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H-OPTIMAL CONTROL IN COEFFICIENTS FORDIRICHLET PARABOLIC PROBLEMSI. G. Balanenko∗, P. I. Kogut∗∗
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∗∗ Department of Di�erential Equations Dnipropetrovsk National University Kozakovastr., 18/14, 49050 Dnipropetrovsk, Ukraine E-mail: p.kogut�i.uaIn this paper we study the Dirihlet optimal ontrol problem assoiated with alinear paraboli equation the oe�ients of whih we take as ontrols in L1(Ω).Sine equations of this type an exhibit the Lavrentie� phenomenon and non-uniqueness of weak solutions, we show that the optimal ontrol problem in theoe�ients an be stated in di�erent forms depending on the hoie of the lassof admissible solutions. Using the diret method in the Calulus of variations, wedisuss the solvability of the above optimal ontrol problems in the so-alled lassof H-admissible solutions.Key words. Degenerate paraboli equations, ontrol in oe�ients, weighted Sobolev spaes,Lavrentie� phenomenon, diret method in the Calulus of variations.1. IntrodutionThe aim of this work is to study the optimal ontrol problems assoiated toa linear paraboli equation with homogeneous Dirihlet boundary ondition. Theontrol variable is the matrix of L1-oe�ients in the main part of ellipti operator.The preise answer existene or none-existene of an L1-optimal solutions heavilydepends on the lass of admissible ontrols. The main questions are what is theright setting of the optimal ontrol problem with L1-ontrols in the oe�ients,and what is the right lass of admissible solutions to the above problem? Usingthe diret method in the Calulus of variations, we disuss the solvability of theabove optimal ontrol problems in the lass of H-admissible solutions.Note that optimal ontrol problems in oe�ients for PDE are not new in theliterature. As Fran�ois Murat showed in 1970 (see [14℄), in general, suh problemshave no solution even if the original ellipti equation is non-degenerate. It turnsout that this feature is typial for the majority of problems for optimal ontrolin oe�ients. Note that this topi has been widely studied by many authors inthe ase of non-degenerate weight funtion. In this paper we deal with an optimalontrol problem in oe�ients for the boundary value problem





y′ − divB(x)∇y + y = f in (0, T ) × Ω,
y = 0 on (0, T ) × ∂Ω,
y(0, x) = y0(x) a. e. in Ω,

(1.1)© I. G. Balanenko, P. I. Kogut, 2010



46 I. G. BALANENKO, P. I. KOGUTwhere f ∈ L2((0, T ) × Ω) and y0 ∈ L2(Ω) are given funtions, and B is a nonnegative invertible matrix suh that B + B−1 ∈ L1(Ω; RN×N ). Several physialphenomena are modeled by this paraboli problem. In order to be able to handlemedia whih possibly are �perfet� insulators somewhat or �perfet� ondutors(see [8℄) we allow the matrix B to vanish somewhere in Ω or to be unbounded.Even though numerous papers (see, for instane, [6, 16, 17, 21℄ and referenesthere) are devoted to variational and non variational approahes to problemsrelated to (1.1), only few papers deal with optimal ontrol problems for degeneratepartial di�erential equations (see, for example, [1, 3, 5℄). This an be explained byseveral reasons. Firstly, boundary value problem (1.1) for every loally integrablematrix B exhibit the Lavrentie� phenomenon, the non-uniqueness of weak solu-tions, as well as other surprising onsequenes. So, in general, the mapping B 7→
y(B) an be multi-valued. Besides, the harateristi feature of this problem isthe fat that for di�erent admissible ontrols B with properties presribed above,the orresponding weak solutions of (1.1) belong to the di�erent weighted Sobolevspaes. In addition, even if the original paraboli equation is non-degenerate, i.e.admissible ontrols B are suh that

B(x) ≥ αI, (B(x))−1 ≥ β−1I, a.e. in Ω,the majority of optimal ontrol problems in oe�ients have no solution.Our paper is organized as follow: at the beginning we state problem of optimalontrol in the oe�ients and presribe the lass of admissible ontrols whihinludes some div-like onditions in weighted spaes. After that we disuss thelassi�ation of admissible solutions to the above optimal ontrol problem. Weshow that one of the harateristi features of this problem is the following fat: forevery admissible L1-ontrol the orresponding H-solution to the boundary valueproblem belongs to a weighted spae whih essentially depends on the originalontrol. So, the set of the so-alled H-admissible solutions to the above probleman be viewed as a olletion of pairs "ontrol-state"in the variable spaes eahof whih is embedded into L1(Ω; RN×N ) × L2(0, T ;W 1,1
0 (Ω)).Further we deal with the existene of optimal solutions to the original problem.We begin with a re�nement of the elebrated div-curl lemma of F. Murat andL.C. Tartar [15℄ to the ase of variable weighted Sobolev spaes. After we studythe topologial properties of the lass of H-admissible solutions and show thatthis set possesses some ompatness properties with respet to the appropriateonvergene in variable spaes. In onlusion, using the diret method in theCalulus of variations, we prove the existene of the H-optimal solutions to theoriginal problem.2. Notation and PreliminariesIn this setion we introdue some notation and preliminaries that will be usefullater on.Let Ω be a bounded open subset of R

N (N ≥ 1) with a Lipshitz boundary.Let χE be the harateristi funtion of a subset E ⊆ Ω, i.e. χE(x) = 1 if x ∈ E,and χE(x) = 0 if x 6∈ E. The spae W 1,1
0 (Ω) is the losure of C∞

0 (Ω) in thelassial Sobolev spae W 1,1(Ω). For any subset E ⊂ Ω we denote by |E| its
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N -dimensional Lebesgue measure LN (E). Let Mβ

α (Ω) be the set of all matries
A = [ai j ] in L∞(Ω; RN×N ) suh that

A(x) ≥ αI, (A(x))−1 ≥ β−1I, a.e. in Ω (2.1)for two �xed onstants α and β with 0 < α ≤ β < +∞. Here I is the identitymatrix in R
N×N , and inequalities (2.1) should be onsidered in the sense of thequadrati forms de�ned by (Aξ, ξ)

RN for ξ ∈ R
N . Note that (2.1) implies theinequality |A(x)| ≤ β a.e. in Ω.Hereinafter by a weight we mean a loally integrable funtion ρ on R

N suhthat ρ(x) > 0 for a. e. x ∈ R
N . As a matter of fat every weight ρ gives rise to ameasure on the measurable subsets of R

N through integration. This measure willalso be denoted by ρ. Thus ρ(E) =
∫
E ρ dx for measurable sets E ⊂ R

N . We willuse the standard notation L2(Ω, ρ dx) for the set of measurable funtions f on Ωsuh that
‖f‖L2(Ω,ρ dx) =

