
International Journal for Quality research
UDK- 614.253

                           Short Scientific Paper (1.03)

                                                       Vol.6, No. 2, 2012                                                                  151

Eralp Doğu1)

1) Muğla University
Turkey,Email:

eralp.dogu@mu.edu.tr

MONITORING TIME BETWEEN MEDICAL ERRORS TO
IMPROVE HEALTH-CARE QUALITY

Abstract: Monitoring medical errors has a proven positive impact on improving
health-care quality. This study is designed to discuss the statistical surveillance
methods and propose useful procedures to medical practitioners for monitoring
time between medical errors. Variable time between events (TBE) control charts
are constructed in order to monitor time between dosing errors. Results indicate
that the variable TBE control charts can easily be integrated to the medical
error monitoring processes. Several methods are considered to analyze the
dozing error data and discussion is provided for medical decision makers to
apply a better medical error monitoring program.
Keywords: Health-care quality, time between events (TBE), control charts,
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1. INTRODUCTION

A medical error is defined as a preventable adverse
medical  effect  of  care  whether  or  not  it  is  obvious  or
give  harm  to  the  patient.  This  may  include
misdiagnosing a disease, giving the wrong drug or dose,
wrong-site surgery or incorrect keeping of the records.
The possible and current impact of medical errors may
lead to serious problems such as preventable drug
related injuries and preventable death. In fact, medical
errors have been widely considered to be rare. However,
the cost of a simple medical error such as a medication
error  may  be  too  high  to  cope  with.  They  may  cause
extra medical cost, severe injury or even loss of a
patient. Recently, diligent attention has been given for
preventing medical errors and adverse drug events by
many organizations, medical authorities and
practitioners.  Several guidelines have been published to
help medical professionals prevent and analyze medical
errors. Root cause analysis and adverse medical event
surveillance methods are proposed to reduce error rates
and monitor the long time performance of the medical
processes. The sensitive nature of medical processes
requires sensitive surveillance methods to timely detect
changes in order to prevent medical errors successfully.
The medical practitioners should be aware of the
medical error reporting regulations and requirements.
They also need to apply statistical monitoring methods
in order to decrease the occurrence rate of the medical
errors.

Traditional statistical monitoring techniques have
been widely applied in industry and successfully
implemented for many industrial processes. Recently,
medical practitioners have been attracted by these tools
to monitor health related processes. Examples vary in a
range from chronic and infectious disease monitoring to
financial monitoring of health care processes and health
care adverse event monitoring (for details see Thor et al.
2007; Tenant et al. 2007 and Xie et al. 2010).

Health care adverse event monitoring which is also
used  for  medical  error  monitoring  has  been  a  major
branch of statistical process control (SPC) applications.
The adverse event monitoring efforts mostly focuses on
the control of occurrence number between events.
Benneyan (2001) g and h type  control  charts  are
proposed to monitor the number of cases between
hospital acquired infections and other health care
adverse events such as catheter related infections and
contaminated needle sticks. Benneyan et al. (2003)
monitored the postoperative surgical site infection rate
using a control chart of the number of surgeries between
occurrences of infection. Monitoring number of days
between asthma attacks is proposed by Alemi and
Neuhauser (2004).

The basic assumption in these studies is that the
variable monitored follows a discrete probability
distribution. For example, the number of days between
preventable adverse drug errors follows a geometric
distribution and requires a g type control chart.
However, in real life some other distributional
alternatives such as exponential distribution may be
applicable. The monitoring tools class of variable TBE
data has emerged to bridge the gap. Xie et al. (2010)
noted that variable TBE charts can be applied
successfully in the health care domain. The motivation
behind monitoring variable TBE data is emphasized by
several authors. It is noted by Radelli (1998) that the
inter-arrival times between successive failures can be
measured and monitored. Human congenital
malformation surveillance example is also given in this
study. The conditions of each newborn can be recorded
and thus, the time elapsing between malformations can
be monitored.  Miller (2008) showed that these control
charts can be used to monitor the time between
omission errors occurred in a hospital. The variable
TBE charts also solve some technical issues the
practitioners face when using traditional SPC tools for
rare event monitoring. In this paper, control charts for
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monitoring variable time between medical errors are
surveyed. Addition to the proposal in Miller (2008),
alternative control charts are presented and discussed. In
particular, powerful tools to detect small changes in
time between medical errors are shown with an
implementation.

The  paper  proceeds  as  follows.  In  section  2  the
general framework for the variable TBE control charts
are given. The discussion is supported by implementing
the methods to a data set, which includes the time
between omission errors in a U.S. hospital, obtained
from Hovor and Walsh (2007). Following this
application results are given in section 3 and
recommendations on chart selection and
implementations are provided.

