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62 P. I. KOGUT, R. MANZO, I. V. NECHAYsemiontinuity (see, for example, [3, 4, 5, 7, 8, 13, 16, 20℄). We ould mention thelower semiontinuity, quasi lower semiontinuity, and order lower semiontinuity.However, the above properties for the objetive funtions may fail at an e�ientsolution, even for simple vetor optimization problems with non-empty solutionsets. This is an atypial situation for the salar ase
I(x∗) = inf {I(x) : x ∈ X} , (1.1)where eah solution x∗ is always a point of lower semiontinuity of the ostfuntional I : X → R.The next problem, whih motivated our e�orts in this �eld, onerns thefollowing observation: if the salar problem (1.1) has a non-empty set of solutions,then

inf {I(x) : x ∈ X} = min {I(x) : x ∈ X} = min [closure {I(x) : x ∈ X}] .However, in the ase of vetor optimization, the typial situation is:
Min(S) 6= ∅, Min [closure(S)] 6= ∅, and Min(S) ∩ Min [closure(S)] = ∅,where by Min(S) we symbolially denote the family of all minimal elements of asubset S.Thus our prime interest in this paper is to onsider vetor optimization prob-lems in a new setting, whih involves topologial properties of the objetive spae,and disuss the problem of their salarization. We deal with the ase when theobjetive mappings take values in a real Banah spae Y partially ordered by apointed one Λ with possibly empty interior. In ontrast to the lassial settingof the vetor optimization problemMinimize f(x) with respet to the one Λ subjet to x ∈ X∂ , f : X → Y,we study the problem in the following formulation:Realize InfΛ,τ

x∈X∂
f(x) (1.2)and assoiate this problem with the quaternary 〈X∂ , f,Λ, τ〉, where the essentialounterpart is the hoie of the topology τ on the objetive spae Y .We also extend the onept of lower semiontinuity to vetor-valued mappings,whih is ompatible with optimization problems in the form (1.2), and disussthe existene of the so-alled (Λ, τ)-e�ient solutions to the problem (1.2). Inpartiular, we show that the extended onept of lower semiontinuity does notfail at (Λ, τ)-e�ient solutions, however the topologial properties of the spaes

(X,σ) and (Y, τ), where this problem is onsidered, play an essential role. In viewof this, our main intension deals with the salarization of vetor optimizationproblems (1.2) with the so-alled (Λ, σ×τ)-lower semiontinuous mappings, usingthe �simplest� method of the �weighted sum�. We show that in this ase one ofthe fundamental requirements on the salarizing vetor optimization problems(aording to Sawaragi et al. [18℄): solutions to the salarized optimization problemmust also be minimal solutions to the original vetor optimization problem, may



TOPOLOGICAL ASPECTS IN VECTOR OPTIMIZATION PROBLEMS 63not hold. Moreover, we show that for (Λ, σ × τ)-lower semiontinuous mappings
f : X∂ → Y a situation is possible, when none of the salar funtions, obtainedby �weighted sum�approah, is sequentially lower semiontinuous. For this reason,we extend the notion of (Λ, τ)-e�ient solutions to the so-alled generalizedsolutions of the vetor optimization problem. We study their main propertiesand derive su�ient onditions when the generalized solutions an be obtainedvia the salarization proess of (1.2).2. Notation and PreliminariesLet X and Y be two real Banah spaes. We assume that X is re�exive and
Y is dual to some separable Banah spae V (that is Y = V ∗). We supposethat these spaes are endowed with some topologies σ = σ(X) and τ = τ(Y ),respetively. By default σ is always assoiated with the weak topology of X,whereas τ is assoiated with the weak-∗ topology of Y . For a subset A ⊂ Y wedenote by intτ A and clτ A its interior and losure with respet to the τ -topology,respetively. We will omit this index if no onfusion may our. Let Λ be a τ -losed onvex pointed one in Y . No assumption is imposed on the topologialinterior of Λ. Throughout this paper, we suppose that Y is partially ordered withthe ordering one Λ. We denote with ≤Λ a partial ordering introdued by the one
Λ, that is, for any elements y, z ∈ Y , we will write y ≤Λ z whenever z ∈ y + Λand y <Λ z for y, z ∈ Y , if z− y ∈ Λ \{0Y }. We say that a sequene {yk}∞k=1 ⊂ Yis dereasing and we use the notation yk ց whenever, for all k ∈ N, we have
yk+1 ≤Λ yk. We also say that a sequene {yk}∞k=1 ⊂ Y is bounded below if thereexists an element y∗ ∈ Y suh that y∗ ≤Λ yk for all k ∈ N.For the investigation of �optimal� elements of a non-empty subset S of thepartially ordered spae Y one is mainly interested in minimal or maximal elementsof S.De�nition 1. (see [11℄) An element y∗ ∈ S ⊂ Y is said to be minimal of the set
S, if there is no y ∈ S suh that y ≤Λ y

