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‡ Department of Neurosurgery, Neuroenter, University of Erlangen-Nuremberg,GermanyThe problem of non-rigid registration of images, where ertain parts are missing,is onsidered in the ontext of pre- and intraoperative or damaged data. A variatio-nal formulation of the problem is proposed suh that a ounterpart of the missingdata an be restored in a template image along with a orresponding registrationtransformation between the images. The problem is a registrational variant of a free-disontinuity Mumford-Shah segmentation problem with the unknown disontinuityset representing the boundary of missing data; thus, no preliminary segmentationis needed to detet the missing information. An approximation of the free-dison-tinuity problem by an Ambrosio-Tortorelli-type approximation is used to omputethe numerial solutions. Experiments with 2D examples demonstrate the e�ienyof the proposed approah.Key words. Non-rigid registration, inomplete information, Mumford-Shah segmentation, free-disontinuity problem.1. IntrodutionIn medial imaging, registration is required for the alignment and fusion ofimage data obtained from the same or di�erent soures. Typial imaging deviesare omputed tomography (CT), magneti resonane tomography (MRT), andpositron emission tomography (PET). They provide a great variety of anatomialand funtional information and support diagnosis, therapy planning, and theanalysis of diseases.Besides rigid alignment of two datasets, there are many situations of pratialimportane where the underlying strutures are deformed between suessivesans. In these ases, the problem inreases with the omplexity of the requirednon-rigid transformation [1℄. Another hallenging problem of registration oursif two images di�er as a result of tissue removal or ompression proesses. Conse-quently, an unambiguous mapping between two datasets is missing and the regist-ration is easily and severely deteriorated. Suh e�ets are observed for instaneif pre- and intraoperative images, histologial dissetions or atlas and image data1The �rst author would like to express his gratitude to Jan Modersitzki for the fruitfuldisussion of the problem.© O. Museyko, G. Leugering, P. Hastreiter, 2010



28 O. MUSEYKO, G. LEUGERING, P. HASTREITERare ompared. Sine there is no best hoie in image registration, the variety ofappliations requires onsidering the spei�s of eah problem with its limitationsand peuliarities [2℄.For the assessment of deformations between pre- and intraoperative datasets,there are urrently three strategies: (1) diret measurements within the physialspae of the patient [3℄, (2) registration [4℄, and (3) simulation based on anunderlying model [5℄.Approahes suggested more reently over di�erent aspets related to a orretassessment of deformation phenomena. In [6℄, an approah was presented whihmeasures brain variability on the registration of sulal line sets whih ensures aglobally onsistent deformation of the underlying spae. For non-rigid mathing,a method based on generalized surfae �ows was suggested using tailored defor-mation priors and multiresolution omputations [7℄. In order to solve registrationproblems for images having inhomogeneities, an approah for a ombined homo-genization and registration was presented [8℄. In the �eld of atlas registration,manually labeled data at various degrees of "sharpness"and the joint registration-segmentation of a new brain with these atlases were applied [9℄. Another approahuses a preoperatively omputed atlas of model deformations to predit intra-operative brain shift [5℄. New similarity measures were suggested whih improvethe registration of multimodal data [10, 11℄. To overome disontinuities in thedisplaement �eld and intensity variations in the data, an energy funtional basedon total variation regularization and a robust data term was used [12℄. In orderto improve non-rigid transformations, a omputationally e�ient non-parametridi�eomorphi image registration algorithm was suggested [13℄. Another strategyapplied segmentation to guide the registration proess based on a omplex physialmodel [14℄. As a drawbak, the method requires essential preproessing of the data.In [15℄, a variant of image inpainting is onstruted for the unknown displaement�eld (i.e. interpolation of the displaement within the missing part from its valuesin the neighborhood). This method seems to be highly suitable for the registrationof inomplete images. However, expliit segmentation of the missing data is re-quired. On the other hand, the auray of the interpolation is usually high onlyif the variation of the data involved in it is not too strong. Sine the brain shift inpre- to intraoperative surgery is signi�ant, the auray of this method in suhsituations requires veri�ation. To our knowledge, there is no further ontributionwhih allows for an e�ient and robust treatment of missing orrespondene aftertissue removal or ompression e�ets. Other related works are [16, 17, 18, 19, 20℄.In this paper, we present a method for the non-rigid registration whih isrobust with respet to the presene of loal damages of the image data. It isbased on a new variational fully automati model: it works without any priorsegmentation or identi�ation of landmarks. For a proof of onept, we ondutedexperiments with 2D image data. The ahieved results demonstrate the value ofthis method for omplex registration problems suh as image data with poorlydistinguishable lesions and with the brain shift phenomenon.