(∫

Ω
f2ρ dx

)1/2

< +∞.De�nition 1. We say that a weight funtion ρ : R
N → R+ is degenerate on Ω if

ρ+ ρ−1 ∈ L1
loc(R

N ), (2.2)and the sum ρ+ ρ−1 does not belong to L∞(Ω).With eah of the degenerate weight funtions ρ we will assoiate two weightedSobolev spaes Wρ = W (Ω, ρ dx) and Hρ = H(Ω, ρ dx), where Wρ is the set offuntions y ∈W 1,1
0 (Ω) for whih the norm

‖y‖ρ =

(∫

Ω

(
y2 + ρ |∇y|2

)
dx

)1/2 (2.3)is �nite, andHρ is the losure of C∞
0 (Ω) inWρ-norm. Note that due to the ompatembedding W 1,1

0 (Ω) →֒ L1(Ω) and estimates
∫

Ω
|y| dx ≤ |Ω|1/2

(∫

Ω
|y|2 dx

)1/2

≤
√

|Ω| ‖y‖ρ, (2.4)
∫

Ω
|∇y| dx ≤

(∫

Ω
|∇y|2ρ dx

)1/2 (∫

Ω
ρ−1 dx

)1/2

≤ C‖y‖ρ, (2.5)we ome to the following result (we refer to [11, 21℄ for the details):Theorem 1. Let ρ : R
N → R+ be a degenerate weight on Ω. Then(i) the spaes Hρ and Wρ are omplete with respet to the norm ‖ · ‖ρ;(ii) Hρ ⊆Wρ, and Wρ, Hρ are Hilbert spaes;(iii) Hρ ⊂W 1,1

0 (Ω), Wρ ⊂W 1,1
0 (Ω), and the estimate

‖v‖W 1,1
0 (Ω) ≤

(
√

|Ω| +
(∫

Ω
ρ−1 dx

)1/2
)
‖v‖ρis valid for every element v ∈ Hρ ∪Wρ;



48 I. G. BALANENKO, P. I. KOGUT(iv) the embeddings Hρ →֒ L1(Ω) and Wρ →֒ L1(Ω) are ompat.If ρ is a non-degenerate weight funtion, that is, ρ is bounded between twopositive onstants, then it is easy to verify thatWρ = Hρ. However, for a "typial"degenerate weight ρ the spae of smooth funtions C∞
0 (Ω) is not dense in Wρ.Hene the identity Wρ = Hρ is not always valid (for the orresponding exampleswe refer to [7, 19℄.We reall that by Riesz Representation Theorem the dual spae (Hρ)

∗ ofweighted Sobolev spae Hρ an be haraterized as follows: if g ∈ (Hρ)
∗ thenthere exist funtions g0 ∈ L2(Ω) and −→g 1 ∈ L2(Ω, ρ dx)N suh that

〈g, y〉(Hρ)∗;Hρ
=

∫

Ω
g0y dx+

∫

Ω
(−→g 1,∇y)RN ρ dx ∀ y ∈ Hρ. (2.6)Furthermore,

‖g‖(Hρ)∗ = inf

{(∫

Ω
|g0|2 dx+

∫

Ω
‖−→g 1‖2

RNρ dx

)1/2

: g satis�es (2.6)} .We denote by H−1
ρ the dual spae to Hρ.Remark 1. Note that under some additional suppositions Theorem 1 an bespei�ed as follows: assume that there exists ν ∈ (N/2,+∞) suh that ρ−ν ∈

L1(Ω). Then
‖|y|‖ =

(∫

Ω
ρ |∇y|2 dx

)2is a norm de�ned on Hρ and it's equivalent to (2.3) and that, the embedding
Hρ →֒ L2(Ω) is ompat [9, pp 46℄.To onlude this setion we reall some results onerning variational triplets.Let V− = Hρ, V = L2(Ω) and let V ∗

− = H−1
ρ . Let X = L2(0, T ;V−). Then the dualspae of X is X ∗ = L2(0, T ;V ∗

−). For any y ∈ X , let y′ denotes the generalizedderivative of y(t) = y(t, ·), i.e.
∫ T

0
y′(t)ϕ(t) dt = −

∫ T

0
y(t)ϕ′(t) dt ∀ϕ ∈ C∞

0 (0, T ).Then we have the following result (see [18℄):Lemma 1. Assume that there exists ν ∈ (N/2,+∞) suh that ρ−ν ∈ L1(Ω).Then V− ⊆ V ⊆ V ∗
− is an evolution triple, i.e. the embeddings V− →֒ V →֒

V+ are ontinuous, and the embedding V− →֒ V is ompat. Moreover, W =
{y ∈ X , y′ ∈ X ∗} equipped with the norm

‖y‖W = ‖y‖X + ‖y′‖X ∗ := ‖y‖L2(0,T ;Hρ) + ‖y′‖L2(0,T ;H−1
ρ )is a Banah spae suh that1. the embedding W →֒ C(0, T ;L2(Ω)) is ontinuous;2. the embedding W →֒ L2(0, T ;L2(Ω)) is ompat.



H-OPTIMAL CONTROL FOR DIRICHLET PARABOLIC PROBLEMS 493. Setting of the Optimal Control ProblemLet ρ be given element of L1(Ω) satisfying the onditions
0 < ρ(x) a.e. in Ω, ρ−ν ∈ L1(Ω) for some ν ∈ (N/2,+∞). (3.1)Then, in view of the estimate
∫

Ω
ρ−1 dx ≤

(∫

Ω
ρ−ν dx

)1/ν (∫

Ω
dx

)1/ν∗

= ‖ρ−ν‖1/ν
L1(Ω)

|Ω|1/ν∗

,where ν∗ = ν/(1 − ν) is the onjugate of ν, we have: ρ−1 ∈ L1(Ω), i.e., ρ is adegenerate weight in the sense of De�nition 1. In order to introdue the lass ofadmissible L1-ontrols, we adopt the following onept:De�nition 2. For a given ~v ∈
[
L2(Ω, ρ dx)

]N we say that an element g ∈
L2(Ω, ρ dx) is the divergene of the vetor �eld ~v with respet to the weight ρ(in symbols g(x) = divρ~v(x)) if ~v and g are related by the formula

∫

Ω
g(x)ϕ(x) ρ(x) dx = −

∫

Ω
(~v(x),∇ϕ(x))

