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The boundary-value problem about construction of the displacement waves and
the strain waves arising in ropes of elevating devices, such as lifts, mine lifts and
so on is considered. The rope at lifting of loads is reeled up on a drum. In a case
when the friction coe�cient of a rope about a drum is not too big, occurs frictional
sliding a rope on a drum. Therefore the behavior of a rope on a drum is described
by the telegraph equation. The behavior of a hanging part of a rope is described by
the wave equation. It means, that in di�erent parts of a rope the displacements are
solutions of the di�erent equations. That is from this point of view the rope is shared
on two zones. Thus owing to reeling of a rope on a drum the border which shares
these two zones is a variable. In such model the waves not only re�ect from ending
points of a rope. There is also their re�ection and refraction on moving border
of the sharing of zones. Is developed methods for obtaining of exact solutions for
the boundary-value problems with mobile borders for both the wave and telegraph
equations. They are based on maintenance of a continuity of the displacements in
points of re�ection of waves. The exact solution of such problem is obtained for the
case of sagging a rope prior to the beginning of rise.

Key words: dynamic �eld in ropes, wave and telegraph equations, variable border, exact
solution.

Introduction

Investigation of a dynamic �eld of stress in ropes of elevating devices, such as
lifts and mine lifts, represents the important problem for practical use. First of
all, it is connected to necessity of a safety of work of elevating devices, and also
with aspiration to reduce weight of a rope. Therefore to studying of a problem of
calculation of the dynamic stress arising in ropes, a plenty of works is devoted.
Long time was supposed, that elastic displacements in ropes are described by
the wave equations. Besides at statement of initial boundary value problems it
was supposed, that the length of a rope does not change. Such statement of
problems predetermined their solutions with the help of a separation of variables
method [1,2].
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Lacks of such approach were quite obvious. Therefore, since the second half
twentieth century works in which attempts to take into account change of length of
a rope [3-8] were undertaken began to appear. The basic feature of all such works
has consisted in intention to use for their solution still a separation of variables
method. However the initial boundary value problems describing processes of
distribution of waves in ropes of variable length, did not suppose separation
of variables. Therefore such initial boundary value problems were transformed
to the integro-di�erential equations [4-6] with variable borders of integration.
The approached solutions of the integro-di�erential equations again with the
help of a separation of variables method or its updatings [5, 6] further were
under construction. Besides were under construction asymptotic expansion of the
solutions of the integro-di�erential equations on small parameter. The role of such
small parameter carried out speed of winding of a rope, in the assumption, that
it was essentially less speeds of a sound in a rope [6].

Strictly speaking, the integro-di�erential equations with variable limits of
integration have no simple own functions. Therefore expansion of solutions was
carried out on eigenfunctions of the simpli�ed operators. Simpli�cation was, that
the integro-di�erential equation for a rope of variable length provided that speed
change of length of a rope is small, was replaced with the equation for a rope of
constant length and expansion of the solution was carried out on eigenfunctions of
this last equation. Besides, the kernel of the equation was replaced approximately
with a kernel of Fredholm's type [5-7]. Asymptotic estimations of such approxima-
tion where obtained [6]. However they only show that as small parameter tends to
zero (that is if the length of a rope does not vary) solutions for ropes of a variable
and constant length in a limit coincide. In such solutions it is still di�cult to
observe character of distribution of waves along a rope.

The described researches have shown, that without taking into account change
of length of a rope in essence it will not be possible to obtain model of the system
consisting of a rope and a drum, adequate enough natural. Besides it became clear,
that breaks of stress inevitably arising in ropes can be investigated only with the
help of construction of the solution as propagating waves. Such research has been
carried out in [9,10] in the assumption, that force of friction of a rope about a drum
is so great, that slipping the rope on a drum cannot occur. At such assumption
the problem has been transformed to the solution of the wave equation in area
with variable borders. Due to the developed method of construction of the waves
re�ected from mobile border, the exact solution of such problem representing set
of propagating waves has been obtained.

If the factor of friction of a rope about a drum is not too great slipping a rope
on a drum occurs. In this case elastic displacements to that part of a rope which is
reeled up on a drum are described by the telegraph equation while displacements
to a hanging part of a rope are described by the wave equation. Such initial
boundary value problem at the additional assumption that force of friction always
is directed aside points of fastening of a rope to a drum, is considered here.

The boundary-value problem about construction of the displacement waves
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and the strain waves arising in ropes of elevating devices, such as lifts, mine lifts
and so on is considered. The rope at lifting of loads is reeled up on a drum. In a
case when the friction coe�cient of a rope about a drum is not too big, occurs
frictional sliding a rope on a drum. Therefore the behavior of a rope on a drum
is described by the telegraph equation. The behavior of a hanging part of a rope
is described by the wave equation. It means, that in di�erent parts of a rope the
displacements are solutions of the di�erent equations. That is from this point of
view the rope is shared on two zones. Thus owing to reeling of a rope on a drum
the border which shares these two zones is a variable. In such model the waves
not only re�ect from ending points of a rope. There is also their re�ection and
refraction on moving border of the sharing of zones.

So the problem consists in obtaining solution to the system di�erent parts
of which are described with di�erent equations. Besides, border of dividing these
parts is movable. For a long time such problem could not to be solved. Now we
suggest the exact solution to this problem.

The author has developed methods for obtaining of exact solutions for the
boundary-value problems with mobile borders for both the wave and telegraph
equations [11-20]. They are based on maintenance of a continuity of the displace-
ments in points of re�ection of waves. On mobile border at construction of the
re�ected and refracted waves the conditions of a continuity of displacements and
strain are used. Application of such methods to a considered problem has allowed
obtaining the exact solution of this problem. The solution is submitted as sequence
of extending waves. With the help of such representation of the solution it is
possible to reveal the most loaded sections of elevating ropes, and also propagation
of breaks of pressure which arise, for example, in case of sagging a rope prior to
the beginning of rise.

