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enter, University of Erlangen-Nuremberg,GermanyThe problem of non-rigid registration of images, where 
ertain parts are missing,is 
onsidered in the 
ontext of pre- and intraoperative or damaged data. A variatio-nal formulation of the problem is proposed su
h that a 
ounterpart of the missingdata 
an be restored in a template image along with a 
orresponding registrationtransformation between the images. The problem is a registrational variant of a free-dis
ontinuity Mumford-Shah segmentation problem with the unknown dis
ontinuityset representing the boundary of missing data; thus, no preliminary segmentationis needed to dete
t the missing information. An approximation of the free-dis
on-tinuity problem by an Ambrosio-Tortorelli-type approximation is used to 
omputethe numeri
al solutions. Experiments with 2D examples demonstrate the e�
ien
yof the proposed approa
h.Key words. Non-rigid registration, in
omplete information, Mumford-Shah segmentation, free-dis
ontinuity problem.1. Introdu
tionIn medi
al imaging, registration is required for the alignment and fusion ofimage data obtained from the same or di�erent sour
es. Typi
al imaging devi
esare 
omputed tomography (CT), magneti
 resonan
e tomography (MRT), andpositron emission tomography (PET). They provide a great variety of anatomi
aland fun
tional information and support diagnosis, therapy planning, and theanalysis of diseases.Besides rigid alignment of two datasets, there are many situations of pra
ti
alimportan
e where the underlying stru
tures are deformed between su

essives
ans. In these 
ases, the problem in
reases with the 
omplexity of the requirednon-rigid transformation [1℄. Another 
hallenging problem of registration o

ursif two images di�er as a result of tissue removal or 
ompression pro
esses. Conse-quently, an unambiguous mapping between two datasets is missing and the regist-ration is easily and severely deteriorated. Su
h e�e
ts are observed for instan
eif pre- and intraoperative images, histologi
al disse
tions or atlas and image data1The �rst author would like to express his gratitude to Jan Modersitzki for the fruitfuldis
ussion of the problem.
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ompared. Sin
e there is no best 
hoi
e in image registration, the variety ofappli
ations requires 
onsidering the spe
i�
s of ea
h problem with its limitationsand pe
uliarities [2℄.For the assessment of deformations between pre- and intraoperative datasets,there are 
urrently three strategies: (1) dire
t measurements within the physi
alspa
e of the patient [3℄, (2) registration [4℄, and (3) simulation based on anunderlying model [5℄.Approa
hes suggested more re
ently 
over di�erent aspe
ts related to a 
orre
tassessment of deformation phenomena. In [6℄, an approa
h was presented whi
hmeasures brain variability on the registration of sul
al line sets whi
h ensures aglobally 
onsistent deformation of the underlying spa
e. For non-rigid mat
hing,a method based on generalized surfa
e �ows was suggested using tailored defor-mation priors and multiresolution 
omputations [7℄. In order to solve registrationproblems for images having inhomogeneities, an approa
h for a 
ombined homo-genization and registration was presented [8℄. In the �eld of atlas registration,manually labeled data at various degrees of "sharpness"and the joint registration-segmentation of a new brain with these atlases were applied [9℄. Another approa
huses a preoperatively 
omputed atlas of model deformations to predi
t intra-operative brain shift [5℄. New similarity measures were suggested whi
h improvethe registration of multimodal data [10, 11℄. To over
ome dis
ontinuities in thedispla
ement �eld and intensity variations in the data, an energy fun
tional basedon total variation regularization and a robust data term was used [12℄. In orderto improve non-rigid transformations, a 
omputationally e�
ient non-parametri
di�eomorphi
 image registration algorithm was suggested [13℄. Another strategyapplied segmentation to guide the registration pro
ess based on a 
omplex physi
almodel [14℄. As a drawba
k, the method requires essential prepro
essing of the data.In [15℄, a variant of image inpainting is 
onstru
ted for the unknown displa
ement�eld (i.e. interpolation of the displa
ement within the missing part from its valuesin the neighborhood). This method seems to be highly suitable for the registrationof in
omplete images. However, expli
it segmentation of the missing data is re-quired. On the other hand, the a

ura
y of the interpolation is usually high onlyif the variation of the data involved in it is not too strong. Sin
e the brain shift inpre- to intraoperative surgery is signi�
ant, the a