RN ρ(x) dx ∀ϕ ∈ C∞
0 (Ω). (3.2)De�nition 3. We say that a matrix B ∈ L1(Ω; RN×N ) is an admissible ontrol(it is written as B ∈ Bad) to the paraboli problem

y′ − divB(x)∇y + y = f in (0, T ) × Ω, (3.3)
y(0, x) = y0 a.e. in Ω, (3.4)
y = 0 on (0, T ) × ∂Ω (3.5)if there is a symmetri matrix A = [~a1, . . . ,~aN ] ∈ L∞(Ω; RN×N ) suh that

B(x) = A(x)ρ(x), A ∈Mβ
α (Ω), (3.6)

|divρ ~ai| ≤ γi ρ− a. e. in Ω, ∀ i = 1, . . . , N, (3.7)where f ∈ L2(Ω), y0 ∈ L2(Ω), γ = (γ1, . . . , γN ) ∈ R
N is a given positive vetor,elements divρ ~ai ∈ L2(Ω, ρ dx) are de�ned by (3.2). Here ρ is the �xed element of

L1(Ω) with properties (3.1).Remark 2. As follows from De�nition 3 and properties (3.1), for every admissibleontrol B ∈ L1(Ω; RN×N ) we deal with the initial-boundary value problem forthe degenerate paraboli equation
y′ − div (ρA(x)∇y) + y = f in (0, T ) × Ω, (3.8)

y(0, x) = y0 a.e. in Ω, y = 0 on (0, T ) × ∂Ω. (3.9)It means that for some admissible matries of oe�ients B ∈ Bad the boundaryvalue problem (3.3)�(3.5) an exhibit the Lavrentie� phenomenon [19℄ as well asother surprising onsequenes.



50 I. G. BALANENKO, P. I. KOGUTThe optimal ontrol problem we onsider in this paper is to minimize thedisrepany between a given distribution yd ∈ L2((0, T ) × Ω) and the solution ofthe paraboli problem (3.3)�(3.5) by hoosing an appropriate matrix of oe�ients
B ∈ Bad. More preisely, we are onerned with the following optimal ontrolproblem Minimize {

I(B, y) = ζ

∫ T

0

∫

Ω
|y(t, x) − yd(t, x)|2 dxdt

+

∫ T

0

∫

Ω
|∇y(x)|2

RN ρ dxdt + ‖A‖L∞(Ω,RN×N )

} subjet onstraints (3.6)�(3.7).(3.10)Here ζ > 0 is a penalization parameter.Let B = Aρ ∈ Bad be an admissible ontrol. Then the quadrati form
Φ(y) =

∫

Ω
A(x)∇y · ∇y ρ dxwith domain Wρ ⊂ L2(Ω) is losed and orresponds to a non-negative self-adjointoperator AW = −div ρA∇ in L2(Ω). At the same time this form will also belosed inHρ ⊂ L2(Ω), whih leads us to another non-negative self-adjoint operator

AH = −div ρA∇ in L2(Ω). Thus, there exist at least two di�erent problems
y′ + AW y + y = f and y′ + AHy + y = f, (3.11)relating to initial-boundary value problem (3.3)�(3.5). As we will see later, eahof the problem (3.11) is uniquely solvable. So, the mapping B 7→ y(B, f), where

y(B, f) is a solution to problem (3.3)�(3.5), is multivalued, in general.4. Classi�ation of optimal solutionsIn view of the observation given above, we adopt the lassi�ation of thesolutions to the initial-boundary valued problem (3.3)�(3.5) following Pastukhova& Zhikov [21℄ (for more details and other types of solutions we refer to [2, 11, 20℄).De�nition 4. We say that a funtion y = y(B, f) = y(A, ρ, f) ∈ L2(0, T ;Wρ) is aweak solution to the initial-boundary value problem (3.3)�(3.5) for a �xed ontrol
B = Aρ ∈ Bad and a given funtion f ∈ L2((0, T ) ×Ω), if for eah ϕ ∈ C∞

0 (Ω), ysatis�es the integral identity
∫

Ω
yϕdx

∣∣∣∣
t2

t1

+

∫ t2

t1

∫

Ω

((
A(x) ∇y,∇ϕ

)
RN

ρ(x) + yϕ
)
dxdt

=

∫ t2

t1

∫

Ω
fϕdxdt ∀ t1, t2 ∈ [0, T ], (4.1)and

lim
t→+0

∫

Ω
yϕdx =

∫

Ω
y0ϕdx ∀ϕ ∈ C∞

0 (Ω). (4.2)



H-OPTIMAL CONTROL FOR DIRICHLET PARABOLIC PROBLEMS 51As immediately follows from De�nition 4 that a weak solution y(t, ·) is weaklyontinuous as a funtion [0, T ] → Wρ and y|t=0 = y0. This follows from theboundedness of y(t, ·) : [0, T ] →Wρ and the ontinuity of the funtions
∫

Ω
y(t, x)ϕ(x) dx on [0, T ].De�nition 5. Let Vρ be some intermediate spae with Hρ ⊆ Vρ ⊆ Wρ. We saythat a funtion y = y(A, ρ, f) ∈ L2(0, T ;Vρ) is a Vρ-solution or a variationalsolution to the initial-boundary value problem (3.3)�(3.5) if y satis�es ondition(4.2) and the integral identity (4.1) for every test funtion ϕ ∈ Vρ.Remark 3. Note that for every �xed B = Aρ ∈ Bad the existene and uniquenessof a Vρ-solution an be established using the standard tehnique [13℄. Moreover, if

Vρ = Hρ, them, in view of Lemma 1, we have: Hρ-solution to (3.3)�(3.5) possessesthe additional properties
y ∈ W =

{
y ∈ L2(0, T ;Hρ), y

′ ∈ L2(0, T ;H−1
ρ )
}
,and hene y ∈ C(0, T ;L2(Ω)). At the same time, the variational solutions donot exhaust the entire set of the weak solutions to the above boundary valueproblem. Indeed, by analogy with [21℄ it an be proved that a weak solution

y = y(B, f) ∈ L2(0, T ;Wρ) is a variational one if and only if, in addition to(4.1)�(4.2), the energy equality
1

2

∫

Ω
y2 dx

∣∣∣∣
t2

t1

+

∫ t2

t1

∫

Ω

((
A(x) ∇y,∇y

)
RN

ρ+ y2
)
dxdt =

∫ t2

t1

∫

Ω
fy dxdt (4.3)holds true for all t1, t2 ∈ [0, T ]. Therefore, if y1(B, f), y2(B, f) ∈Wρ are variatio-nal solutions with y1(B, f) 6= y2(B, f) (hene they belong to the di�erent inter-mediate spaes V1,ρ and V2,ρ), then y = (y1(B, f) + y2(B, f)) /2 is a weak solutionto (3.3)�(3.5) but not variational one. Moreover, as follows from De�nition 4the set of weak solutions to the initial-boundary value problem (3.3)�(3.5) for a�xed ontrol B = Aρ ∈ Bad is onvex and losed. Hene if y1(B, f), y2(B, f) arevariational solutions suh that y1(B, f) 6= y2(B, f) then the orresponding set ofthe weak solutions is in�nite.It is obvious that for every �xed B ∈ Bad, f ∈ L2((0, T ) × Ω), and Vρ(Hρ ⊆