1. Statement of a problem

Let the rope, which is suspended vertically and having initial length L, at
t = 0 starts to be reeled up on a drum. Prior to the beginning of rise on a drum
the part of a rope in length l0 is reeled up on a drum. The average radius of
winding of a rope on a drum is equal to r. As the rope is considered as a �exible
string, it can be arranged entirely along the rectilinearly axes ξ. A motionless
axis ξ we shall direct vertically downwards on a longitudinal axis of a rope, for
a reference mark ξ = 0 we shall accept a point of fastening of a rope to a drum.
Alongside with a motionless axis ξ we shall enter also a mobile axis x. The axis x
is directed the same as also an axis ξ, and at t = 0 beginnings of coordinates Oξ
and Ox coincide.

The axis x goes together with a rope, making linear moving

ν(t) = r

∫ t

0

∫ s

0
ε(τ) dτ ds . (1.1)

Here ε(t) - angular acceleration of rotation of a drum; also is supposed, that
ν(0) = 0, ν ′(0) = 0. On the end of a rope the cargo of mass m is suspended. That
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Figure 1. Calculation scheme of load lifting

is weight of cargo G = mg, where g - acceleration of a gravity. The rope has the
area of cross-section S, the module of elasticity E, density %. Then linear density
of a rope %l = S%. It is supposed, that positive elastic displacements are directed
along an axis x. Moving ν(t) of a rope together with an axis x is considered as
portable. Hence, elastic displacements to a rope will occur in relative movement
(see Figure 1). The factor of friction of a rope about a drum is designated as β.
We consider the rope as �exible thread.

For elastic displacements of a rope u(x, t), having a trailer cargo and reeling
up on a drum, in relative movement the following boundary-value problem is
obtained. In the domain 0 < x < L, t > 0 to search function u(x, t), satisfying at
0 < x < l0 + ν(t) to the equation

∂2 u(x, t)
∂x2

− 1
a2
· ∂2 u(x, t)

∂t2
− β

r

∂u(x, t)
∂x

= 0 , (1.2)

and at l0 + ν(t) < x < L - to the equation

∂2 u(x, t)
∂x2

− 1
a2
· ∂2 u(x, t)

∂t2
= − g

a2
(1.3)

Function u(x, t) should satisfy also to some initial conditions

u(x, 0) = ϕ(x); ut(x, 0) = ψ(x) , (1.4)
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and also to boundary conditions

u(0, t) = 0, (1.5)

ux(L, t) =
m

ES
(g + ε(t)r − utt(L, t)) (1.6)

in mobile system of coordinates.
As above and below the point xk = l0 + ν(t) the solution of a boundary-value

problem should satisfy to di�erent conditions, we begin to represent this solution
as

u (x, t) =

{
w (x, t) , l0 + ν(t) < x < l;
v (x, t) , 0 < x < l0 + ν(t).

(1.7)

It is necessary also that the solution of a boundary-value problem u(x, t) satis�ed
to conditions of a continuity of displacements and deformations in a point of
initial contact of a rope with a drum xk = l0 + ν(t). With the account of (1.7)
such conditions will become:

v(l0 + ν(t), t) = w(l0 + ν(t), t); vx(l0 + ν(t), t) = wx(l0 + ν(t), t) (1.8)

It is necessary to take into account, that if during the initial moment of time
the cargo hangs on a rope there in rope already exist initial displacements us(x),
created by the weight both of a cargo and a rope and determined by such formula

us (x) =

{
ws (x) , l0 < x < L;
vs (x, ) , 0 < x < l0.

(1.9)

ws(x) =
G(x− l0)

ES
− %l(L− x)2g

2ES
+

%l(L− l0)2g
2ES

+

+
G + %l(L− l0)g

ES

r

β

(
1− e−

β
r
l0
)

; (1.10)

vs(x) =
G + %l(L− l0)g

ES

r

β

(
e

β
r
(x−l0) − e−

β
r
l0
)

. (1.11)

Thus, elastic displacements should satisfy to initial conditions

u(x, 0) = us(x) ; ut(x, 0) = 0 . (1.12)

Function ws(x, t) (1.10) is accepted as the stationary solution on an interval
l0 + ν(t) < x < L. Function vs(x, t) (1.11) is accepted as the initial condition on
an interval 0 < x < l0 + ν(t). Therefore on last interval initial conditions will be
those:

v(x, 0) = vs(x) ; vt(x, 0) = 0 , 0 < x < l0 . (1.13)
Let's note that outside of interval (0, l0) function vs(x) identically equals to zero.
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2. Construction of the solution of a problem

On the ends of the rope there arise the re�ected waves only. On the dividing
border there arise both the re�ected and refracted waves.

The author obtained the solution of the telegraph equation (1.2) satisfying to
initial conditions (1.13) as

vn1(x, t) =
1
2
e

β
2r

atvs(x− at) +
1
2
e−

β
2r

atvs(x + at)+

+
1
2

∫ x+at

x−at
cat

J1(z)
z

e
β
2r

(x−ξ)vs(ξ) dξ, (2.1)

where
c = − β2

4r2
; z =

√
c
[
(ξ − x)2 − a2t2

]
. (2.2)

Thus, the initial conditions (1.13) generate on an interval 0 < x < l0 + ν(t)
waves (2.1). It is necessary, that these waves satis�ed to a boundary condition
(1.5) and to conditions (1.8) continuity of displacements and deformations in a
point of initial contact of a rope with a drum xk = l0 + ν(t).