ura
y of this method in su
hsituations requires veri�
ation. To our knowledge, there is no further 
ontributionwhi
h allows for an e�
ient and robust treatment of missing 
orresponden
e aftertissue removal or 
ompression e�e
ts. Other related works are [16, 17, 18, 19, 20℄.In this paper, we present a method for the non-rigid registration whi
h isrobust with respe
t to the presen
e of lo
al damages of the image data. It isbased on a new variational fully automati
 model: it works without any priorsegmentation or identi�
ation of landmarks. For a proof of 
on
ept, we 
ondu
tedexperiments with 2D image data. The a
hieved results demonstrate the value ofthis method for 
omplex registration problems su
h as image data with poorlydistinguishable lesions and with the brain shift phenomenon.
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ontinuity modelAs we have mentioned, the presen
e of the missing part in the referen
e imageinvalidates the registration in its neighbourhood, sin
e it has no 
orresponden
ein a template image to be mat
hed with. Our idea then is to �nd what is thatpart of a template image whi
h is missing in a referen
e by repla
ing the intensityof some pie
e of a template image by the intensity value of the missing part ina referen
e. If the image pie
e is dete
ted 
orre
tly, then the registration energyfor the modi�ed template should be lower. Thus, a position and a shape of thatpie
e in a template is another unknown of the registration problem.We will build the new model on the basis of the following 
onventional regist-ration problem:
J(u) =

1

2

∫

Ω
|IT (x− u(x)) − IR(x)|2 dx+

β

2
a(u, u) → inf . (2.1)Here the template image IT is registered to the referen
e IR by the o�set �eld

u(x) = x− ϕ(x), u is an element of a spa
e of admissible displa
ements W . Theappli
ation dependent regularizing term a(·, ·) penalizes the undesired propertiesof u. The 
riterion J is appli
able for monomodal registration, that is for theimages obtained on the same hardware so that the intensity of their pixels 
an be
ompared dire
tly, as in the �rst term in J , the sum of squared di�eren
es (SSD).We assume that the missing part in IR has zero intensity. Then we 
ouldnullify the intensity of its 
ounterpart E ⊂ Ω in IT , if it were known, by simplymultiplying the template with the 
hara
teristi
 fun
tion c(x) of the 
omplementset to E :

c(x) =

{
0, if x ∈ E,
1, otherwise.This would make the 
onventional model (2.1) eligible for the registration of themodi�ed template. The proposed model involves the relaxed intensity 
orre
tor

c(x) for the template together with appropriate penalization terms:
J(u, c,Γ) =

1

2

∫

Ω

|cIT (x− u) − IR|2 dx+
β

2
a(u, u)

+
α

2

∫

Ω\Γ

|∇c(x)|2 dx+ γHn−1(Γ).
(2.2)Let us 
onsider the fun
tional J term by term. The SSD part (�rst term) in
ludes

c(x) to introdu
e 'the missing part' into the template IT so that its pixelwise
omparison with the referen
e IR be
omes relevant. On the one hand, the optimalmask c is expe
ted to be a 
hara
teristi
-type fun
tion, that is having jumps.On the other hand, we don't want to restri
t all admissible c to the 
lass of
hara
teristi
s fun
tions, sin
e it would make both the analysis and numeri
altreatment of (2.2) 
ompli
ated. Thus, we relax the admissible masks c: they areassumed to be pie
ewise-smooth fun
tions in Ω, having 'jumps' on a dis
ontinuityset Γ (a hypersurfa
e in Ω). The third term in (2.2) penalizes the deviation of
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onstant value on ea
h 
omponent of the set Ω \ Γ, so that
c tends to be a pie
ewise-
onstant fun
tion: the optimal c is expe
ted to be 
loseto the 
hara
teristi
 fun
tion of the 
omplement to the re
overed 'missing' set forthe template, with the optimal Γ being its boundary. The last term, Hausdor�measure of 
o-dimension one of Γ, penalizes os
illations of this dis
ontinuity setso that it doesn't grow too 'long'.The problem of minimization of J(u, c,Γ) is the so-
alled free-dis
ontinuityproblem ([21, 22℄). More pre
isely, it's a variant of the Mumford-Shah segmenta-tion problem [23℄.On the other hand, (2.2) 
an be also viewed as a dire
t analog of the regist-ration and homogenization model by Fis
her and Modersitzki [8℄:

J(u, c) =
1

2

∫

Ω

|cIT (x− u) − IR|2 dx+
β

2
a(u, u) + αE(c) → inf,where c is a smooth fun
tion and the term E(c) penalizes the os
illation of c.That is, E(c) is either