NON-RIGID REGISTRATION WITH INCOMPLETE INFORMATION 292. Methods: a free-disontinuity modelAs we have mentioned, the presene of the missing part in the referene imageinvalidates the registration in its neighbourhood, sine it has no orrespondenein a template image to be mathed with. Our idea then is to �nd what is thatpart of a template image whih is missing in a referene by replaing the intensityof some piee of a template image by the intensity value of the missing part ina referene. If the image piee is deteted orretly, then the registration energyfor the modi�ed template should be lower. Thus, a position and a shape of thatpiee in a template is another unknown of the registration problem.We will build the new model on the basis of the following onventional regist-ration problem:
J(u) =

1

2

∫

Ω
|IT (x− u(x)) − IR(x)|2 dx+

β

2
a(u, u) → inf . (2.1)Here the template image IT is registered to the referene IR by the o�set �eld

u(x) = x− ϕ(x), u is an element of a spae of admissible displaements W . Theappliation dependent regularizing term a(·, ·) penalizes the undesired propertiesof u. The riterion J is appliable for monomodal registration, that is for theimages obtained on the same hardware so that the intensity of their pixels an beompared diretly, as in the �rst term in J , the sum of squared di�erenes (SSD).We assume that the missing part in IR has zero intensity. Then we ouldnullify the intensity of its ounterpart E ⊂ Ω in IT , if it were known, by simplymultiplying the template with the harateristi funtion c(x) of the omplementset to E :

c(x) =

{
0, if x ∈ E,
1, otherwise.This would make the onventional model (2.1) eligible for the registration of themodi�ed template. The proposed model involves the relaxed intensity orretor

c(x) for the template together with appropriate penalization terms:
J(u, c,Γ) =

1

2

∫

Ω

|cIT (x− u) − IR|2 dx+
β

2
a(u, u)

+
α

2

∫

Ω\Γ

|∇c(x)|2 dx+ γHn−1(Γ).
(2.2)Let us onsider the funtional J term by term. The SSD part (�rst term) inludes

c(x) to introdue 'the missing part' into the template IT so that its pixelwiseomparison with the referene IR beomes relevant. On the one hand, the optimalmask c is expeted to be a harateristi-type funtion, that is having jumps.On the other hand, we don't want to restrit all admissible c to the lass ofharateristis funtions, sine it would make both the analysis and numerialtreatment of (2.2) ompliated. Thus, we relax the admissible masks c: they areassumed to be pieewise-smooth funtions in Ω, having 'jumps' on a disontinuityset Γ (a hypersurfae in Ω). The third term in (2.2) penalizes the deviation of



30 O. MUSEYKO, G. LEUGERING, P. HASTREITERthe mask c from the onstant value on eah omponent of the set Ω \ Γ, so that
c tends to be a pieewise-onstant funtion: the optimal c is expeted to be loseto the harateristi funtion of the omplement to the reovered 'missing' set forthe template, with the optimal Γ being its boundary. The last term, Hausdor�measure of o-dimension one of Γ, penalizes osillations of this disontinuity setso that it doesn't grow too 'long'.The problem of minimization of J(u, c,Γ) is the so-alled free-disontinuityproblem ([21, 22℄). More preisely, it's a variant of the Mumford-Shah segmenta-tion problem [23℄.On the other hand, (2.2) an be also viewed as a diret analog of the regist-ration and homogenization model by Fisher and Modersitzki [8℄:

J(u, c) =
1

2

∫

Ω

|cIT (x− u) − IR|2 dx+
β

2
a(u, u) + αE(c) → inf,where c is a smooth funtion and the term E(c) penalizes the osillation of c.That is, E(c) is either

∫

Ω
|∇c|2 dx (for smooth intensity orretions)or ∫

Ω
|∇c| dx (total variation of c).Although the penalization of the total variation is suitable for omparatively bigorretions of intensity, it may be not su�eient, in general, for the funtions cwith 'jumps'. In this view, the problem (2.2) appears to be more suitable for theregistration of inomplete images.It an be shown that the problem (2.2), properly reformulated in terms ofspeial funtions of bounded variation (SBV , see [22, 21℄, e.g.), has a solution forevery �xed u ∈W .2.1. Variational approximation of the free-disontinuity problemThe numerial omputation of the solution to (2.2) is involved, sine the energyfuntional is not di�erentiable in any reasonable norm, and moreover a numerialsheme should be aware of the (unknown) disontinuity set Γ.Therefore, a number of approximations for free-disontinuity problems exist(and are atively explored), whih are minimization problems for a di�erentiablefuntional de�ned usually on an appropriate Sobolev spae. For the problem(2.2) we adopt the Ambrosio-Tortorelli-type approximation [22℄. The idea behindthis pratial approah to a free-disontinuity problem is to approximate thedisontinuity set Γ by a smooth funtion v(x) suh that it is lose to 0 on Γand tends to 1 outside of it. Suh a struture of v is energy-e�ient: the energyfuntional of an approximation problem inludes the (weighted) terms

∫

Ω
(v − 1)2 dx and ∫

Ω
v2|∇c|2 dx,



NON-RIGID REGISTRATION WITH INCOMPLETE INFORMATION 31the latter being an approximation for the term
∫

Ω\Γ
|∇c|2 dxin the free-disontinuity problem. The approximation problem is set in the Sobolevspae H1(Ω) for the mask c.Thus, we de�ne an approximation as a minimization problem for the funtional

Fε(u, c, v) =





1

2

∫

Ω

|cIT (x− u) − IR|2 dx+
β

2
a(u, u)

+
α

2

∫

Ω

(v2(x) + k(ε))|∇c(x)|2 dx+
γ2

2ε

∫

Ω

(v − 1)2 dx

+
ε

2

∫

Ω

|∇v(x)|2 dx, if c, v ∈ H1(Ω), 0 ≤ v(x) ≤ 1,

+∞, otherwise, (2.3)where k(ε) > 0 ∀ε > 0, k(ε) = o(ε).This problem approximates the original model (2.2) in the sense of onvergeneof the solutions (u0
εk
, c0εk

) of the former to a solution (u0, c0) of the latter as ε→ 0+(under ertain assumptions and in an appropriate funtional spae).2.2. Numerial shemeAs the funtional Fε(u, c, v) de�ned by (2.3) is di�erentiable, we will usethe neessary optimality onditions to ompute the solution. Thus, taking thediretional derivative of Fε with respet to its arguments we obtain the followingEuler-Lagrange system in Ω:
βAu+ c(x)

(
c(x)IT (x− u(x)) − IR(x)

)
∇IT (x− u(x)) = 0, (2.4)

−α(v2(x) + k(ε))∆c+ (c(x)IT (x− u(x)) − IR(x))IT (x− u(x)) = 0, (2.5)
−ε∆v + α|∇c(x)|2v(x) +

γ2

ε
(v(x) − 1) = 0, (2.6)omplemented with the natural Neumann boundary onditions:

∂ui

∂n
=
∂c

∂n
=
∂v

∂n
= 0 on ∂Ω, i = 1, . . . , n. (2.7)Here, the linear operator A is suh that

∫

Ω
Au · w = a(u,w) for all u,w ∈W.Note that some other boundary onditions on u may need to be applied dependingon the hoie of the spae W and the bilinear form a(·, ·).The system of equations (2.4)-(2.7) is essentially non-linear. To avoid theomplexity of dealing with the large system of oupled non-linear equations we