Vρ ⊆Wρ) a variational solution is also a weak solution to the problem (3.3)�(3.5).However, the inverse assertion is not true in general. For a "typial" degenerateweight funtion ρ the spae of smooth funtions C∞
0 (Ω) is not dense in Wρ, andhene there is no uniqueness of the weak solutions (see, for instane, [12, 20℄).Now it is lear that the mapping B 7→ y(B, f) an be viewed as multi-valuedin general, and this depends on the hoie of the orresponding solutions spae

Vρ. As a result, the variational formulation of the optimal ontrol problem (3.6)�(3.7),(3.10) an be stated in di�erent forms. Taking this fat into aount, weindiate the following sets
ΞH = {(B, y) | B = Aρ ∈ Bad, y ∈ Hρ, (B, y) are related by (4.1)�(4.3)} ,(4.4)
ΞW = {(B, y) | B = Aρ ∈ Bad, y ∈Wρ, (B, y) are related by (4.1)�(4.3)} .(4.5)



52 I. G. BALANENKO, P. I. KOGUTAs was mentioned above (see Remark 3), the sets ΞH and ΞW are always non-empty. Hene the orresponding minimization problems
〈

inf
(B,y)∈ΞH

I(B, y)

〉 and 〈
inf

(B,y)∈ΞW

I(B, y)

〉 (4.6)are regular. However, beause of the Lavrentie� e�et, it may happen that for some�xed ontrol B = Aρ ∈ Bad and a given f ∈ L2((0, T ) × Ω) the orresponding
Hρ-solution yH(A, ρ, f) andWρ-solution yW (A, ρ, f) to the initial-boundary valueproblem (3.8)�(3.9) are not the same. This implies that the variational problems(4.6) are essentially di�erent, in general. Hene, the minimizers to (4.6) an bealso di�erent, and moreover

inf
(B,y)∈ΞH

I(B, y) 6= inf
(B,y)∈ΞW

I(B, y).Note that due to the Remark 3 and estimates (2.4)�(2.5), we have the obviousinlusions
ΞH ⊂ L1(Ω; RN×N ) × L2(0, T ;H(Ω, ρ dx)) ∩ C(0, T ;L2(Ω)),

ΞW ⊂ L1(Ω; RN×N ) × L2(0, T ;W (Ω, ρ dx)).In this paper we restrit of our analysis to the set ΞH and adopt the followingonept:De�nition 6. We say that a pair
(B0, y0) ∈ L1(Ω; RN×N ) × L2(0, T ;Hρ) ∩ C(0, T ;L2(Ω))is an H-optimal solution to the problem (3.3)�(3.7),(3.10) if

(B0, y0) ∈ ΞH and I(B0, y0) = inf
(B,y)∈ΞH

I(B, y).The main question for the optimal ontrol problem (3.3)�(3.7),(3.10) to beanswered in this paper is about its solvability in the lass of H-solutions. It shouldbe noted that to the best knowledge of the authors, the existene of optimal pairsto the above problem in the sense of De�nition 6 has not been studied in theliterature.5. On Compensated Compatness in Weighted Sobolev SpaesWe begin this setion with some auxiliary results that will be useful later. Let
{(Bk, yk) = (Akρ, yk) ∈ ΞH}k∈N

be any sequene of H-admissible solutions. Withthis sequene we assoiate the spae
Xρ =

{
~f ∈ L2(0, T ;L2(Ω, ρ dx))N | divρ

~f ∈ L2(0, T ;L2(Ω, ρ dx))
}and endow it with the norm

‖~f‖Xρ =
(
‖~f ‖2

L2(0,T ;L2(Ω,ρ dx))N + ‖divρ
~f ‖2

L2(0,T ;L2(Ω,ρ dx))

)1/2
.



H-OPTIMAL CONTROL FOR DIRICHLET PARABOLIC PROBLEMS 53We say that a sequene {~fk ∈ Xρ

}
k∈N

is bounded if
sup
k→∞

‖~f‖Xρ < +∞.Further, for every k > 0 we de�ne a ut-o� operator Tk : R → R as follows
Tk(s) = max{min{s, k},−k}. By analogy with the well-known results for thelassial Sobolev spaes (see [10℄), it is easy to verify the following assertion:Proposition 1. Let y be an element of the weighted spae

W =
{
y ∈ L2(0, T ;Hρ), y

′ ∈ L2(0, T ;H−1
ρ )
}
.Then(i) Tk(y) ∈ W for every k > 0;(ii) ∇xTk(y) = χ{|y|<k}∇xy almost everywhere in Ω;(iii) Tk(y) → y almost everywhere in (0, T ) × Ω and strongly in L2(0, T ;Hρ) as

k → ∞.Taking these properties and Proposition 2.3 from [11℄ into aount, by thediagonal trik, we ome to the onlusion:Proposition 2. Let ρ be an element of L1(Ω) with properties (3.1). Let
{gk ∈ W}k∈N

be a bounded sequene suh that
gk ⇀ g in L2((0, T ); Ω),

∇gk ⇀ ∇g in L2(0, T ;L2(Ω, ρ dx))N ,
g′k ⇀ g′ in L2(0, T ;H−1

ρ )
as k → ∞. (5.1)Then there exists an inreasing sequene of positive numbers {ℓk}k∈N

suh that
ℓk → +∞ as k → ∞, and

Tℓk
(gk) → g strongly in L2(0, T ;L2(Ω)) as k → ∞. (5.2)Now we are in the position to give the main result of this setion (for ompa-rison we refer to the Compensated Compatness Lemma in [4, 15℄).Theorem 2. Let {~fk ∈ L2(0, T ;L2(Ω, ρ dx))N

}
k∈N

, ~f ∈ L2(0, T ;L2(Ω, ρ dx))N ,
{gk ∈ W}k∈N

, and g ∈ W be suh that(i) ~fk ⇀ ~f in L2(0, T ;L2(Ω, ρ dx))N as k → ∞;(ii) gk ⇀ g in L2((0, T ) × Ω), ∇gk ⇀ ∇g in L2(0, T ;L2(Ω, ρk dx))
N , and

g′k ⇀ g′ in L2(0, T ;H−1
ρ ) as k → ∞.Then

lim
k→∞

∫ T

0

∫

Ω
ϕ
(
~fk,∇gk

)

RN
ρψdxdt =

∫ T

0

∫

Ω
ϕ
(
~f,∇g

)

RN
ρψ dxdt, (5.3)

∀ϕ ∈ C∞
0 (Ω), ∀ψ ∈ C∞

0 (0, T ).