∗, y 6= y∗, that is
S ∩ (y∗ − Λ) = {y∗}.De�nition 2. (see [11℄) An element y∗ ∈ S ⊂ Y is said to be weakly minimal ofthe set S, if
S ∩ (y∗ − cor(Λ)) = ∅,where by cor (Λ) we denote the algebrai interior of Λ, that is,

cor (Λ) := {ẑ ∈ V | ∀ z ∈ V there is an α̂ > 0 with
ẑ + αz ∈ Λ for all α ∈ [0, α̂]} .Let MinΛ(S) denote the family of all minimal elements of S. We say that anelement y∗ is the ideal minimal point (or a strongly minimal element) of the set

S, if y∗ ∈ S and y∗ ≤Λ y for every y ∈ S.Let us introdue two singular elements −∞Λ and +∞Λ in Y . We assume thatthese elements satisfy the following onditions:1)−∞Λ � y � +∞Λ, ∀y ∈ Y ; 2)+ ∞Λ + (−∞Λ) = 0Y .



64 P. I. KOGUT, R. MANZO, I. V. NECHAYLet Y • denote a semi-extended Banah spae: Y • = Y ∪ {+∞Λ} assuming that
‖ + ∞Λ‖Y = +∞ and y + λ(+∞Λ) = +∞ ∀ y ∈ Y and ∀λ > 0.The following onept is a ruial point in this paper.De�nition 3. We say that a set E is the e�ient in�mum of a set S ⊂ Y withrespet to the τ topology of Y (or shortly (Λ, τ)-in�mum) if E is the olletionof all minimal elements of clτ S in the ase when this set is non-empty, and E isequal to {−∞Λ} otherwise.Hereinafter we denote the (Λ, τ)-in�mum for S by InfΛ,τ S. Thus, in view ofthe de�nition given above, we have

InfΛ,τ S :=

{
MinΛ(clτ S), MinΛ(clτ S) 6= ∅
−∞Λ, MinΛ(clτ S) = ∅.The following example shows the signi�ane of this de�nition and omparesit with the notion of minimal elements.Example 1. Let Y = R2 and let Λ = R2

+ be the natural ordering one of positiveelements in R2. Suppose that the set S ⊂ Y is given as S = ∪3
i=1Xi, where

X1 =
{
z ∈ R2 : z1 ≥ 1, z2 > 3, z1 + z2 ≤ 5

}
,

X2 =
{
z ∈ R2 : z1 > 2, z2 > 2, z1 + z2 ≤ 5

}
,

X3 =
{
z ∈ R2 : z1 > 3, z2 ≥ 4, z1 + z2 ≤ 5

}
,

X4 = {(2; 3), (3; 2)}(see Fig. 1). It is essential that the set S is not losed. Then the set MinΛ(S) of

Fig. 1. The set S in Example 1all minimal elements of S is given as
MinΛ(S) = {(2; 3), (3; 2)} ,whereas the (Λ, τ)-in�mum of the S reads as