∫

Ω
|∇c|2 dx (for smooth intensity 
orre
tions)or ∫

Ω
|∇c| dx (total variation of c).Although the penalization of the total variation is suitable for 
omparatively big
orre
tions of intensity, it may be not su�e
ient, in general, for the fun
tions cwith 'jumps'. In this view, the problem (2.2) appears to be more suitable for theregistration of in
omplete images.It 
an be shown that the problem (2.2), properly reformulated in terms ofspe
ial fun
tions of bounded variation (SBV , see [22, 21℄, e.g.), has a solution forevery �xed u ∈W .2.1. Variational approximation of the free-dis
ontinuity problemThe numeri
al 
omputation of the solution to (2.2) is involved, sin
e the energyfun
tional is not di�erentiable in any reasonable norm, and moreover a numeri
als
heme should be aware of the (unknown) dis
ontinuity set Γ.Therefore, a number of approximations for free-dis
ontinuity problems exist(and are a
tively explored), whi
h are minimization problems for a di�erentiablefun
tional de�ned usually on an appropriate Sobolev spa
e. For the problem(2.2) we adopt the Ambrosio-Tortorelli-type approximation [22℄. The idea behindthis pra
ti
al approa
h to a free-dis
ontinuity problem is to approximate thedis
ontinuity set Γ by a smooth fun
tion v(x) su
h that it is 
lose to 0 on Γand tends to 1 outside of it. Su
h a stru
ture of v is energy-e�
ient: the energyfun
tional of an approximation problem in
ludes the (weighted) terms

∫

Ω
(v − 1)2 dx and ∫

Ω
v2|∇c|2 dx,
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∫

Ω\Γ
|∇c|2 dxin the free-dis
ontinuity problem. The approximation problem is set in the Sobolevspa
e H1(Ω) for the mask c.Thus, we de�ne an approximation as a minimization problem for the fun
tional

Fε(u, c, v) =





1

2

∫

Ω

|cIT (x− u) − IR|2 dx+
β

2
a(u, u)

+
α

2

∫

Ω

(v2(x) + k(ε))|∇c(x)|2 dx+
γ2

2ε

∫

Ω

(v − 1)2 dx

+
ε

2

∫

Ω

|∇v(x)|2 dx, if c, v ∈ H1(Ω), 0 ≤ v(x) ≤ 1,

+∞, otherwise, (2.3)where k(ε) > 0 ∀ε > 0, k(ε) = o(ε).This problem approximates the original model (2.2) in the sense of 
onvergen
eof the solutions (u0
εk
, c0εk

) of the former to a solution (u0, c0) of the latter as ε→ 0+(under 
ertain assumptions and in an appropriate fun
tional spa
e).2.2. Numeri
al s
hemeAs the fun
tional Fε(u, c, v) de�ned by (2.3) is di�erentiable, we will usethe ne
essary optimality 
onditions to 
ompute the solution. Thus, taking thedire
tional derivative of Fε with respe
t to its arguments we obtain the followingEuler-Lagrange system in Ω:
βAu+ c(x)

(
c(x)IT (x− u(x)) − IR(x)

)
∇IT (x− u(x)) = 0, (2.4)

−α(v2(x) + k(ε))∆c+ (c(x)IT (x− u(x)) − IR(x))IT (x− u(x)) = 0, (2.5)
−ε∆v + α|∇c(x)|2v(x) +

γ2

ε
(v(x) − 1) = 0, (2.6)
omplemented with the natural Neumann boundary 
onditions:

∂ui

∂n
=
∂c

∂n
=
∂v

∂n
= 0 on ∂Ω, i = 1, . . . , n. (2.7)Here, the linear operator A is su
h that

∫

Ω
Au · w = a(u,w) for all u,w ∈W.Note that some other boundary 
onditions on u may need to be applied dependingon the 
hoi
e of the spa
e W and the bilinear form a(·, ·).The system of equations (2.4)-(2.7) is essentially non-linear. To avoid the
omplexity of dealing with the large system of 
oupled non-linear equations we
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heme (
f. [24℄), i.e., ea
h of the equations (2.4)-(2.6) issolved su