However function vn1(x, t) to any of the listed boundary conditions does not
satisfy. Really, from (2.1) it is obtained

vn1(0, t) =
1
2
e

β
2r

atvs(−at) +
1
2
e−

β
2r

atvs(at)+

+
1
2

∫ at

−at
cat

J1(z)
z

e−
β
2r

ξvs(ξ) dξ = σ(t), (2.3)

where
z =

√
c(ξ2 − a2t2) . (2.4)

vn1(l0 + ν(t), t) =
1
2
e

β
2r

atvs(l0 + ν(t)− at) +
1
2
e−

β
2r

atvs(l0 + ν(t) + at)+

+
1
2

∫ l0+ν(t)+at

l0+ν(t)−at
cat

J ′0(z)
z

e
β
2r

(l0+ν(t)−ξ)vs(ξ) dξ, (2.5)

where
z =

√
c
[
(ξ − (l0 + ν(t)))2 − a2t2

]
. (2.6)

Hence, to satisfy to a boundary condition (1.5), it is necessary to introduce
re�ected from the �xed end of a rope x = 0 wave vn20(x, t) which should be the
solution of the telegraph equation (1.2) and satisfy to a boundary condition

vn20(0, t) = −σ(t) , t > 0 . (2.7)

Such solution is obtained by the author in [18] and looks as

vn20(x, t) = Λ0(t− x

a
)e

β
2r

x− ae
β
2r

x

∫ t−x
a

0

[− β

2r
J0(z)− c

x

z
J1(z)

]
Λ0(η) dη . (2.8)
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Here
z =

√
c[x2 − a2(t− η)2] . (2.9)

For construction of the solution (2.8) in [18] continuation of function −σ(t) on all
axis t is executed as

Λ (t) =

{
− σ (t) , t > 0;
0, t < 0.

(2.10)

Function Λ0 is the solution to the integral equation of Volterra's type:

Λ0(τ) + a

∫ τ

0

β

2r
J0(a(τ − η)

√−c)Λ0(η) dη = Λ(τ). (2.11)

Thus function (2.8) satis�es to zero initial conditions.
It is necessary to note, that function vn20(x, t) will not satisfy to conditions

of continuity (1.8). However it is necessary to take into account, that at

t <
l − ν(t)

a
(2.12)

this function owing to (2.10) is equal to zero and consequently at values t, satisfying
an inequality (2.12), it will not render in�uence on satisfaction to conditions (1.8).

At the same time function vn1(x, t) does not satisfy to conditions of a continuity
of displacements and deformations at all t > 0. Di�erentiating equality (2.1) on
x, we shall obtain

∂vn1(x, t)
∂x

=
1
2
e

β
2r

atv′s(x− at) +
1
2
e−

β
2r

atv′s(x + at)+

+
1
2
cat

{ J1(z)
z

∣∣∣∣
ξ=x+at

e−
β
2r

atvs(x + at)− J1(z)
z

∣∣∣∣
ξ=x−at

e
β
2r

atvs(x− at)+

+
∫ x+at

x−at

[ ∂

∂x
(−J ′0(z)

z
)− β

2r

J ′0(z)
z

]
e

β
2r

(x−ξ)vs(ξ) dξ
}

.

From (2.2) follows, that

z|ξ=x+at = 0 ; z|ξ=x+at = 0 .

Therefore

J0 = 1 ;
J1(z)

z

∣∣∣∣
ξ=x+at

=
J1(z)

z

∣∣∣∣
z=0

=
1
2

,
J1(z)

z

∣∣∣∣
ξ=x−at

=
J1(z)

z

∣∣∣∣
z=0

=
1
2

,

Besides

∂

∂x

(− J ′0(z)
z

)
=

(− J”0(z)
z

+
J ′0(z)
z2

)∂z

∂x
= −c(ξ − x)

z

(− J”0(z)
z

+
J ′0(z)

z2

)
.
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Hence,

∂vn1(x, t)
∂x

=
1
2
e

β
2r

atv′s(x− at) +
1
2
e−

β
2r

atv′s(x + at)+

+
1
2
cat

{1
2
e−

β
2r

atvs(x + at)− 1
2
e

β
2r

atvs(x− at)−

−
∫ x+at

x−at

[
c(ξ − x)(−J”0(z)

z2
+

J ′0(z)
z3

)− β

2r

J ′0(z)
z

]
e

β
2r

(x−ξ)vs(ξ) dξ
}

. (2.13)

From (2.13) it is obtained

vn1,x(l0 + ν(t), t) =
1
2
e

β
2r

atv′s(l0 + ν(t)− at) +
1
2
e−

β
2r

atv′s(l0 + ν(t) + at)+

+
1
2
cat

{1
2
e−

β
2r

atvs(l0 + ν(t) + at)− 1
2
e

β
2r

atvs(l0 + ν(t)− at)−

−
∫ x+at

x−at

[
c(ξ − (l0 + ν(t)))(−J”0(z)

z2
+

J ′0(z)
z3

)−

− β

2r

J ′0(z)
z

]
e

β
2r

(l0+ν(t)−ξ)vs(ξ) dξ
}

. (2.14)

where
z =

√
c
[
(ξ − (l0 + ν(t)))2 − a2t2

]
. (2.15)

Functions vn1(x, t) and ws(x) everyone generates in a point xk = l0 + ν(t)
the re�ected and refracted waves. We shall designate as vn10(x, t) a wave being
superposition of a wave, arising as a result of re�ection from a point xk = l0 +ν(t)
waves vn1(x, t), and the refracted wave arising owing to falling in a point xk =
l0 + ν(t) of a wave ws(x). We shall designate as well as wn10(x, t) a wave being
superposition of a wave, arising as a result of re�ection from a point xk = l0 +ν(t)
waves vn1(x, t), and the refracted wave arising owing to falling in a point xk =
l0 + ν(t) of a wave ws(x). We shall designate unknown while values of these
functions in a point xk = l0 + ν(t) as:

vn10(l0 + ν(t), t) = µ(t) wn10(l0 + ν(t), t) = θ(t) . (2.16)

Let's note, that functions µ(t) and θ(t) are determined only at t > 0. For the
further we shall continue these functions on all axis t as

M (t) =

{
µ (t) , t > 0;
0, t < 0.