54 I. G. BALANENKO, P. I. KOGUTProof. We divide our proof into several steps. Our �rst step is to prove that
divρ

~fk ⇀ divρ
~f in L2(0, T ;L2(Ω, ρ dx)) as k → ∞. (5.4)Indeed, sine the sequene {divρ

~fk ∈ L2(0, T ;L2(Ω, ρ dx))
}

k∈N

is bounded, bythe ompatness riterium in re�exive spaes, we an suppose that there existsan element φ ∈ L2(0, T ;L2(Ω, ρ dx)) suh that
divρ

~fk ⇀ φ in L2(0, T ;L2(Ω, ρ dx)) as k → ∞.Then passing to the limit in the relation
∫ T

0

∫

Ω

(
~fk,∇ϕ

)
RN

ρψ dxdt = −
∫ T

0

∫

Ω
ϕ
(
divρ

~fk

)
ρψ dxdt (5.5)

∀ϕ ∈ C∞
0 (Ω), ∀ψ ∈ C∞

0 (0, T ) as k → ∞, we obtain
∫ T

0

∫

Ω

(
~f,∇ϕ

)
RN

ρψ dxdt = −
∫ T

0

∫

Ω
ϕφρψ dxdt

∀ϕ ∈ C∞
0 (Ω), ∀ψ ∈ C∞

0 (0, T ).Therefore (see De�nition 2), the element φ is the anisotropi divergene of thevetor �eld ~f ∈ L2(0, T ;L2(Ω, ρ dx))N with respet to the weight ρ, i.e., φ =
divρ

~f ∈ L2(0, T ;L2(Ω, ρ dx)). So, (5.4) is valid.The next step is to study the asymptoti behavior as k → +∞ of the followingnumerial sequene
{∫ T

0

∫

Ω
ϕ
(
~fk,∇gk

)
RN

ρψ dxdt

}

k∈N

.To begin with, we note that as follows from Lemma 1, the element g ∈ W isthe strong limit of {gk ∈ W}k∈N
in L2((0, T ) × Ω)-topology. So, we an supposethat

gk → g a. e. in (0, T ) × Ω. (5.6)In view of estimates
∣∣∣∣
∫

Ω

(
~fk,∇ϕ

)

RN
ρ dx

∣∣∣∣ ≤
(∫

Ω

∥∥∥~fk

∥∥∥
2

RN
ρ dx

)1/2 (∫

Ω
‖∇ϕ‖2

RN ρ dx

)1/2

,

∣∣∣∣
∫

Ω
ϕ
(
divρ

~fk

)
ρ dx

∣∣∣∣ ≤ ‖ϕ‖L∞(Ω)‖ρ‖1/2
L1(Ω)

(∫

Ω

(
divρ

~fk

)2
ρ dx

)1/2and by density of C∞
0 (Ω) inHρ, the relation (5.5) an be extended to the funtions

ϕ of Hρ∩L∞(Ω). Sine Tℓ(gk) ∈ L∞(0, T ;Hρ∩L∞(Ω)) for every k ∈ N and ℓ ∈ N,it follows that
∫ T

0

∫

Ω

(
~fk,∇ (Tℓ(gk)ϕ)

)
RN

ρψ dxdt = −
∫ T

0

∫

Ω

(
divρ

~fk

)
ϕTℓ(gk)ρψ dxdt
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0 (Ω) and ψ ∈ C∞

0 (0, T ). Due to this relation, we make use thefollowing equality
∫ T

0

∫

Ω
ϕ
(
~fk,∇Tℓ(gk)

)
RN

ρψ dxdt =

∫ T

0

∫

Ω

(
~fk,∇ (Tℓ(gk)ϕ)

)
RN

ρψ dxdt

−
∫ T

0

∫

Ω
Tℓ(gk)

(
~fk,∇ϕ

)
RN

ρψ dxdt = −
∫ T

0

∫

Ω

(
divρ

~fk

)
ϕTℓ(gk)ρψ dxdt

−
∫ T

0

∫

Ω
Tℓ(gk)

(
~fk,∇ϕ

)
RN

ρψ dxdt

= −Ik
1,ℓ − Ik

2,ℓ ∀ϕ ∈ C∞
0 (Ω), ∀ψ ∈ C∞

0 (0, T ). (5.7)Our next intention is to study the asymptoti behavior of the integrals Ik
1,ℓand Ik

2,ℓ as k → ∞. Sine the sequene {divρ
~fk ∈ L2(Ω, ρ dx)

}

k∈N

is bounded,the property (5.4) implies that
ρdivρ

~fk ⇀ ρdivρ
~f in L1((0, T ) × Ω). (5.8)Hene the family {ρdivρ

~fk

}
k∈N

is equi-integrable on (0, T ) × Ω. Therefore, be-ause of the boundedness of {Tℓ(gk) − Tℓ(g)} the sequene
{
ρ (Tℓ(gk) − Tℓ(g)) divρ

~fk

}
k∈N

is equi-integrable on (0, T ) × Ωas well. Using the property (5.6), we have
Tℓ(gk) → Tℓ(g) a. e. in (0, T ) × Ω for every ℓ ∈ N.Then Lebesgue's Theorem implies

ρ (Tℓ(gk) − Tℓ(g)) divρ
~fk → 0 in L1((0, T ) × Ω) as k → ∞.Moreover, by (5.8), we get

Tℓ(g)ρdivρ
~fk ⇀ Tℓ(g)ρdivρ

~f in L1((0, T ) × Ω) as k → ∞.Combining these results, we obtain
ρTℓ(gk) divρ

~fk = ρ (Tℓ(gk) − Tℓ(g)) divρ
~fk

+ ρTℓ(g) divρ
~fk ⇀ ρTℓ(g) divρ

~f in L1((0, T ) × Ω). (5.9)On the other hand, the inequality
∥∥∥Tℓ(gk) divρ

~fk

∥∥∥
L2(0,T ;L2(Ω,ρ dx))

≤ ‖Tℓ(gk)‖L∞((0,T )×Ω)

×
∥∥∥divρ

~fk

∥∥∥
L2(0,T ;L2(Ω,ρ dx))

≤ C,immediately yields that {Tℓ(gk) divρ
~fk

}
k∈N

is bounded in L2(0, T ;L2(Ω, ρdx))for every ℓ ∈ N. Hene, there exists an element ηℓ ∈ L2(0, T ;L2(Ω, ρ dx)) suhthat
Tℓ(gk) divρ