InfΛ,τ (S) = {(1; 3), (2; 2), (3; 1)} ,



TOPOLOGICAL ASPECTS IN VECTOR OPTIMIZATION PROBLEMS 65where τ is the strong topology of R2. Consequently, in ontrast to the salar asewhere the inlusion MinΛ(S) ⊆ InfΛ,τ S is always true, we have:
InfΛ,τ (S) 6= ∅, MinΛ(S) 6= ∅, and InfΛ,τ (S) ∩ MinΛ(S) = ∅.Let X∂ be a non-empty subset of the Banah spae X, and f : X∂ → Y besome mapping. Note that the mapping f : X∂ → Y an be assoiated with itsnatural extension f̂ : X → Y • to the whole spae X, where

f̂(x) =

{
f(x), x ∈ X∂ ,
+∞Λ, x /∈ X∂ .Following [1℄ a mapping f : X∂ → Y • is said to be bounded below if thereexists an element z ∈ Y suh that z ≤Λ f(x) for all x ∈ X∂ .De�nition 4. A subset A of Y is said to be the e�ient in�mum of a mapping

f : X∂ → Ywith respet to the τ -topology of Y and is denoted by InfΛ,τ
x∈X∂

f(x), if A is the
(Λ, τ)-in�mum of the image f(X∂) of X∂ in Y , that is,

InfΛ,τ
x∈X∂

f(x) = InfΛ,τ {f(x) : ∀x ∈ X∂} .Remark 1. It is lear now that if a ∈ InfΛ,τ
x∈X∂

f(x) then
clτ {f(x) : ∀x ∈ X∂} ∩ (a− Λ) = {a}provided MinΛ [clτ {f(x) : ∀x ∈ X∂}] 6= ∅.Let {yk}∞k=1 be a sequene in Y . Let Lτ{yk} denote the set of all its lusterpoints with respet to the τ -topology of Y , that is, y ∈ Lτ{yk} if there is asubsequene {yki

}∞i=1 ⊂ {yk}∞k=1 suh that yki

τ−→ y in Y as i→ ∞. If this set islower unbounded, i.e., InfΛ,τ Lτ{yk} = −∞Λ, we assume that {−∞Λ} ∈ Lτ{yk}.If SupΛ,τ Lτ{yk} = +∞Λ, we assume that {+∞Λ} ∈ Lτ{yk}. Let x0 ∈ X∂ be a�xed element. In what follows for an arbitrary mapping f : X∂ → Y we makeuse of the following sets:
Lσ×τ (f, x0) :=

⋃

{xk}
∞
k=1∈Mσ(x0)

Lτ{f̂(xk)}, (2.1)
Lσ×τ

min (f, x0) := Lσ×τ (f, x0) ∩ InfΛ,τ
x∈X∂

f(x), (2.2)where Mσ(x0) is the set of all sequenes {xk}∞k=1 ⊂ X suh that xk → x0 withrespet to the σ-topology of X. To illustrate the harateristi features of the set
Lσ×τ

min (f, x0), we give the following example.Example 2. Let X∂ = [1; 3], Y = R2, and let Λ = R2
+ be the ordering one ofpositive elements. We de�ne a vetor-valued mapping f : X∂ → Y as follows:

f(x) =

{ [x
2

]
, x 6= 1,

[
2
1

]
, x = 1.

(2.3)



66 P. I. KOGUT, R. MANZO, I. V. NECHAY
1 3 1 2 3

1

2

f

X∂

X∂

f(    )

Fig. 2. Illustration of the set Lσ×τ
min (f, x0)(see Fig. 2). Then

Lσ×τ (f, x0) = {f(x0)} ∀x0 ∈ (1; 3],

Lσ×τ (f, 1) =

{[
1

2

]
;

[
2

1

]}
, and InfΛ,τ

x∈X∂
f(x) =

{[
1

2

]
;

