear from the 

context. This space is called the feature space, and the mapping is called the feature mapping. The depend on the kernel 

function  K  and will be denoted as KH  and  Kφ . The gram matrix mm×∈RG  defined in (1), will be denoted KG  

when it is necessary to indicate the dependence on.(7)  

FISHER DISCRIMINANT 

Fisher Discriminant is the earliest approaches to the problem of classification learning. The idea underlying this 

approach is slightly different from the ideas outlined so far, rather than using decomposition xxyxy PPP =  we now 

decompose the unknown probability measure   constituting the learning problem as yyxxy PPP = . The essential different 

between these two formal expression becomes apparent when considering the model choices : 

• In the case of  xxyxy PPP =  we use hypotheses  XYH ⊆∈h to model the conditional measure xyP  of 



Non-Linear Kernel Fisher Discriminant Analysis with Application                                                                                                                          59 
 

 
www.impactjournals.usThis article can be downloaded from  -82071.Impact Factor(JCC):  

 

classes Y∈y given objects X∈x  and marginalize over xP  in the noise free case, each hypothesis defines 

such a model by ( ) ( ) yhhx yP === =
xH

I.XY . Since our model for learning contains only predictors YX →:h  

that discriminate between objects, this approach is sometimes called the predictive or discriminative approach.  

• In the case of yyxxy PPP =  we model the generation of objects X∈x given the class { }11,- +=∈Yy  by 

some assumed probability model θ== Q.yyxP  where ( ) Q∈−+ P,, 11 θθ parameterizes this generation process. 

We have the additional parameter [ ]1,0∈P  to describe the probability ( )yθ=QYP by 

( ) 1y1y .1 −=+= −+⋅ II pp . As the model  Q  contains probability measures from which the generated training  

sample X∈x is sampled, this approach is sometimes called the generative or sampling approach.  

In order to classify a new test object X∈x with a model in the generative approach we make use of Bayes 

theorem, i.e  

( ) ( ) ( )
( ) ( )∑ ∈ ===

===
== =

Yy y

x

x yx

yx
y

~ ~
~

θθ

θθ
θ

QYQ,YX

QYQ,XY
Q,XY PP

PP
P . 

In the case of two classes and the zero-one loss ( )( ) ( ) yxh

def

yxhl ≠− = I,10 , we obtain for Bayes optimal 

classification at a novel test object  X∈x ,    

( )
{ }

( )yxh
x=

+=
= XY

11,-y
Pmaxargθ  

( )
( )( ) 






















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



−
=

=−=

=+=

px

px
sign

1

.
ln

1

1

θ

θ

Q,YX

Q,YX

P

P
                                                         (2) 

as the fraction of this expression is greater than one if, and only if, ( )1,+= xθQXYP  is greater than 

( )1,−= xθQXYP  in the generative approach the task of learning amounts to finding the parameters Q∈∗θ  or measures 

∗== θQ,yYX
P  and ∗=θQY

P  which incur the smallest expected risk ( )∗θ
hR by virtue of equation (2). Again, we are faced 

with the problem that, with out restrictions on the measure 
y=YXP , the best model is the empirical measure ( )x

yxv
1  

where xxy ⊆ is the sample of all training objects of class y . Obviously, this is a bad model because  ( )x
yxv  as-signs 

zero probability to all test objects not present in the training sample and thus ( ) 0=xhθ , i.e. we are unable to make 

predictions on unseen objects. Similarly to the choice of the hypothesis space in the Discriminative model we most 
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constrain the possible generative models 
y=YXP .  

Let us consider the class of probability measures from the exponential family  

( ) ( ) ( ) ( )( )( )xxax yyy
τθτθθ ′=== exp00,QYXP  

For some fixed function R R, →→  X:: 00 τQa  and K: → Xτ  using this functional form of the 

density we see that each decision function θh must be of the following form 

( ) ( ) ( ) ( )( )( )
( ) ( ) ( )( )( )( ) 










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−′
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++
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1

.
ln

10

10
11 θ
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w

                                        (3) 

( )( )bxsign += τ,w  

This result is very interesting as it shows that, for a rather large class of  generative models, the final classification 

function is a linear function in the model parameters  ( )p,, 11 +−= θθθ . Now consider the special case that the 

distribution θ== Q,yYXP  of objects X∈x given classes { }11,- +∈y  is a multidimensional Gaussian in some feature 

space n
2l⊆K  mapped into by some given feature map K: →Xφ , 

( ) ( ) ( ) ( )




 −Σ′−−Σ= −−−

== yy

n

x µxµxf 1
2
1

,
exp2 2

1
2

µθ π
QYX                           (4) 

Where the parameters yθ  are the mean vector 
n

R∈yµ  and the covariance matrix 
nn×∈RyΣ , respectively. 