2. MATERIALS AND METHODS

2.1 Description of the data

Data are obtained from a northeast acute care
community hospital in the United States from Hovor
and Walsh (2007). The data set consists of the dates of
omission medication errors from January 1, 2005, till
April 30, 2007. For the year 2005, 58 omission errors
are obtained while the frequencies for 2006 and 2007
are  49  and  19,  respectively.  As  the  first  4  months  of
2007 is considered, the number in 2007 is smaller than
the others. The incidents for 2005 and 2006 are
numbered consecutively from 1 to 108, whereas the
2007 incidents are labeled consecutively from 07-1 to
07-19 for a total of 127 incidents. The data set also
includes the incident time in hours. Therefore, the time
between medication errors can be considered to be a
case of variable TBE. The data set include missing
occurrence time values for the given set of observations:
{ }48,23,20,14,9,8,3 . The observations which
do not have the occurrence time are omitted. The
contributing factors to the medication error are also
provided by the practitioners. This information is very
helpful for professionals to focus on the root causes of a
potential change in the process. For each observation,
time to next event is calculated and analyzed by Hovor
and Walsh (2007) and Miller (2008).

The omission error data set is originally provided
in Hovor and Walsh (2007). However, Miller (2008)
provides a response to their applications and proposes
using a c chart due to the fact that the number of dosing
errors  in  a  specified  interval,  say  10  days,  follow  a
Poisson distribution. Another important conclusion can
be made here that if the number of dosing errors follows
an approximate Poisson process, the time between
dosing errors will be approximately exponentially
distributed. In this study, the stability of the time
between dosing errors will be our concern instead of the
errors themselves. Any interval will not be specified and

just the time between dosing errors will be monitored.
The approaches will be provided to monitor the time
between dosing errors. These tools are promising to
help practitioners control the stability of the time
between these drug adverse events. If the time between
dosing errors increases, the practitioner may conclude
that the medical errors become rarer and error
occurrence rate decreases. Thus, these control charts
may be used as the medical error surveillance systems
to reduce error occurrence rate. Another possible impact
may be obtained when new adjustments or procedures
are introduced to the system to reduce medical errors
such as new recording methods or hospital
accreditation. The medical professional may monitor the
system with the control charts to obtain evidence of
successful process adjustments.

2.2 A general framework for the variable TBE
control charts

Variable TBE control charts provide an
opportunity to solve some setbacks which practitioners
may encounter when using p , np , c , u  charts  for
high quality processes. The practical difficulties of
using traditional control charts for attributes are
summarized by Xie et al. (2002), Liu et. al (2004) and
Liu et al. (2006), as meaningless control limits, high
false alarm probability, difficulties in forming a rational
subgroup and failure in detecting process improvement.
In order to overcome these setbacks, the Cumulative
Quantity Control (CQC) chart is first proposed to
monitor variable TBE data (Chan et al. 2000). The CQC
chart mentioned here is developed based on the
assumption that the rate of occurrences can be modeled
by homogeneous Poisson process and the time between
events ( X ) can be regarded as independent and
identically distributed exponential random variables
with the given probability density function.
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where b  is  the  mean  of  the  TBE  data  and

)0(>l  is the mean rate of occurrence of defects,

which can be written as bl 1= . The chart plots the
time produced before observing one event, say one
nonconforming item of the process. The process is
considered to be out-of-control when a point plotted is
less than the lower control limit or greater than the
upper control limit. The two-sided control limits are
provided as )2/1ln( ab --=LCL ,

)2/1ln(b-=CL  and )2/ln( ab-=UCL
where a  is the false alarm probability (Chan et al.
2000). The center line (CL) is defined as the median of
the distribution. CQC-r chart  as  an  extension  of  CQC
chart is proposed (Xie et al. 2002). They showed that
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the extension is able to improve the sensitivity of CQC
chart by monitoring the time until a fixed number (r) of
events observed based on Gamma distribution. The
CQC-r chart provides more credibility to the decision
regarding the statistical control of the process, since the
decision  is  made  on  the  basis  of r events rather than a
single event (Xie et al. 2002).  Basically, the CQC-r
chart is reduced to the CQC chart when 1=r and the
control limits can be calculated solving the given
equations;

( )
( )

( )
( )