[
2

1

]}Therefore, Lσ×τ
min (f, x0) = ∅ in the ase when x0 ∈ (1; 3], and

Lσ×τ
min (f, 1) =

{[
1

2

]
;

[
2

1

]}
.Remark 2. It is easy to see that the set Lσ×τ

min (f, x0) an be alternatively de�nedas
Lσ×τ

min (f, x0) =
{
y∗ ∈ Lσ×τ (f, x0) if f(xk)

τ→ y∗,

f(xk) ≤Λ y
∗ ∀k ∈ N, ∀xk

σ→ x0

}
. (2.4)Now we are able to introdue the notion of the lower limit for the vetor-valuedmappings.De�nition 5. We say that a subset A ⊂ Y ∪ {±∞Λ} is the Λ-lower sequentiallimit of the mapping f : X∂ → Y at the point x0 ∈ X∂ with respet to theprodut topology σ× τ of X ×Y , and we use the notation A = lim infΛ,τ

x
σ
→ x0

f(x),if
lim infΛ,τ

x
σ
→x0

f(x) :=

{
Lσ×τ

min (f, x0), Lσ×τ
min (f, x0) 6= ∅,

InfΛ,τ Lσ×τ (f, x0), Lσ×τ
min (f, x0) = ∅.

(2.5)Remark 3. Note that in the salar ase (f : X∂ → R) the sets
InfΛ,τ

x∈X∂
f(x) and InfΛ,τ Lσ×τ (f, x0)are singletons. Therefore, if Lσ×τ

min (f, x0) 6= ∅ then we have
Lσ×τ

min (f, x0) = Lσ×τ (f, x0) ∩ InfΛ,τ
x∈X∂

f(x)

= InfΛ,τ Lσ×τ (f, x0) ∩ InfΛ,τ
x∈X∂

f(x)

= InfΛ,τ Lσ×τ (f, x0).Hene the hoie rules in (2.5) oinide and we ome to the lassial de�nition ofthe lower limit.



TOPOLOGICAL ASPECTS IN VECTOR OPTIMIZATION PROBLEMS 67To illustrate the ruial role of the onditions
Lσ×τ

min (f, x0) 6= ∅ and Lσ×τ
min (f, x0) = ∅in De�nition (5), we give the following example.Example 3. Under assumptions of Example 2 we onsider the mapping f : X∂ →

Y de�ned as follows (see Fig. 3):
1 3 1 2 3

1

2

f

X∂

X∂

f(    )

Fig. 3. Illustration of De�nition 5 in Example 3
f(x) =

{ [x
1

]
, x 6= 1,

[1
2

]
, x = 1.

(2.6)Let us de�ne the Λ-lower sequential limit of f : X∂ → Y at two points: �rstly at
x0 = 1, and after at x0 6= 1. Then diret alulations show that

InfΛ,τ
x∈X∂

f(x) =

{[
1

1

]}
, Lσ×τ (f, 1) =

{[
1

2

]
;

[
1

1

]}
, and

Lσ×τ (f, x0) =
{[x0

1

]}
∀x0 ∈ (1; 3].Hene, sine

Lσ×τ
min (f, x0) := InfΛ,τ

x∈X∂
f(x) ∩ Lσ×τ (f, x0) = ∅ for every x0 ∈ (1; 3],it follows that

lim infΛ,τ

x
σ
→x0

f(x) = InfΛ,τ
{[x0

1

]}
=
{[x0

1

]}
.At the same time, in the ase when x0 = 1, we have

Lσ×τ
min (f, 1) := InfΛ,τ

x∈X∂
f(x) ∩ Lσ×τ (f, 1) =

{[
1

1

]}
.As a result, we onlude:

lim infΛ,τ

x
σ
→ 1

f(x) = Lσ×τ
min (f, 1) =

{[
1

1

]}
.