Making the additional assumption that the covariance matrix Σ  is the same for both models  1+θ , 1−θ  and 

( ) ( )11 −=+ == θθ QQ YY PP  we see that,  








 Σ−Σ−ΣΣ−Σ−=
−

−
−

−
−

−

2
;....;;

2
;....;;

2
;

1
1

23

1
221

12

1
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                               (5) 
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1 ;....;;;;....;;; nn x  xx x xxxx x xxτ =  
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( ) 10 =xτ   

( ) ( ) ( )µµθ
1

2
1

0 exp2 2
1

2 −−− Σ′−Σ=
n

a π                               (6) 

according to equations (3, 5,  and 6) then,  

( ) xτ =x ,    ( )11

1

−+
− −= µµΣw ,  ( )1

1

11

1

12

1
+

−
+−

−
− ′−′= µΣµµΣµb   (7) 

This result also follows  from substituting (4) directly in to equation (2) (see Figure 1: (left) The black line 

represents the decision boundary. This must always be a linear function because both models use the same (estimated) 

covariance matrix Σ̂ (ellipses). 

 

Figure 1: Fisher Discriminant 

An appealing feature of this classifier is that it has a clear geometrical interpretation which was proposed for the 

first time by R. A. Fisher. Instead of working with n -dimensional vectors x  we consider only their projection onto a 

hyperplane with normal K∈w . Let ( ) ( )[ ]XyYX φwwµ ′= =Ey  be the expectation of the projections of mapped 

objects x  from class y  onto the linear Discriminant having normal w  and 

( ) ( ) ( )( )[ ]22 wµww yy −′= = XyYX φσ E  the variance of these projections. Then choose as the direction K∈w of 

the linear Discriminant a direction along which the maximum of the relative distance between the ( )wµ y  is obtained, 

that is, the direction FDw along which the maximum of  

( ) ( ) ( )( )
( ) ( )ww

ww
2
1

2
1

2

11

−+

−+

+
−=

σσ
µµ

wJ                                                  (8) 

is attained. Intuitively, the numerator measures the inter class distance of points from the two classes { }1,1−+  

whereas the denominator measures the intra-class distance points in each of the two classes see also Figure (1) right, that a 
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geometrical interpretation of the Fisher Discriminant objective function (8), given a weight vector K∈w , each mapped 

training object x is projected onto w by virtue of wx,=t . The objective function measures the ratio of the inter-class 

distance ( ) ( )( )2
11 ww −+ − µµ  and the intra-class distance ( ) ( )ww 2

1
2
1 −+ +σσ .Thus the function J is maximized if the inter-

class distance is large and the intra-class distance is small. In general, the Fisher linear Discriminant FDw  suffer from the 

problem that its determination is a very difficult mathematical and algorithmical problem, However, in the particular case 

of ( )Σ=== ,
, yy

Normal µθQYXP 2, a closed form solution to this problem is obtained by noticing that ( )XT φw′=  

is also normally distributed with ( )wwwP Σ′′=== ,, yy Normal µθQYT . Thus, the objective function given in equation 

(8) can be written as  

( ) ( )( ) ( )( )
Σww

wµµµµw
ΣwwΣww
µµ

′

′−−′
⋅=

′+′
−′

= −+−+−+ 1111

2

11

2

1w
wJ                                    (9) 

Which is known as the generalized Rayleigh quotient having the maximizer FDw , 

( )11

1

−+
− −Σ= µµwFD                                                                   (10) 

This expression equals the weight vector w  found by considering the optimal classification under the assumption 

of a multidimensional  Gaussian measure for the class conditional distributions 
y=YXP   

Unfortunately, as with the discriminative approach, we do not know the  

parameters ( ) Q∈= −+ Σµµ ,, 11θ but have to "learn" them from the given training sample 

( ) myx, Z∈=z . We shall employ the Bayesian idea of expressing our prior belief in certain parameters via some prior 

measure 
Q

P . After having seen the training sample z  we update our prior belief  
Q

P , giving a posterior belief 
z=mZQ

P . 

Since we need one particular parameter value we compute the MAP estimate θ̂ , that is, we choose the value of  θ  which 

attains the maximum a-posterior belief 
z=mZQ

P 3. If we choose a (improper) uniform prior 
Q

P then the parameter 

θ̂ equals the parameter vector which maximize  the likelihood and is  therefore also known as the maximum likelihood 

estimator, these estimates are given by  

( )
∑

∈
=

zyx
i

y

y
im ,

1
ˆ xµ  ,     ( )( )
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2 Note that ( ) R∈wyµ  is a real number whereas  ( ) R∈wyµ  is an a –dimension vector in feature space .   

3For details see Linear Kernel Classifiers p.80. 