32 O. MUSEYKO, G. LEUGERING, P. HASTREITERadopt the alternating sheme (f. [24℄), i.e., eah of the equations (2.4)-(2.6) issolved suessively independent of the others, whih forms a one yle of theiterative proess.The equations (2.5) and (2.6), when onsidered independently, are linear ellip-ti equations and an be solved with a help of a number of available e�etivesoftware solvers. As for the equation (2.4), it is by itself an Euler-Lagrangeequation for the problem (2.1) with the template image cIT (c is �xed). Therefore,a number of well-known approahes for the numerial solution of the imageregistration problem of type (2.1) are appliable (see [1℄).3. ResultsWe have implemented a 2D version of the desribed numerial sheme usingMatlab 7.5. All tests were onduted using a standard PC equipped with Pentium4 (3 GHz). The applied test data onsisted of 2D 256×256 pixel images. Theruntime of the lassial registration without masking (whih is solving the equa-tion (2.4) alone with c ≡ 1) was about 2 minutes. Using the proposed new model,the registration with a mask (i.e. solving the system (2.4)-(2.7)) lasts about 2-4times longer than the lassial registration. For the experiments, the followingparameter values were found to be reasonable:
α = 10−3, k = ε = 10−6, γ2 ∈ [10−5; 10−6], β ∈ [10−3; 10−6].For the evaluation of our approah, let us �rst onsider a syntheti registrationexample: in Figure 1, the template image was obtained from the referene byan arti�ially generated non-rigid transformation. Additionally, some part of thereferene image was erased to imitate a 'missing region', suh as a reseted tumor.The results of the registration with the onventional model (2.1) and the newregistration model with masking (2.3) are shown. The urvature approximatingterm was used to regularize the o�set �eld u, i.e.,

Au = ∆2u.It is learly visible that the diret approah leads to a misregistration. It maps the'hole' in the referene onto the unrelated area in the template with low intensityvalues, resulting in a disproportional streth. On the other hand, the registrationwith a mask allows getting a good guess for the position of the removed part inthe template image.Our seond example is more realisti and deals with the registration of intra-and preoperative MR brain images, extrated from the rigidly aligned volumes.The harateristi brain shift whih ours during surgery is easily seen in thereferene image. In Figure 2, one an see that the mask-hardened registrationmodel properly guesses the main diretion of the deformation around the tumor,so that the brain tissue surrounding it shifts inside the free area after extration.
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Fig. 1. Model example of registration with the referene image having a 'hole'. From left to right,row by row: a) Template image. b) Template image registered without masking. ) Correspondentrestored position of a 'hole' in the template. d) Referene image. e) Template image registeredwith masking. f) Correspondent restored position of a 'hole' in the template.4. DisussionThe proposed method has shown to be promising for the registration of in-omplete images. What seems to be the most attrative feature of this free-disontinuity model, is its automatism: any manual preproessing of the imagessuh as segmentation of the damaged part is avoided. On the other hand, a manualontrol is still possible, if needed, by providing an initial guess for the mask.The presented 2D examples serve as a proof of onept. However, one has tonote that it is generally not possible to reover the true o�set of the tissue on asingle pair of 2D slies extrated from 3D data (f. Figure 2). Usually, the brainshift ours in all three dimensions. Besides, the SSD registration riterion is ingeneral not the right hoie for MRI, sine the ontrast of images varies from santo san. Nevertheless, the SSD riterion is robust enough to show the potential ofour method.In the future, the following ideas and problems will be addressed. First, themethod will be extended to the multi-modal registration by a orrespondingmodi�ation of the mutual information funtional. Seond, the problem (2.3)used for the approximation of free-disontinuity registration problem (2.2) hasadditional variables, and quite a few parameters to be tuned. This, together withthe additional variable c as ompared to the 'pure' model (2.1), inreases theomplexity of the problem and may lead to inreased omputation times. Oneway to improve the situation is to adopt another smooth approximation for thefree-disontinuity problem; some reent non-loal approximations (see [21℄, for
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