68 P. I. KOGUT, R. MANZO, I. V. NECHAY3. The setting of vetor optimization problemsLet X∂ be a non-empty σ-losed subset of the re�exive Banah spae X.Let Y be a partially ordered Banah spae with a τ -losed pointed ordering one
Λ ⊂ Y . Let f : X∂ → Y be a given mapping. Then the typial vetor optimizationproblem an be stated in general manner as follows:Minimize f(x) with respet to the one Λsubjet to x ∈ X∂ .

} (3.1)Usually this problem is assoiated with the triplet 〈X∂ , f,Λ〉, where the set X∂ isalled the set of admissible solutions to the problem (3.1). The problem onsists indetermining minimal (or weakly minimal) solutions xmin ∈ X∂ whih are de�nedas the inverse image of the minimal (or weakly minimal) elements of the image set
f(X∂) in the sense of De�nition 1 (or De�nition 2, respetively). Let Min(X∂ , f,Λ)and WMin(X∂ , f,Λ) denote the sets of minimal and weakly minimal solutions tothe problem (3.1), respetively. It is lear that the notions �minimal�and �weaklyminimal�are losely related, moreover, the following inlusion is obvious

Min(X∂ , f,Λ) ⊆ WMin(X∂ , f,Λ).However, the onept of weak minimality is rather of theoretial interest, and itis not an appropriate notion for applied problems.In ontrast to (3.1) we will onsider the vetor optimization problems in thefollowing form: Realize InfΛ,τ
x∈X∂

f(x), (3.2)where the operator InfΛ,τ
x∈X∂

is de�ned in De�nition 4. Note that in this ase theoptimization problem (3.2) an be assoiated with the quaternary
〈X∂ , f,Λ, τ〉 , (3.3)whih indiates that the essential omponent of this setting is the hoie of the

τ -topology on the objetive spae Y .Remark 4. It is lear that vetor optimizations problems (3.1) and (3.2) areidential in the ase when Y = R and Λ = R+, and they lead to the lassialsetting of a salar onstrained minimization problem. However, in general, thereis a prinipal di�erene between the mentioned setting of vetor optimizationsproblems. First, as follows from (3.2), it is natural to say that an element x∗ ∈ X∂is a solution to the problem (3.2) if
f(x∗) ∈ InfΛ,τ

x∈X∂
f(x). (3.4)Hene, f(x∗) ∈ MinΛ (clτf(X∂)). Sine f(x∗) ∈ f(X∂) it follows that

f(x∗) ∈ MinΛ f(X∂).Therefore, x∗ is a minimal solution to the problem (3.1), i.e. x∗ ∈ Min(X∂ , f,Λ).However, as follows from Example 4 given below, the onverse statement is not



TOPOLOGICAL ASPECTS IN VECTOR OPTIMIZATION PROBLEMS 69true in general. Note that this situation is atypial for the salar ase when wealways have the impliationif f(x∗) = min
x∈X∂

f(x), then x∗ ∈ X∂ and f(x∗) = inf
x∈X∂

f(x).On the other hand, as follows from De�nition 4, the problem (3.2), and hene theset of its solutions, essentially depend on the properties of the τ -topology of theobjetive spae Y . Thereby, the problems (3.1) and (3.2) are essentially di�erent.We introdue now the following onept.De�nition 6. An element xeff ∈ X∂ is said to be a (Λ, τ)-e�ient solution tothe problem (3.2) if xeff realizes the (Λ, τ)-in�mum of the mapping f : X∂ → Y ,that is,
f(xeff ) ∈ InfΛ,τ

x∈X∂
f(x) = InfΛ,τ {f(x) : ∀x ∈ X∂} .We denote by Effτ (X∂ ; f ; Λ) the set of all (Λ, τ)-e�ient solutions to thevetorial problem (3.2), i.e.