; Θ (t) =

{
θ (t) , t > 0;
0, t < 0.

. (2.17)

Then on the basis [20] function vn10(x, t) as the wave radiated by function M(t)
in a point xk = l0 + ν(t), is under construction as

vn10(x, t) = 2M0(t +
x

a
)e

β
2r

x−

− 2ae
β
2r

x

∫ t+x
a

0

[ β

2r
J0(z) + c

x

z
J1(z)

]
M0(η) dη , (2.18)
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where z looks like (2.9), and function M0(t) is the solution to the following integral
equation:

2M0(t +
l0 + ν(t)

a
)e

β
2r

(l0+ν(t))−

− 2ae
β
2r

(l0+ν(t))

∫ t+
l0+ν(t)

a

0

[ β

2r
J0(z) + c

l0 + ν(t)
z

J1(z)
]
M0(η) dη = M(t) .

(2.19)

In turn, function wn10(x, t) as a wave radiated by function Θ(t) in a point
xk = l0 + ν(t), on the basis [15] is under construction as

wn10(x, t) = χ(x− at) . (2.20)

Having substituted of the form of the solution (2.20) in continued on all axis t
the second equality (2.16) we obtain

χ(l0 + ν(t)− at) = Θ(t) . (2.21)

Let's introduce into (2.21) transformation

ζ = l0 + ν(t)− at . (2.22)

It is natural to assume, that reeling a rope on a drum is carried out with
subsonic speed. It means, that at all t will be valid inequality

|ν ′(t)| < a . (2.23)

On the basis of an inequality (2.23) function in the right part of equality (2.22) will
be strictly monotonously decreasing. Therefore for equality (2.22) there will be an
inverse function t0(ζ), also strictly monotonously decreasing. As ν(0) = 0, from
(2.22) follows, that ζ(0) = l0 and at t > 0 by virtue of an inequality (2.23) ζ < l0.
Thus, continued on all axis ζ inverse function t0(ζ) will possess the following
properties:

t0 (ζ) =





> 0, ζ < l0;
= 0, ζ = l0;
< 0, ζ > l0.

(2.24)

Let's note, that from (2.24) follows, that at ζ < l0 such identity is valid

t0(l0 + ν(t)− at) = t . (2.25)

Now from (2.20) and (2.21) follows

wn10(x, t) = Θ(t0(x− at)) . (2.26)
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With the purpose of substitution in conditions of a continuity (1.8) we shall
di�erentiate functions (1.10), (2.18) and (2.26) on x. We shall obtain

ws,x(x) =
G

ES
+

%l(L− x)g
ES

. (2.27)

wn10,x(x, t) = Θ′(t0(x− at))t′0(x− at) . (2.28)

∂vn10(x, t)
∂x

= 2e
β
2r

x
{ β

2r

[
M0(t +

x

a
)− a

∫ t+x
a

0

[ β

2r
J0(z) + c

x

z
J1(z)

]
M0(η) dη

]
+

+
1
a
M ′

0(t +
x

a
)− [ β

2r
J0(z) + c

x

z
J1(z)

]∣∣∣∣
η=t+x

a

M0(t +
x

a
)−

− a

∫ t+x
a

0

[ β

2r
J ′0(z)

∂z

∂x
− c

J ′0(z)
z

+ cx
∂

∂x
(−J ′0(z)

z
)
]
M0(η) dη

}
.

Let's take into account, that in last equality as follows from (2.9),

z|η=t+x
a

= 0 ,

Therefore

J0(z)|η=t+x
a

= J0(z)|z=0 = 0 ,
J1(z)

z

∣∣∣∣
η=t+x

a

=
J1(z)

z

∣∣∣∣
z=0

=
1
2

,

Besides
∂z

∂x
=

cx

z
;

∂

∂x

(− J ′0(z)
z

)
=

(− J”0(z)
z

+
J ′0(z)
z2

)∂z

∂x
=

cx

z

(− J”0(z)
z

+
J ′0(z)

z2

)
.

Hence,

∂vn10(x, t)
∂x

= 2e
β
2r

x
{
− c

x

2
M0(t +

x

a
) +

1
a
M ′

0(t +
x

a
)−

− a

∫ t+x
a

0

[
(

β

2r
)2J0(z)− c

J ′0(z)
z

+ c2 xz

z
(−J”0(z)

z
+

J ′0(z)
z2

)
]
M0(η) dη

}
. (2.29)

Let's note, that at the moments of time t > 0, enough close to the moment of
time t = 0, in a point of contact xk = l0 + ν(t) there are only four waves. Above
point xk = l0 + ν(t) are exist waves vn1(x, t), generated by initial conditions, and
re�ected from a point xk a wave vn10(x, t). Below a point xk the static solution
ws(x) and the refracted wave wn10(x, t) are exist. Hence, for such t conditions of
a continuity of displacements and deformations (1.8) will become

vn1(l0 + ν(t), t) + vn10(l0 + ν(t), t) = ws(l0 + ν(t), t) + wn10(l0 + ν(t), t);
vn1,x(l0 + ν(t), t) + vn10,x(l0 + ν(t), t) =