Where is the data matrix obtained by applying K→X:φ  to each training object x∈x  and ym  equals the 

number of training examples of class y . Substituting the  estimates into the equations (7) results in the so-called Fisher 

Linear Discriminant FDw . The pseudo code of this algorithm is given in Appendix (A) (6, 10) 

KERNEL FISHER DISCRIMINANT 

In an attempt to "kernelize" the algorithm of Fisher Linear Discriminant its note that a crucial requirement is that 

nnˆ ×∈RΣ  has full rank which is impossible if dim( ) mn ff=K . Since the idea of using kernels reduces 

computational complexity in these cases we see that it is impossible to apply a kernel trick directly to this algorithm. 

Therefore, let us proceed along the following route: Given the data matrix 
nm×∈RX  we project the m  data vectors 

n
R∈ix  into the m-dimensional space spanned by the mapped training objects Xxx → and then estimate the mean 

vector and the covariance matrix in 
m

R using equation (11). The problem with this approach is that Σ̂  is at most  of rank  

2−m because it is un outer product matrix of two centered vectors. In order to remedy this situation we apply the 

technique of regularization to  the resulting of mm ×   covariance matrix, i.e. we penalize the diagonal of this matrix by 

adding Iλ  to it where large value of λ   corresponds to increasing penalization. As a consequence, the projection m-

dimensional mean vector 
m

R∈yk  and covariance matrix 
mm×∈RS  are given by  

( )
( )′== ==

∈
∑ yy

yyx
i

y

y m

i mm yy
,

,....
11

1
I IGXxk

z

 

{ }
IkkXXXXS λ+







 ′−′′= ∑
−+∈ 1,1

1

y
yyym

m
 

{ }
IkkGG λ+







 ′−= ∑
−+∈ 1,1

1

y
yyym

m
 

Where the mm ×  matrix G with ( )jijiij xxkxx ,, ==G  is the Gram matrix. Using yk  and S in 

place of yµ  and Σ  in the equations (7) results so-called kernel Fisher Discriminant. We note that the m-dimensional 

vector computed corresponds to the linear expansion coefficients 
mˆ R∈α  of a weight vector KFDw  in feature space 

because the classification of a novel test object X∈x  by the Kernel Fisher Discriminant is carried out on the projected 

data point Xx ,i.e.  
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( ) ( ) ( ) 





 +=+= ∑

=

m

i
ii bxxksignbsignxh

1

ˆ,ˆˆ,ˆ αXxα   

( )11

1ˆ −+
− −= kkSα , ( )1

1

11

1

12

1ˆ
+

−
+−

−
− ′′−′′= kSkkSkb                           (12) 

It is worth mentioning that  we would have obtained the same solution by exploiting the fact that the objective 

function (8) depends only on inner products between mapped training objects ix  and the unknown weight vector  w . By 

virtue of Representer Theorem4 the solution can be written as ∑
=

=
m

i
iiFD

1

ˆ xαw  which inserted into (8), yields a 

function in α  whose  maximizer is given by equation (8). the pseudocode of this algorithm is given in Appendix (B).(6,10) 

RAYLEIGH COEFFICIENT  

To find the optimal linear Discriminant we need to maximize a Rayleigh coefficient ( cf. Equation (9)). Fisher's 

Discriminant can also be interpreted as a feature extraction technique is defined by the separability criterion (8). From this 

point of view, we can think of the Rayleigh coefficient as a general tool to fined features which (i) cover much of what is 

considered to be interesting ( e.g. variance in PCA), (ii) and at the same time avoid what is considered disturbing (e.g. 

within class variance in Fisher's Discriminant). The ratio in (9) is maximized when one covers as much as possible of the 

desired information while avoiding the undesired. We have already shown in Fishers Discriminant that this problem can be 

solved via a generalized eigenproblem. By using the same technique, one can also compute second, third, etc., generalized 

eigenvectors from the generalized eigenproblem, for example in PCA where we are usually looking for more than just one 

feature.(10)  

REGULARIZATION 

The optimizing Rayleigh coefficient for Fisher’s Discriminant in a feature space poses some problems. For 

example if the matrix Σ is not strictly positive and numerical problems can cause the matrix Σ  not even to be positive 

semi-definite. Furthermore, we know that for successful learning it is  

4for details see learning Kernel  Classifiers p.48 

absolutely mandatory to control the size and complexity of the function class we choose our estimates from. This 

issue was not particularly problematic for linear Discriminant since they already present a rather simple hypothesis class. 

Now, using the kernel trick, we can represent an extremely rich class of possible non-linear solutions, we can always 

achieve a solution with zero within class variance (i.e. ww Σ′ ). Such a solution will, except for pathological cases, be 

over fitting.  

To impose a certain regularity, the simplest possible solution to add a multiple of the identity matrix toΣ , i.e. 

replaceΣ  by λΣ  where  

( )0≥+Σ=Σ λλλ          I  
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This Can Be Viewed in Different Ways 

• If λ  is sufficiently large this makes the problem feasible and numerically more stable as λΣ  becomes positive 

definite.  