( )
( ) 2!
.)(1),,(

2
1

!
)(1),,(

2
1

!
)(1),,(

1

0

1

0

1

0

a
b

l
b

b

bb
b

a
bb

b

=--=

=--=

-=--=

å

å

å

-

=

-

=

-

=

k
LCLLCLxperLCLF

k
CLCLxperCLF

k
UCLUCLxperUCLF

k

k
rr

r

k
r

k

k
rr

r

k
r

k

k
rr

r

k
r

where b  and r are the parameters of Gamma
distribution. One can easily evaluate the state of the
process with the location of the points plotted. If the
point falls above the upper control limit (UCL), this
indicates the mean TBE may have increased and a
process improvement may have occurred. If the plotted
point falls below the lower control limit (LCL), this
indicates that the mean TBE may have decreased and
process deterioration may have occurred. Thus, actions
should be taken to identify the cause of improvement
and sustain the improved process for the first  case.  On
the other hand, actions should be taken to identify and
remove the cause(s) of deterioration and make sure that
it will not occur again in the future for the second case.

Alternatively accumulation control charts such as
Exponentially Weighted Moving Average (EWMA) and
Cumulative Sum (CUSUM) may be considered in
variable TBE applications.  According to Liu et al.
(2006), a two-sided exponential EWMA can be obtained
by plotting: ( ) tztzt XZZ ll +-= -11  against t
for K,1,0=t  where zl  is a smoothing factor

( 10 << zl ) and wZ =0  ( ul hwh << ).  A

signal is issued when lt hZ £  or ut hZ ³  where lh
and uh  are specific thresholds to achieve a predefined
Average Time to Signal (ATS).

  The exponential CUSUM chart plots the statistics:

( ){ }11,0max kXSS ttt -+= +
-

+ and

( ){ }21,0min kXSS ttt -+= -
-

-  where 1k  and

2k  are the reference values. If hS t -£-  or

hS t ³+ ,  then the process is considered to be out-of-

control  (Liu et al. 2006).  Usually 000 == -+ SS  and

the calculation of k is summarized (Liu et al. 2006).
The exponential EWMA and the exponential CUSUM
control charts are generally considered to be effective
when a small change in occurrence rate occurs.  The
performances of the exponential EWMA, the
exponential CUSUM and the CQC-r charts are
discussed in (Liu et al. 2006).

3 RESULTS

The control chart selection is a primary question
for medical error monitoring. However, there may not
be a unique control chart for all medical applications.
The major aim of this study is to introduce various
variable TBE control charts to the medical field and
discuss the practical selection criteria for monitoring
time between medical errors. The omission error data
set is prepared and monitored with the CQC, CQC-r, the
exponential EWMA and the exponential CUSUM
control charts for this aim. To be consistent with the
related literature, the standardized time between dosing
errors is used to compute control chart statistics. The
standardization is done by dividing each observation
with the estimated mean time between dosing errors
which is around 145 hours or 6 days. The targeted
standardized mean occurrence rate is 1 for this process.
The original and the standardized data are given in
Figure 1, respectively. The limits of the control charts
for various design parameters and type I error rate of
0.0027 are given in Table 1. The given control limits are
valid for any standardized time between event data and
can be used in medical error monitoring applications.
The control charts are calibrated to achieve the specified
in-control .37.370=ATS
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Figure 1. Original and standardized time between dosing errors.

Firstly the CQC and CQC-4 control charts are
constructed. These control charts are shown in Figure 2.
CQC and CQC-4 control charts use the original
standardized data stream and do not require any further
calculations. They are generally powerful when there is
a large magnitude of shift in the process parameter.
However, especially CQC chart is not effective in
detecting small process shifts. As a competitive
extension, CQC-4 control chart is considered and the
time to the forth medication error is monitored. The
selection of r  is arbitrary here to illustrate the chart,
however, the practitioner should chose a proper r  value
based on the need and nature of the process.
The CQC chart registers no out-of-control signals in
Figure 2. However, the control chart provides two

strong spikes around the observations 20 and 85.
Thereafter, a CQC-4 control chart is constructed and the
standardized time to the 4th dosing error is monitored.
Similarly to the CQC chart, this control chart does not
provide any out-of-control signals. The dosing error
process is statistically in-control when CQC and CQC-4
charts  are  considered.  As  a  small  shift  in  the  process
may be suspected to happen, the exponential EWMA
and the exponential CUSUM control charts are also
constructed. Figure 3 displays the exponential EMWA
control charts for different design parameters given in
Table 1.

Table 1: The control limits for the variable TBE control charts when
37.370=ATS .