~fk ⇀ ηℓ in L2(0, T ;L2(Ω, ρdx)),



56 I. G. BALANENKO, P. I. KOGUTthat is, Tℓ(gk)ρdivρ
~fk ⇀ ηℓ ρ in L1((0, T ) × Ω). Then, in view of (5.9), we get

ηℓ = Tℓ(g) divρ
~f ρ-almost everywhere in Ω.As a result, we ome to the relation

lim
k→∞

Ik
1,ℓ =

∫ T

0

∫

Ω
Tℓ(g)ϕdivρ

~f ρψ dxdt. (5.10)Using similar arguments, we an prove that
lim

k→∞
Ik
2,ℓ =

∫ T

0

∫

Ω
Tℓ(g)

(
~f,∇ϕ

)

RN
ρψ dxdt.Thus, the passage to the limit in (5.7) leads us to the relation

lim
k→∞

∫ T

0

∫

Ω
ϕ
(
~fk,∇Tℓ(gk)

)
RN

ρψ dxdt

= −
∫ T

0

∫

Ω
Tℓ(g)ϕdivρ

~f ρψ dxdt−
∫ T

0

∫

Ω
Tℓ(g)

(
~f,∇ϕ

)
RN

ρψ dxdt

=

∫ T

0

∫

Ω

(
~f,∇ (Tℓ(g)ϕ)

)

RN
ρψ dxdt −

∫ T

0

∫

Ω
Tℓ(g)

(
~f,∇ϕ

)

RN
ρψ dxdt

=

∫ T

0

∫

Ω
ϕ
(
~f,∇Tℓ(g)

)
RN

ρψ dxdt ∀ϕ ∈ C∞
0 (Ω), ∀ψ ∈ C∞

0 (0, T ) (5.11)whih holds true for every ℓ ∈ N.Let {Tℓk
(gk) ∈ Hρ}k∈N

be a sequene with properties (i)�(iii) whih is ensuredby Proposition 1. Then for any δ > 0 there exists a value k∗ ∈ N suh that
(∫ T

0
‖Tℓk

(gk) − gk‖2
ρ dt

)1/2

≤ δ ∀ k > k∗ (by Proposition 1).By Cauhy-Bunyakovski�i inequality we have the estimate
L = sup

k∈N

∣∣∣∣
∫ T

0

∫

Ω
ϕ
(
~fk,∇Tℓk

(gk) − gk

)
RN

ρψ dxdt

∣∣∣∣

≤ δ‖ϕ‖C(Ω)‖ψ‖C(0,T )‖~fk‖L2(0,T ;L2(Ω,ρ dx))N ≤ Cδ. (5.12)Taking into aount that χ{|gk|<ℓk} → χΩ strongly in L∞((0, T ) × Ω), it �nallyfollows that
∣∣∣∣ lim
k→∞

∫ T

0

∫

Ω
ϕ
(
~fk,∇gk

)
RN

ρψ dxdt −
∫ T

0

∫

Ω
ϕ
(
~f,∇g

)
RN

ρψ dxdt

∣∣∣∣by (5.12)
≤

∣∣∣∣ lim
k→∞

∫ T

0

∫

Ω
ϕ
(
~fk,∇Tℓk

(gk)
)

RN
ρψ dxdt

−
∫ T

0

∫

Ω
ϕ
(
~f,∇g

)
RN

ρψ dxdt

∣∣∣∣+ Cδby (5.11)
≤

∣∣∣∣ lim
k→∞

∫ T

0

∫

Ω
χ{|gk|<ℓk}ϕ

(
~f,∇g

)
RN

ρψ dxdt

−
∫ T

0

∫

Ω
ϕ
(
~f,∇g

)
RN

ρψ dxdt

∣∣∣∣+ Cδ
(by Proposition 1)

= Cδ.



H-OPTIMAL CONTROL FOR DIRICHLET PARABOLIC PROBLEMS 57Sine δ > 0 is arbitrary, this onludes the proof.Remark 4. The key point of the proof of this lemma is the fat that the spae ofsmooth funtions C∞
0 (Ω) is dense in the weighted spae Hρ = H(Ω, ρdx). So, ingeneral, Lemma 2 does not hold for the ase when {gk}k∈N

is a bounded sequenein the weighted Sobolev spae Wρ.6. Existene Theorem for H-optimal solutionsOur prime interest in this setion deals with the solvability of optimal ontrolproblem (3.3)�(3.7),(3.10) in the lass of H-solutions. To begin with, we onsiderthe topologial properties of the set of H-admissible solutions ΞH to the problem(3.3)�(3.7),(3.10). To do so, we introdue the following onepts:De�nition 7. We say that a sequene {(Bk, yk) = (Akρk, yk) ∈ ΞH}k∈N
is boun-ded if

sup
k∈N

[
‖Ak‖L∞(Ω;RN×N ) + ‖y′k‖L2(0,T ;H−1

ρ )

+ ‖yk‖L2((0,T )×Ω) + ‖∇yk‖L2(0,T ;L2(Ω,ρ dx))N

]
< +∞.De�nition 8. We say that a bounded sequene of H-admissible solutions

{(Bk, yk) = (Akρk, yk) ∈ ΞH}k∈N

τ -onverges to a pair (B, y) ∈ L1(Ω; RN×N ) ×W if(a) B = Aρ, where A ∈ L∞(Ω; RN×N );(b) Ak
∗
⇀ A in L∞(Ω; RN×N );() yk ⇀ y in L2((0, T ) × Ω);(d) ∇yk ⇀ ∇y in L2(0, T ;L2(Ω, ρdx))N ;(e) y′k ⇀ y′ in L2(0, T ;H−1

ρ ).Theorem 3. For every f ∈ C∞
0 (RN ) the set ΞH is losed with respet to the

τ -onvergene.Proof. Let {(Bk, yk)}k∈N ⊂ ΞH be a bounded τ -onvergent sequene of H-admis-sible pairs to the optimal ontrol problem (3.6)�(3.7),(3.10). Let
(B0, y0) = (A0ρ, y0)be its τ -limit. Our aim is to prove that (B0, y0) ∈ ΞH .In view of the initial assumptions (3.6)�(3.7) we have:

Ak = [~a1 k, . . . ,~aN k] ∈Mβ
α (Ω)and |divρ ~ai k| ≤ γi ρ dx-a.e. in Ω ∀ i = 1, . . . , N, ∀ k ∈ N.