= ws,x(l0 + ν(t), t) + wn10,x(l0 + ν(t), t). (2.30)



DYNAMIC FIELD OF ELASTIC DISPLACEMENTS 105

Having substituted in conditions (2.30) calculated values of functions vn10

and wn10, and also their derivatives from (2.18), (2.26), (2.28) and (2.29), we
shall obtain system of two equations for de�nition of functions M0(t) and Θ(t):

vn1(l0 + ν(t), t) + 2M0(t +
l0 + ν(t)

a
)e

β
2r

(l0+ν(t))−

− 2ae
β
2r

(l0+ν(t))

∫ t+
l0+ν(t)

a

0

[ β

2r
J0(z) + c

l0 + ν(t)
z

J1(z)
]
M0(η) dη =

= ws(l0 + ν(t)) + Θ(t0(l0 + ν(t)− at)) ;

vn1,x(l0 + ν(t), t) + 2e
β
2r

(l0+ν(t))
{
− c(l0 + ν(t))

2
M0(t +

l0 + ν(t)
a

)+

+
1
a
M ′

0(t +
l0 + ν(t)

a
)− a

∫ t+
l0+ν(t)

a

0

[
(

β

2r
)2J0(z)− c

J ′0(z)
z

+

+ c2 (l0 + ν(t))2

z
(−J”0(z)

z
+

J ′0(z)
z2

)
]
M0(η) dη

}
=

=
G

ES
+

%l(L− (l0 + ν(t)))g
ES

+ Θ′(t0(l0 + ν(t)− at))t′0(l0 + ν(t)− at) . (2.31)

In system of the equations (2.31)

z =
√

c[(l0 + ν(t))2 − a2(t− η)2] . (2.32)

Besides, as at t > 0 is valid l0 + ν(t) − at < 0, on the basis of identity (2.25) in
these equations such equalities are valid

Θ(t0(l0+ν(t)−at)) = Θ(t) ; Θ′(t0(l0+ν(t)−at))t′0(l0+ν(t)−at) = Θ′(t) . (2.33)

Values of functions vn1(l0 + ν(t), t) and vn1,x(l0 + ν(t), t) in the equations (2.31)
it is necessary to substitute from (2.5) and (2.14) accordingly.

Having expressed Θ(t) from the �rst equation (2.31) and having substituted
this value in the second equation (2.31), we shall obtain the integro-di�erential
equation with unknown function M0(t). After solution of this equation function
Θ(t) will easily be determined from the �rst equation (2.31).

The boundary condition (1.6) in a point x = L will generate also a wave which
we shall designate as wn2(x, t). At the some values of t > 0, close to value t = 0,
displacements in vicinities of a point x = L will be determined by the sum of
functions

wn2(x, t) + ws(x) . (2.34)
Function us(x) (1.9) in a point x = L, obviously, satis�es to a boundary

condition
us,x(L, t) =

m

ES
(g − us,tt(L, t)) (2.35)

and at t = 0 conditions of a continuity of displacements and deformations in a
point x = l0:

vs(l0) = ws(l0) ; vs,x(l0) = ws,x(l0) . (2.36)
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But as function ws(x) satis�es to a boundary condition (2.35) that the sum
of functions (2.34) satis�ed to a boundary condition (1.5), it is necessary that
function wn2(x, t) satis�ed to a boundary condition

un,x(L, t) =
m

ES
(ε(t)r − un,tt(L, t)) . (2.37)

Taking into account, that under conditions of statement of a problem ε(t) = 0 at
t < 0, we shall write down a boundary condition (2.37) as

un,x(L, t) =
m

ES
(H(t)ε(t)r − un,tt(L, t)) , (2.38)

where H(t) - function of Heaviside.
If to search for function wn2(x, t) as the solution of the homogeneous wave

equation corresponding (1.3), which satis�es to a boundary condition (2.38) as

wn2(x, t) = χ(x + at− L), (2.39)

where function χ is accepted equal to zero at negative values of argument. Substi-
tution of the form of the solution (2.39) in a boundary condition (2.38) results in
the equation for function χ:

χ”(τ) +
ES

ma2
χ′(τ) =

1
a2

ε(
τ

a
)rH(

τ

a
) . (2.40)

The general solution to the equation (2.40) will be function

χ(τ) =
∫ τ

0

[
C +

1
a2

∫ ξ

0
e

ES
ma2 ζε(

ζ

a
)rH(

ζ

a
) dζ

]
e−

ES
ma2 ξ dξ + χ(0) . (2.41)

If in the formula (2.41) with the purpose of maintenance of a continuity of function
χ(τ) in a point τ = 0 to accept χ(0) = 0, χ′(0) = C = 0 , function (2.39) will
become

wn2(x, t) =
1
a2

∫ x+at−L

0
e−

ES
ma2 ξ

∫ ξ

0
e

ES
ma2 ζε(

ζ

a
)rH(

ζ

a
) dζ] dξ . (2.42)

Thus, it is established, that function u(x, t), having structure (1.7), in which

v(x, t) = vn1(x, t) + vn10(x, t) + vn20(x, t) (2.43)
w(x, t) = ws(x) + wn10(x, t) + wn2(x, t) , (2.44)

at initial values of t > 0 will satisfy to all conditions of statement of a considered
boundary-value problem, that is will be its solution. Thus it is important to note,
that all components of functions (2.43), except for ws(x) and vn10(x, t), satisfy
to zero initial conditions. In formulas (2.43) function vn1(x, t) �lls in all area
0 < x < l0 + ν(t), and function ws(x) - all area l0 + ν(t) < x < L. Other
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Figure 2. Primary reflected and refracted waves

components of formulas (2.43) are propagating waves. Position and directions of
propagations of these primary waves are depicted in Figure 2.