• Increasing λ  decreases the variance inherent to the estimate Σ ; for ∞→λ  the estimate become less and less 

sensitive to the covariance structure. In fact, for ∞=λ  the solution will lie in the direction of 12 mm − . The 

estimate of this "means" however, converges very fast and is very stable (2).  

• For a suitable choice of λ , this can be seen as decreasing the bias in sample based estimation of eigenvalue (4). 

The point here is, that the empirical eigenvalue of a covariance matrix is not an unbiased estimator of the 

corresponding eigenvalue of the true covariance matrix, i.e. as we see more and more examples, the largest 

eigenvalue does not converge to the largest eigenvalue of the true covariance matrix. One can show that the 

largest eigenvalues are over-estimated and that the smallest eigenvalues are under-estimated  

However, the sum of all eigenvalues (i.e. the trace ) does converge since the estimation of the covariance matrix itself 

(when done properly) is unbiased.  

Another possible regularization strategy would be to add a multiple of the kernel matrix   Sto  K , i.e. replace S with  

( )0≥+Σ=Σ λλλ          K  

The regularization value compute by using Cross-Validation, the pseudocode of this algorithms given in 

Appendix (C) 

PRACTICAL PART 

Introduction 

In this paper By taking a small sample size 20 observation we want clear how these observations classified by 

testing this classified using statistic (Rayleigh Coefficient), the concepts is maximizing the distance between group means 

with minimizing the distance within groups to obtain the optimal solution by using one of non-linear Fisher Discriminant 

its Kernel Fisher Discriminant In primal and dual variable with two levels ( )1± .  

From Appendix (A), Fisher Discriminant in primal variable by taking 2σλ = =0.57373 computed by 

Generalize (leave one out) cross-validation, see Appendix (C)  have a vector of coefficients i.e.   



























=

42385460.00647802- 

32247810.00017484   

04245040.12734629   

84397430.00000287   

83558300.70187072   

52556440.00036586- 

w  
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( )
038558246401747.7

36759951.95616004

6589763515.3062484

=

=

         

J w
 

b = 2.513798662130466 

From the value of statistic Rayleigh coefficient with primal variable clear that the distance between groups greater 

than the distance within groups means the separate of between-class scatter matrix is maximized and the within-class 

scatter matrix is minimized that is the required and the solution is feasible  

From Appendix (B), Fisher Discriminant in dual variable we obtain on vector of coefficients by taking 

2σλ = =0.57373 computed by Generalize (leave one out) cross-validation, see Appendix (C)  have a vector of 

coefficients i.e.   





































































=

69846280.06857720-  

71873240.13183746-  

63027160.17393701-  

43711290.04201026-  

71371070.21484671   

66447430.06619512-  

18384710.30975821   

03382780.08299997-  

30367070.28914765   

49582140.07198508-  

04020640.20323909-  

88509870.14521085-  

64736080.12637156-  

83675670.15375894   

10392800.09128713-  

31499470.17264734-  

57287920.20721956   

18698940.18558876-  

05408340.06642133-  

67501650.29550839 

α

 

( )
002241043740466401.1

106410.165849182

4406431122.7884511

+=

=

e         

J α
 

b =  -0.366755860887264 

From the value of statistic Rayleigh coefficient with dual variable clear that the distance between groups greater 
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than the distance within groups means the separate of between-class scatter matrix is maximized and the within-class 

scatter matrix is minimized that is the required and the solution is feasible  

CONCLUSIONS 

By taking a small sample 20 case about HIV disease with three factors (Age, Gender, number of Lymphocyte 

cell) with two levels, the value of statistic Rayleigh coefficient with both primal and dual variables clear that the distance 

between groups greater than the distance within groups means the separate of between-class scatter matrix is maximized 

and the within-class scatter matrix is minimized, since both primal and dual solution are feasible then there exist an optimal 

(finite) solution, means the patients are classified in correct. 
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APPENDICES 

Appendix (A) 

Pseudo code for (Fisher Discriminant Analysis in primal variable)  

Require: A feature mapping n
2K : l⊆→Xφ   

Require: A training sample ( ) ( )( )mm yxyxz ,,......,, 11=  

Determine the number 1+m  and  1−m  of samples of class 11 −+   and    
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Appendix (B) 

Pseudo code for (Fisher Discriminant Analysis in dual variable)  

Require: A training sample ( ) ( )( )mm yxyxz ,,......,, 11=  

Require: A kernel function   : R→× XXK and regularization parameter +∈  Rλ   

Determine the number 1+m  and  1−m  of samples of class 11 −+   and   

( )( ) mm,

1,
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return the vector α  of expansion coefficients and offset R∈b  

Appendix C 

Algorithm for cross-validation (13) 

( ) xxxx ′′= −1S  
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