58 I. G. BALANENKO, P. I. KOGUTHene, the sequenes {divρ ~ai k ∈ L2(Ω, ρ dx)
}

k∈N
∀ i = 1, . . . , N are uniformlybounded. The ompatness riterium in L2(Ω, ρ dx)-spaes implies the existeneof elements {φi ∈ L2(Ω, ρ dx)

}N

i=1
suh that

divρ ~ai k ⇀ φi in L2(Ω, ρ dx) as k → ∞ ∀ i = 1, . . . , N.Then passing to the limit as k → ∞ in the relations
∫

Ω
(~ai k,∇ϕ)RN ρ dx = −

∫

Ω
ϕdivρ ~ai k ρ dx

∀ϕ ∈ C∞
0 (Ω), ∀ i ∈ {1, . . . , N} , ∀ k ∈ N,

−γi

∫

Ω
ϕρdx ≤

∫

Ω
ϕdivρ ~ai k ρ dx ≤ γi

∫

Ω
ϕρdx

∀ i ∈ {1, . . . , N} , ∀ k ∈ N, ∀ϕ ≥ 0,

Ak = [~a1 k, . . . ,~aN k] ∈Mβ
α (Ω),we ome to the onlusion:

divρ~ai k ⇀ φi = divρ~ai 0 in L2(Ω, ρ dx) as k → ∞, (6.1)
|divρ ~ai 0| ≤ γi ρ− a.e. in Ω ∀ i ∈ {1, . . . , N} , (6.2)

Ak
∗
⇀ A0 = [~a1 0, . . . ,~aN 0] ∈Mβ

α (Ω). (6.3)Hene the limit matrix B0 = A0ρ is an admissible ontrol to the problem (3.6)�(3.7),(3.10).It remains to show that the pair (B0, y0) is related by the energy equality(4.3). We will do it in several steps. Step 1. To begin with, we note that, by theinitial assumptions there exists of a onstant C > 0 suh that
‖yk‖L2((0,T )×Ω) ≤ C, ‖∇yk‖L2(0,T ;L2(Ω,ρ dx))N ≤ C,

‖y′k‖L2(0,T ;H−1
ρ ) ≤ C ∀ k ∈ N.Using the standard arguments, we an suppose that there exists an element y∗ ∈

W suh that, up to a subsequene we have (see also Lemma 1)
yk ⇀ y∗ weakly in the Sobolev spae L2(0, T ;Hρ), (6.4)

y′k ⇀ y′∗ in L2(0, T ;H−1
ρ ), (6.5)and yk → y∗ in L2((0, T ) × Ω). (6.6)Further, we note that the sequene

{Ak∇yk}k∈N
is bounded in L2(0, T ;L2(Ω, ρ dx))N .Hene passing to a subsequene if neessary, we may assume that there exists afuntion ~η ∈ L2(0, T ;L2(Ω, ρ dx))N suh that

Ak ∇yk =: ~ηk ⇀ ~η in L2(0, T ;L2(Ω, ρ dx))N . (6.7)



H-OPTIMAL CONTROL FOR DIRICHLET PARABOLIC PROBLEMS 59Taking these fats into aount, we an pass to the limit in the integral identity
−
∫ T

0

∫

Ω
ykϕψ

′ dxdt+

∫ T

0

∫

Ω

((
Ak ∇yk,∇ϕ

)
RN

ρ+ ykϕ
)
ψ dxdt

=

∫ T

0

∫

Ω
fϕψ dxdt ∀ϕ ∈ C∞

0 (Ω),∀ψ ∈ C∞
0 (0, T ) (6.8)as k → ∞. As a result, we get

−
∫ T

0

∫

Ω
y∗ϕψ

′ dxdt +

∫ T

0

∫

Ω
((~η,∇ϕ)

RN ρ+ y∗ϕ)ψ dxdt

=

∫ T

0

∫

Ω
fϕψ dxdt ∀ϕ ∈ C∞

0 (Ω),∀ψ ∈ C∞
0 (0, T ) (6.9)or −div (ρ0 ~η ) = f − y∗ − y′∗ in the sense of distributions.Step 2. Here we show that ~η = A0 ∇y∗. To do so, we introdue the followingsalar funtion

v(x) = (~z, x)RN , (6.10)where ~z is a �xed element of R
N . By the initial assumptions, we have

∫ T

0

∫

Ω
ϕ
(
Ak (∇yk −∇v) ,∇yk −∇v

)
RN

ρψ dxdt ≥ 0, ∀ϕ ≥ 0,∀ψ ≥ 0,or, in view of (6.10), this inequality an be rewritten as
∫ T

0

∫

Ω
ϕ
(
Ak (∇yk − ~z ) ,∇yk − ~z

)
RN

ρψ dxdt ≥ 0. (6.11)Our next intention is to pass to the limit in (6.11) as k → ∞ using Theorem 2.Having put in the statement of this lemma: ~fk = Ak∇ (yk − v), and gk = yk − vfor all k ∈ N, we see that the sequene {gk = yk − v}k∈N
satis�es all assumptionsof Theorem 2. In view of (6.7) and (6.3), we have

~fk = Ak∇ (yk − v) = Ak (∇yk − ~z) ⇀ ~η −A0~z in L2(0, T ;L2(Ω, ρ dx))N .(6.12)It remains to show that the sequene {~fk = Ak∇ (yk − v)
}

k∈N

is bounded in Xρ.Indeed, from integral identity (6.8), we get
−
∫ T

0

∫

Ω
divρ

(
Ak ∇yk

)
ϕρψ dxdt

=

∫ T

0

∫

Ω
ϕ (f − yk)ψ dxdt +

∫ T

0

∫

Ω
ykϕψ

′ dxdt ∀ k ∈ N.Sine (f − yk − y′k) ⇀ (f − y∗ − y′∗) = ρ−1 (f − y∗ − y′∗) ρ in L2((0, T ) × Ω), itfollows that the sequene
{divρ (Ak∇yk)}k∈N

is weakly ompat in L2(0, T ;L2(Ω, ρ dx)),
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divρk

(Ak∇yk) ⇀ ρ−1
(
y∗ + y′∗ − f

) in L2(0, T ;L2(Ω, ρ dx)). (6.13)To apply Theorem 2 we have to show that the sequene {divρ

(
Ak ~z

)
}k∈N isalso weakly onvergent in L2(0, T ;L2(Ω, ρ dx)), where the elements divρ

(
Ak ~z

)are de�ned as
∫

Ω

(
Ak ~z,∇ϕ

)
RN ρ dx = −

∫

Ω
ϕdivρ

(
Ak ~z

)
ρ dx ∀ϕ ∈ C∞

0 (Ω), ∀ k ∈ N.Indeed, for every test funtion ϕ ∈ C∞
0 (Ω), we have

∫

Ω

(
Ak ~z,∇ϕ

)
RN ρ dx =

∫

Ω






(~a1 k(x), ~z)RN

. . .
(~an k(x), ~z)RN


 ,∇ϕ




RN

ρ dx

=

∫

Ω

N∑

i=1

(~ai k(x), ~z)RN

∂ϕ

∂xi
ρ dx =

∫

Ω

N∑

i=1

N∑

j=1

ak
i j(x)