Until any of extending waves will not reach the opposite end of a rope or up
to a point xk, function u(x, t) with components (2.43) will be the solution of a
boundary-value problem. However, as soon as one of waves will reach one of the
listed critical points, such function will cease to be the solution of a boundary-
value problem owing to infringement of a boundary condition in a critical point.
Therefore to obtain the solution of a problem at the bigger values of t, it is
necessary in points x = 0 and x = L to build the re�ected waves, and in a point
x = xk - the re�ected and refracted waves.

3. Construction of the re�ected and refracted waves

At l0 < L the �rst up to a critical point x = 0 the forward front of a wave
vn10 will reach. It will take place during an interval of time in length

τ1 =
l0
a

. (3.1)

At t > τ1 boundary condition (1.5) will not be satis�ed. For satisfaction it is
necessary for this condition to build a wave vn10b, as the result of re�ection of a
wave vn10 from the end x = 0. Construction of such re�ected wave is executed
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in [20] where it is shown, that

vn10b(x, t) = 2e
β
2r

x
[
M1(t− x

a
) + M0(t− x

a
)
]
+

+ 2ae
β
2r

x

∫ t−x
a

0

[ β

2r
J0(z) + c

x

z
J1(z)

]
[M1(η) + M0(η)] dη . (3.2)

Here function M1 is the solution of the integral equation [20]

−M1(t)− a

∫ t

0

β

2r
J0(z)M1(η) dη = 2M0(t) . (3.3)

in which [20]
M0(t) = −vn1(0, t) ; z = a(t− η)

√−c . (3.4)
In turn, as the rope is reeled up on a drum with subsonic speed, the forward

front of a wave vn10b will reach a point of contact xk = l0 + ν(t) at the moment
of time τ11 which is the least positive root of the equation

at = 2l0 + ν(t) . (3.5)

Therefore at t > τ11 for a wave vn10b boundary conditions (1.8) in a point xk =
l0 + ν(t) will cease to satisfy. With the purpose of satisfaction at t > τ11 it is
necessary for these boundary conditions to construct re�ected vn10bb and refracted
wn10br the waves generated by a wave vn10b.

It is made by the technique enough similar to construction of re�ected and
refracted waves vn10 and wn10. With this purpose we shall designate unknown
while values of these functions in a point xk = l0 + ν(t) :

vn10bb(l0 + ν(t), t) = µv1(t) ; wn10br(l0 + ν(t), t) = θv1(t) . (3.6)

Let's note, that functions µv1(t) and θv1(t) are determined only at t > τ11.
For the further we shall continue these functions on all axis t as

Mv1 (t) =

{
µv1 (t) , t > τ11;
0, t < τ11.

; Θv1 (t) =

{
θv1 (t) , t > τ11;
0, t < τ11.

. (3.7)

Then on the basis [20] function vn10bb(x, t) as the wave radiated by function Mv1(t)
in a point xk = l0 + ν(t), is under construction as

vn10bb0(x, t) = 2Mv10(t +
x

a
)e

β
2r

x− 2ae
β
2r

x

∫ t+x
a

0

[ β

2r
J0(z) + c

x

z
J1(z)

]
Mv10(η) dη .

(3.8)
where z looks like (2.9), and function Mv10(t) is the solution to the following
integral equation:

2Mv10(t +
l0 + ν(t)

a
)e

β
2r

(l0+ν(t)) − 2ae
β
2r

(l0+ν(t))

∫ t+
l0+ν(t)

a

0

[ β

2r
J0(z)+

+ c
l0 + ν(t)

z
J1(z)

]
Mv10(η) dη = Mv1(t). (3.9)
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In turn, function wn10br(x, t) as a wave radiated by function Θv1(t) in a point
xk = l0 + ν(t), on the basis [15] is under construction as

wn10br(x, t) = χ(x− at). (3.10)

Then the same as and for function wn10 it is obtained

wn10br(x, t) = Θv1(t0(x− at)) . (3.11)

It is necessary to take into account, that the wave (3.11) operates in domain
x > l0 + ν(t). In such domain the inequality x− at < l0 + ν(t)− at < l0 is valid
as function (2.22) decreases, and its initial value is equal to l0. Therefore on the
basis of identity (2.25) from the formula (3.11) follows

wn10br(l0 + ν(t), t) = Θv1(t). (3.12)

At t > τ11 function u(xt), having structure (1.7), will consist of components

v(x, t) = vn1(x, t) + vn10(x, t) + vn20(x, t) + vn10b(x, t) + vn10bb(x, t)
w(x, t) = ws(x) + wn10(x, t) + wn2(x, t) + wn10br(x, t) . (3.13)

In view of that boundary conditions (2.30) are executed, boundary conditions
(1.8) will become

vn10b(l0 + ν(t), t) + vn10bb(l0 + ν(t), t) = wn10br(l0 + ν(t), t);
vn10b,x(l0 + ν(t), t) + vn10bb,x(l0 + ν(t), t) = wn10br,x(l0 + ν(t), t) . (3.14)

Substituting in (3.14) values of functions vn10b, vn10bb and wn10br from (3.2), (3.8)
and (3.12), we shall obtain the equations for de�nition of functions Mv10 and Θv1:

vn10b(l0 + ν(t), t) + 2Mv10(t +
l0 + ν(t)

a
)e

β
2r

(l0+ν(t))−

− 2ae
β
2r

(l0+ν(t))