Control chart CQC CQC-4 EWMA CUSUM

Design parameters 1=r 4=r 202.0=zl 152.0=zl
516.0
648.1

2

1

=
=

k
k

402.0
012.2

2

1

=
=

k
k

UCL 6.608 10.875 2.350 2.050 2.200 1.330

LCL 0.001 0.687 0.360 0.430 6.500 5.366

(a) CQC chart



Vol.6, No. 2, 2012                                                                 155

(b) CQC-4 chart
Figure 2. The CQC and CQC-4 charts for monitoring time between dosing errors.

(a) Design 1

(b)   Design 2
Figure 3. Two design alternatives of the exponential EWMA charts for monitoring time between dosing errors.

(a) Design 1
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(b) Design 2
Figure 4. Two design alternatives of the exponential CUSUM charts for monitoring time between dosing
errors.

Figure 3 shows us that the process is in-control and
any out-of-control signals are not issued by the two
design settings. Alternatively the exponential CUSUM
control charts are constructed and shown in Figure 4.
The design parameters are chosen as they are given in
Table 1. The exponential CUSUM charts indicate any
out-of-control signals and the process is considered to
be in-control. The exponential CUSUM chart provides
built-in positive and negative shift statistics. This
property makes the exponential CUSUM visually
attractive. It also enables the medical practitioner to
keep track of an increase in occurrence rate with
negative CUSUMs and a decrease in occurrence rate
with  positive  CUSUMs.  In  other  words,  an  increase  in
mean time between medical errors is reflected by
positive CUSUMs and a decrease is reflected by
negative CUSUMs. Here in these applications the
design differences are insignificant; however the design
difference stems from the optimality of the control chart
statistics. As a criticism to those accumulation
approaches, the design complexity makes the
procedures to be hard to apply.

4 CONCLUSIONS

Statistical process control efforts are considered to
ensure high-quality production and reduce costs in the
competitive environment of business. High yield
process monitoring is a special part of SPC and the
medical practitioners are encouraged to apply these
tools to health care domain (Benneyan 2001; Benneyan
et al. 2003 and Xie et al. 2010).

In this study, presentation of several variable TBE
control charts for monitoring medical errors is targeted.
The CQC and CQC-r charts are presented firstly. After
that, the exponential EMWA and CUSUM charts are
introduced. The existing comparative studies show that
the  EWMA  and  CUSUM  based  control  charts  over-

perform the CQC and CQC-r charts in terms of
detection capability for most of the cases. However, in
medical decision making there exist important features
which may affect the control charts selection criteria.

From the viewpoint of medical applications, the
CQC and CQC-r chart have some advantages when
compared to the exponential EWMA and CUSUM
charts. First of all, they are flexible and need less
process information. The computations are much easier
and simplicity in design parameters helps the process to
be more stable when the requirements change. The
medical staff may apply and interpret these tools
without much expertise. Using the CQC and CQC-r
charts is proposed when it is difficult to predict the
process shift which is highly likely to be a case in health
related processes (Liu et al. 2006). In many medical
processes gathering data is quite difficult and it is likely
not to be sure whether the process is improving or
deteriorating.   If the practitioner is not quite sure about
the medical error process behavior, using the CQC and
CQC-r charts can be a better choice due to their design
simplicity. On the other hand, the target should be
increasing the time between medical errors and
decreasing the medical error occurrence rate. Therefore,
if  the  medical  decision  maker  focuses  on  the  process
deterioration and can obtain information about the
process from historical data and other resources, the
exponential EWMA and CUSUM control charts are
considered to be more effective especially for small
magnitudes of shift in occurrence rate. Their statistical
background can be set to detect deterioration optimally
and their design may be calibrated to this aim.

The  omission  error  data  is  our  focus  for  the
illustration in this study and the applications indicate
that the medication error process in this particular
hospital for 2005 till 2007 is stable and statistically in-
control. The quite obvious strikes obtained in the CQC
chart and the exponential CUSUM charts are around the
20th and 85th observations. The plots display a potential
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increase at those particular points. The medical
practitioner is recommended to look back to the records
for these dates. These increases in mean time between
dosing errors indicate that the process work well and an
improvement may happen. The practitioner can identify
the root reasons causing these improvements and deploy
them to the entire process. Thus reduce in medical error
occurrence rate may be achieved.

In the omission error data set, a relatively long
historical data stream is obtained. As the process in
initially in-control, the mean time between medical
errors estimation is done successfully. However, this is

may not the case for many implementations. Since
enough historical data may be unavailable for the
medical error monitoring processes of hospitals,
estimation of the occurrence rate may be ineffective.
Estimation error may cause the approaches introduced
here to be unsuccessful. In that case, attention should be
given to proper data gathering and alternative advanced
SPC methods may be considered in order to start right
after a few observations are obtained. The medical
practitioner should be warned for the early false alarms
and their careful treatment.
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