∂ϕ

∂xi
zjρ dx =

=

N∑

j=1

zj

∫

Ω

(~aj k(x),∇ϕ)RN ρ dx = −
N∑

j=1

zj

∫

Ω

ϕdivρ ~aj k ρ dx = Jk. (6.14)Then using (6.1), we get
lim

k→∞
Jk = −

N∑

j=1

zj lim
k→∞

∫

Ω

ϕdivρ ~aj k ρ dx = −
N∑

j=1

zj

∫

Ω

ϕdivρ ~aj 0 ρ dx. (6.15)Applying the onverse transformations with (6.15) as we did it in (6.14), we arriveat
lim

k→∞

∫

Ω
ϕdivρ

(
Ak ~z

)
ρ dx = − lim

k→∞

∫

Ω

(
Ak ~z,∇ϕ

)
RN ρ dx

= −
∫

Ω

(
A0 ~z,∇ϕ

)
RN ρ dx =

∫

Ω
ϕdivρ

(
A0 ~z

)
ρ dx ∀ϕ ∈ C∞

0 (Ω). (6.16)Thus, from (6.13) and (6.16) it �nally follows that
divρ (Ak (∇yk − ~z )) ⇀ ρ−1(y∗ + y′∗ − f) − divρ

(
A0 ~z

)in L2(0, T ;L2(Ω, ρ dx)). (6.17)As a result, ombining properties (6.7), (6.17), (6.12) and the fat that
∇(yk − v) ⇀ ∇(y∗ − v) in L2(0, T ;L2(Ω, ρ dx))N ,we see that all suppositions of Theorem 2 are ful�lled. So, passing to the limit ininequality (6.11) as k → ∞, we get

∫ T

0

∫

Ω

ϕ(x) (~η −A0~z,∇y∗ − ~z )
RN ρψ dxdt ≥ 0, ∀~z ∈ R

N
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0 (Ω) and ψ ∈ C∞

0 (0, T ). After loalization, we have
ρ0

(
~η− A0 ~z,∇y∗ − ~z

)
RN ≥ 0, ∀~z ∈ R

N .Hene
~η = A0∇y∗ ρ-almost everywhere in (0, T ) × Ω. (6.18)Step 3. Taking (6.18) into aount, we an represent the integral identity (6.9)in the form

−
∫ T

0

∫

Ω
y∗ϕψ

′ dxdt +

∫ T

0

∫

Ω

((
A0 ∇y∗,∇ϕ

)
RN ρ+ y∗ ϕ

)
ψ dxdt

=

∫ T

0

∫

Ω
fϕψ dxdt ∀ϕ ∈ C∞

0 (Ω),∀ψ ∈ C∞
0 (0, T ), (6.19)or y′∗ − div (ρA0∇y∗ ) + y∗ = f in the sense of distributions. Sine C∞

0 (Ω) densein Hρ, this relation remains true for all ϕ ∈ Hρ. Hene, taking ϕψ = y∗ as a testfuntion in (6.19), we arrive to the energy equality
1

2

∫

Ω
y2
∗ dx

∣∣∣∣
T

0

+

∫ T

0

∫

Ω

((
A0 ∇y∗,∇y∗

)
RN ρ+ y2

0

)
dxdt =

∫ T

0

∫

Ω
fy∗ dxdt.In order to onlude the proof it remans to pass to the limit in the equality

∫

Ω
y0ϕdx = lim

t→+0

∫

Ω
ykϕdxwhih holds true for all k ∈ N. As a result, using (6.4), we obtain

lim
t→+0

∫

Ω
y∗ϕdx =

∫

Ω
y0ϕdx.Thus the τ -limit pair (B0, y∗) belongs to set ΞH , and this onludes the proof.Now we are in a position to state the existene of H-optimal pairs to theproblem (3.6)�(3.7),(3.10).Theorem 4. Let ρ be a degenerate weight in the sense of De�nition 1 satisfyingthe onditions (3.1). Let also f ∈ L2((0, T ) × Ω) and yd ∈ L2(Ω) be givenfuntions. Then the optimal ontrol problem (3.6)�(3.7), (3.10) admits at leastone H-solution

(Bopt, yopt) ∈ ΞH ⊂ L1(Ω; RN×N ) ×W.Proof. First of all we note that for the given funtion f ∈ L2(Ω) and everyadmissible ontrol B = Aρ ∈ Bad, there exists an H-solution y = y(B, f) ∈ Hρsuh that energy equality (4.3) holds true. Let {(Bk, yk) = (Akρ, yk) ∈ ΞH}k∈Nbe an H-minimizing sequene to the problem (3.6)�(3.7),(3.10). Then as followsfrom the inequality
inf

(B,y)∈ΞH

I(B, y) = lim
k→∞

[
ζ

∫ T

0

∫

Ω
|yk(t, x) − yd(t, x)|2 dxdt

+

∫ T

0

∫

Ω
|∇yk(t, x)|2RN ρ dxdt + ‖Ak‖L∞(Ω,RN×N )

]
< +∞, (6.20)



62 I. G. BALANENKO, P. I. KOGUTthere is a onstant C > 0 suh that
sup
k∈N

‖yk‖L2(Ω) ≤ C, sup
k∈N

‖∇yk‖L2(Ω,ρ dx)N ≤ C.Hene, in view of the de�nition of the lass of admissible ontrols Bad, we mayassume that, within a subsequene, there exist a distribution y∗ ∈ W and a matrix
A∗ ∈ L∞(Ω; RN×N ) suh that

Ak
∗
⇀ A∗ in L∞(Ω, RN×N ), yk ⇀ y∗ in L2(0, T ;Hρ),

y′k ⇀ (y∗)′ in L2(0, T ;H−1
ρ ).

(6.21)Using the arguments of the proof of Theorem 3, it an be shown that the matrix
B∗ = A∗ρ ∈ L1(Ω, RN×N ) is admissible ontrol to the problem (3.6)�(3.7),(3.10).As a result, the pair (B∗, y∗) is the τ -limit of the H-minimizing sequene

{(Bk, yk) ∈ ΞH}k∈N
.Then, by Theorem 3, this pair is an H-admissible to the problem (3.6)�(3.7),(3.10). Sine the ost funtional I is lower τ -semiontinuous, we get

I(B∗, y∗) ≤ lim inf
k→∞

I(Bk, yk) = inf
(B, y)∈ΞH
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