∫ t+
l0+ν(t)

a

0

[ β

2r
J0(z) + c

l0 + ν(t)
z

J1(z)
]
Mv10(η) dη = Θv1(t) ;

vn10b,x(l0 + ν(t), t) + 2e
β
2r

(l0+ν(t))
{
− c(l0 + ν(t))

2
Mv10(t +

l0 + ν(t)
a

)+

+
1
a
M ′

v10(t +
l0 + ν(t)

a
)− a

∫ t+
l0+ν(t)

a

0

[(
β

2r

)2

J0(z)− c
J ′0(z)

z
+

+ c2 (l0 + ν(t))2

z

(− J”0(z)
z

+
J ′0(z)

z2

)]
Mv10(η) dη

}
= Θ′

v1(t) . (3.15)

Here z it is determined by equality (2.32).
Further the forward front of a wave vn10bb at the moment of time τ12 =

3l0+2ν(τ1)
a will reach a point x = 0, and for satisfaction to boundary condition

(1.5) it will be necessary to construct a wave re�ected from this point. To make
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this it will be possible precisely the same as it is made at re�ection of a wave vn10

from a point x = 0.
The forward front of a wave wn10br, in turn, at the moment of time τ13 =

τ11 + L−(l0+2ν(τ11))
a will reach a point x = L, and for satisfaction to boundary

condition (2.37) it will be necessary to construct a wave re�ected from this point.
To make this it will be possible precisely the same as it will be made below at
re�ection of a wave wn20r from a point x = L. Process of construction of the
re�ected and refracted waves generated by a wave vn10, it is necessary to continue
up to a stop of system during some moment of time t = Tk.

Let's consider now process of movement of a wave vn20. At the moment of
time τ2 which is the least positive root of the equation

at = l0 + ν(t) , (3.16)

the forward front of a wave will catch up a point xk = l0+ν(t), and for satisfaction
to boundary condition (1.8) it is necessary to build re�ected vn20b and refracted
wn20r waves. Boundary conditions (1.8) for three considered waves will become

vn20(l0 + ν(t), t) + vn20b(l0 + ν(t), t) = wn20r(l0 + ν(t), t);
vn20,x(l0 + ν(t), t) + vn20b,x(l0 + ν(t), t) = wn20r,x(l0 + ν(t), t). (3.17)

Construction of waves vn20b and wn20r is carried out by the technique enough
similar to a technique of construction of re�ected and refracted waves vn10 and
wn10. With this purpose we shall designate unknown while values of functions
vn20b and wn20r in a point xk = l0 + ν(t) as

vn20b(l0 + ν(t), t) = µv2(t) ; wn20r(l0 + ν(t), t) = θv2(t) . (3.18)

Again functions µv2(t) and θv2(t) are determined only at t > τ2. For the
further we shall continue these functions on all axis t as

Mv2 (t) =

{
µv2 (t) , t > τ2;
0, t < τ2.

; Θv2 (t) =

{
θv2 (t) , t > τ2;
0, t < τ2.

. (3.19)

Then on the basis [20] function vn20b(x, t) as the wave radiated by function Mv2(t)
in a point xk = l0 + ν(t), is under construction as

vn20b(x, t) = 2Mv20(t+
x

a
)−2ae

β
2r

x

∫ t+x
a

0

[ β

2r
J0(z)+c

x

z
J1(z)

]
Mv20(η) dη . (3.20)

where z looks like (2.9), and function Mv20(t) is the solution to the following
integral equation:

2Mv20(t +
l0 + ν(t)

a
)e

β
2r

(l0+ν(t)) − 2ae
β
2r

(l0+ν(t))

∫ t+
l0+ν(t)

a

0

[ β

2r
J0(z)+

+ c
l0 + ν(t)

z
J1(z)

]
Mv20(η) dη = Mv2(t). (3.21)
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In turn, function wn20r(x, t) as a wave radiated by function Θv2(t) in a point
xk = l0 + ν(t), it is similar (3.11) turns out as

wn20r(x, t) = Θv2(t0(x− at)). (3.22)

Substituting in (3.17) values of functions vn20, vn20b and wn20r from (2.8),
(3.20) and (3.22), we shall obtain the equations for de�nition of functions Mv20

and Θv2:

vn20(l0 + ν(t), t) + 2Mv20(t +
l0 + ν(t)

a
)e

β
2r

(l0+ν(t))−

− 2ae
β
2r

(l0+ν(t))

∫ t+
l0+ν(t)

a

0

[ β

2r
J0(z) + c

l0 + ν(t)
z

J1(z)
]
Mv20(η) dη = Θv2(t) ;

vn20,x(l0 + ν(t), t) + 2e
β
2r

(l0+ν(t))
{
− c(l0 + ν(t))

2
Mv20(t +

l0 + ν(t)
a

)+

+
1
a
M ′

v20(t +
l0 + ν(t)

a
)− a

∫ t+
l0+ν(t)

a

0

[(
β

2r

)2

J0(z)− c
J ′0(z)

z
+

+ c2 (l0 + ν(t))2

z

(− J”0(z)
z

+
J ′0(z)

z2

)]
Mv20(η) dη

}
= Θ′

v2(t) . (3.23)

Here still z it is determined by equality (2.32).
Further it is necessary at t > τ21 = l0+ν(τ2)

a to construct a wave vn20bb as
result of re�ection of a wave vn20b from the end x = 0. To make that it is possible
precisely the same as it is made at construction of re�ection of a wave vn10 in this
point.