essively independent of the others, whi
h forms a one 
y
le of theiterative pro
ess.The equations (2.5) and (2.6), when 
onsidered independently, are linear ellip-ti
 equations and 
an be solved with a help of a number of available e�e
tivesoftware solvers. As for the equation (2.4), it is by itself an Euler-Lagrangeequation for the problem (2.1) with the template image cIT (c is �xed). Therefore,a number of well-known approa
hes for the numeri
al solution of the imageregistration problem of type (2.1) are appli
able (see [1℄).3. ResultsWe have implemented a 2D version of the des
ribed numeri
al s
heme usingMatlab 7.5. All tests were 
ondu
ted using a standard PC equipped with Pentium4 (3 GHz). The applied test data 
onsisted of 2D 256×256 pixel images. Theruntime of the 
lassi
al registration without masking (whi
h is solving the equa-tion (2.4) alone with c ≡ 1) was about 2 minutes. Using the proposed new model,the registration with a mask (i.e. solving the system (2.4)-(2.7)) lasts about 2-4times longer than the 
lassi
al registration. For the experiments, the followingparameter values were found to be reasonable:
α = 10−3, k = ε = 10−6, γ2 ∈ [10−5; 10−6], β ∈ [10−3; 10−6].For the evaluation of our approa
h, let us �rst 
onsider a syntheti
 registrationexample: in Figure 1, the template image was obtained from the referen
e byan arti�
ially generated non-rigid transformation. Additionally, some part of thereferen
e image was erased to imitate a 'missing region', su
h as a rese
ted tumor.The results of the registration with the 
onventional model (2.1) and the newregistration model with masking (2.3) are shown. The 
urvature approximatingterm was used to regularize the o�set �eld u, i.e.,

Au = ∆2u.It is 
learly visible that the dire
t approa
h leads to a misregistration. It maps the'hole' in the referen
e onto the unrelated area in the template with low intensityvalues, resulting in a disproportional stret
h. On the other hand, the registrationwith a mask allows getting a good guess for the position of the removed part inthe template image.Our se
ond example is more realisti
 and deals with the registration of intra-and preoperative MR brain images, extra
ted from the rigidly aligned volumes.The 
hara
teristi
 brain shift whi
h o

urs during surgery is easily seen in thereferen
e image. In Figure 2, one 
an see that the mask-hardened registrationmodel properly guesses the main dire
tion of the deformation around the tumor,so that the brain tissue surrounding it shifts inside the free area after extra
tion.
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Fig. 1. Model example of registration with the referen
e image having a 'hole'. From left to right,row by row: a) Template image. b) Template image registered without masking. 
) Correspondentrestored position of a 'hole' in the template. d) Referen
e image. e) Template image registeredwith masking. f) Correspondent restored position of a 'hole' in the template.4. Dis
ussionThe proposed method has shown to be promising for the registration of in-
omplete images. What seems to be the most attra
tive feature of this free-dis
ontinuity model, is its automatism: any manual prepro
essing of the imagessu
h as segmentation of the damaged part is avoided. On the other hand, a manual
ontrol is still possible, if needed, by providing an initial guess for the mask.The presented 2D examples serve as a proof of 
on
ept. However, one has tonote that it is generally not possible to re
over the true o�set of the tissue on asingle pair of 2D sli
es extra
ted from 3D data (
f. Figure 2). Usually, the brainshift o

urs in all three dimensions. Besides, the SSD registration 
riterion is ingeneral not the right 
hoi
e for MRI, sin
e the 
ontrast of images varies from s
anto s
an. Nevertheless, the SSD 
riterion is robust enough to show the potential ofour method.In the future, the following ideas and problems will be addressed. First, themethod will be extended to the multi-modal registration by a 
orrespondingmodi�
ation of the mutual information fun
tional. Se
ond, the problem (2.3)used for the approximation of free-dis
ontinuity registration problem (2.2) hasadditional variables, and quite a few parameters to be tuned. This, together withthe additional variable c as 
ompared to the 'pure' model (2.1), in
reases the
omplexity of the problem and may lead to in
reased 
omputation times. Oneway to improve the situation is to adopt another smooth approximation for thefree-dis
ontinuity problem; some re
ent non-lo
al approximations (see [21℄, for



Fig. 2. Example of registration of the preoperative brain image (with tumor) to the intraoperativeimage (rese
ted tumor, signi�
ant brain shift). From left to right: (a) referen
e (intraoperativeimage) with the shape of extra
ted tissue; (b) original template (preoperative image) with therestored shape of extra
ted tissue (image of the shape shown in the referen
e image under theregistration transformation); (
) template image registered with masking.instan
e) seem to be very promising. Finally, the other obvious way to in
reasethe performan
e is to apply some more elaborate numeri
al s
heme for the problem(2.4)-(2.7). The multigrid te
hnique may be the method of 
hoi
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