The forward front of a wave wn20r will reach a point x = L at the moment of
time τ22 = τ2 + L−(l0+ν(τ2))

a . At t > τ22, it is necessary to build the wave wn20rb

re�ected from this point and generated by a wave wn20r. Construction of the
re�ected wave wn20rb is carried out by a technique of construction of the re�ected
wave generated by the falling wave wn10 stated above.

The forward front of a wave wn10 will reach a point x = L at the moment
of time τ3 = L−l0

a . Therefore at t > τ3 it is necessary to build the wave wn10b

re�ected from this end. At construction of a wave it is necessary to take into
account, that at t < τ3 in a vicinity of a point x = L the solution of a problem is
represented as

u(x, t) = ws(x) + wn2(x, t) + wn10(x, t) , (3.24)

and at t > τ3 it will be already represented as four distinct from zero of waves:

u(x, t) = ws(x) + wn2(x, t) + wn10(x, t) + wn10b(x, t) . (3.25)

Hence, in view of that function ws(x) satis�es to a boundary condition

ws,x(L) =
mg

ES
,
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and function wn2(x, t) - to a boundary condition (50), at substitution of function
(3.25) in a boundary condition (1.6) it is obtained, that the sum of functions
wn10(x, t) and wn10b(x, t) should satisfy in a point x = L to a boundary condition

wn10,x(L, t) + wn10b,x(L, t) = − m

ES
(wn10,tt(L, t) + wn10b,tt(L, t)) . (3.26)

The re�ected wave wn10b(x, t) is under construction as

wn10b(x, t) = χ1(x− at). (3.27)

Substitution of the form of the solution (3.27) in a boundary condition (3.26)
allows obtaining di�erential equation for determination of function χ1:

a2χ”1(L + at) +
ES

m
χ′1(L + at) = −ES

m
wn10,x(L, t)− wn10,tt(L, t) ,

which after introduction of transformation of an independent variable

τ = L + at (3.28)

will become

χ”1(τ) +
ES

ma2
χ′1(τ) = − ES

ma2
wn10,x(L,

τ − L

a
)− 1

a2
wn10,tt(L,

τ − L

a
) . (3.29)

The solution of the equation (3.29) is obtained in [19] and for this case looks
as

wn10b(x, t) = χ1(x + at) = −
∫ x+at

0
e−

ES
ma2 ξ

[ ∫ ξ

0
e

ES
ma2 ζ×

× [ 1
a2

wn10,tt(L,
ζ − L

a
) +

ES

ma2
wn10,x(L,

ζ − L

a
)
]
dζ

]
dξ . (3.30)

Moving to a direction negative x, forward front of a wave wn10b(x, t) at the
moment of time t = τ31 which is a root of the equation

at = aτ3 + L− (l0 + ν(t)) , (3.31)

will reach a point xk = l0 + ν(t). Therefore at t > τ31 there is a necessity
of construction re�ected wn10bb(x, t) and refracted vn10br(x, t) waves, satisfying
boundary conditions

vn10br(l0 + ν(t), t) = wn10b(l0 + ν(t), t) + wn10bb(l0 + ν(t), t) ;
vn10br,x(l0 + ν(t), t) = wn10b,x(l0 + ν(t), t) + wn10bb,x(l0 + ν(t), t) , (3.32)

Process of construction of waves wn10bb(x, t) and vn10br(x, t) is similar to
process of construction stated above re�ected wn2b(x, t) and refracted vn2r(x, t)
the waves generated by the falling wave wn2(x, t).
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Figure 3. Secondary reflected (symbol b) and refracted (symbol r) waves

Thus, the solution of a problem on �nd of elastic displacements in a rope
at lifting of loads develops of several components. First, this solution includes
all primary waves vn1(x, t), vn10(x, t), vn20(x, t), ws(x), wn10(x, t) and wn2(x, t),
disturbed in a rope at the moment of the beginning of its movement. Second, all
re�ected and refracted waves generated both primary waves, and the secondary
re�ected and refracted waves here should be included. Directions of movement of
secondary waves are represented in Figure 3.

Therefore the solution of a considered problem will have structure (2.33), in
which

v(x, t) = vn1(x, t) + vn10(x, t) + vn10b(x, t) + vn10bb(x, t) + · · ·+
+ vn20(x, t) + vn20b(x, t) + vn20bb(x, t) + · · ·+ vn10br(x, t)+

+ · · ·+ vn2r(x, t) + · · ·+ · · · ;
w(x, t) = ws(x) + wn10(x, t) + wn10b(x, t) + wn10bb(x, t) + · · ·+

+ wn2(x, t) + wn20b(x, t) + wn20bb(x, t) + · · ·+ wn10br(x, t)+
+ · · ·+ wn20r(x, t) + · · ·+ · · · . (3.33)

Here points designate the re�ected and refracted waves arising at the subsequent
re�ections and refractions of already existing waves. Process of construction of the
re�ected and refracted waves needs to be continued up to a stop of a drum during
some moment of time t = tk. At t > tk movement of waves will proceed before
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their full attenuation. However in this case it is necessary to take into account
that portable movement of a rope has stopped.

4. Conclusion

The exact solution of a problem on �nd of elastic displacements in a rope at
lifting of loads is obtained. This solution consists of several components. First,
this solution includes all primary waves vn1(x, t), vn10(x, t), vn20(x, t), ws(x),
wn10(x, t) and wn2(x, t), disturbed in a rope at the moment of the beginning of
its movement. Second, all re�ected and refracted waves generated both primary
waves, and the secondary re�ected and refracted waves here should be included.
It is very important to note that at every �nite moment of time number of terms
in formulas (3.33) will be �nite as well.
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