Effτ (X∂ ; f ; Λ) =
{
xeff ∈ X∂ : f(xeff ) ∈ InfΛ,τ

x∈X∂
f(x)

}
. (3.5)Taking into aount the motivation of Remark 4, we ome to the following obviousresult:Proposition 1. Let X and Y be two Banah spaes, let X∂ be a non-emptysubset of X, and let f : X∂ → Y be an objetive mapping. Assume that the spae

Y is partially ordered by a τ -losed pointed one Λ ⊂ Y . Then the solution setsto the problems (3.1) and (3.2) satisfy the relation
Effτ (X∂ ; f ; Λ) ⊆ Min(X∂ , f,Λ).The sets Effτ (X∂ ; f ; Λ) and Min(X∂ , f,Λ) do not oinide in general. Toillustrate this fat, we give the following example.Example 4. ( see [12℄) Let X = Y = R2 and let Λ = R2

+ be the ordering one ofpositive elements. We suppose that a vetor-valued mapping f : X → Y and aset of admissible solutions X∂ are suh that f(x) = x and X∂ = ∪4
i=1Xi, where

X1 =
{
z ∈ R2 : z1 ≥ 1, z2 > 3, z1 + z2 ≤ 5

}
,

X2 =
{
z ∈ R2 : z1 > 2, z2 > 2, z1 + z2 ≤ 5

}
,

X3 =
{
z ∈ R2 : z1 > 3, z2 ≥ 4, z1 + z2 ≤ 5

}
,

X4 = {(2; 3), (3; 2), (3; 1)}(see Fig. 4). Then straightforward alulations show that
MinΛ(f(X∂)) =

{[
2

3

]
,

[
3

1

]}
, InfΛ,τ (f(X∂)) =

{[
1

3

]
,

[
2

2

]
,

[
3

1

]}
.Hene

Effτ (X∂ ; f ; Λ) =

{[
3

1

]}
, Min(X∂ , f,Λ) =

{[
2

3

]
,

[
3

1

]}
.



70 P. I. KOGUT, R. MANZO, I. V. NECHAY

Fig. 4. The image of the set X∂ in Example 4The aim of this setion is to obtain an existene theorem of the (Λ, τ)-e�ientsolutions for a vetor optimization problem (3.2), that is, to �nd su�ient ondi-tions whih guarantee the relation Effτ (X∂ ; f ; Λ) 6= ∅. Let f̂ : X → Y • denotethe natural extension of f : X∂ → Y to the whole X. We begin with the followingonept of lower semiontinuity for vetor-valued mappings.De�nition 7. We say that a mapping f : X∂ → Y is (Λ, σ × τ)-lower semionti-nuous ((Λ, σ × τ)-ls) at the point x0 ∈ X∂ if
f(x0) ∈ lim infΛ,τ

x
σ
→ x0

f̂(x).A mapping f is (Λ, σ × τ)-ls if f is (Λ, σ × τ)-ls at eah point of X∂ .The main motivation to introdue this onept is the following observation.Proposition 2. Let X be a Banah spae, and let Y be a partially orderedBanah spae with an ordering τ -losed pointed one Λ. Moreover, let X∂ be anon-empty subset of X and let f : X∂ → Y be a given mapping. If x0 ∈ X∂ isany (Λ, τ)-e�ient solution to the problem (3.2), then the mapping f : X∂ → Yis (Λ, σ × τ)-ls at this point for any Hausdor� topology σ on X.Proof. Let x0 ∈ Effτ (X∂ ; f ; Λ). Then f(x0) ∈ InfΛ,τ
x∈X∂

f(x). On the other hand
f(x0) ∈ Lσ×τ

min (f, x0)for any Hausdor� topology σ on X. Hene
f(x0) ∈ Lσ×τ

min (f, x0).As a result, by De�nition 5, we have
f(x0) ∈ lim infΛ,τ

x
σ
→ x0

f(x).This onludes the proof.



TOPOLOGICAL ASPECTS IN VECTOR OPTIMIZATION PROBLEMS 71Before proeeding further, we note that the onept of (Λ, σ×τ)-lower semion-tinuity for the vetor-valued mappings, given above, is more general than wellknown extensions of the �salar� notion of lower semiontinuity to the vetor-valued ase (see, for example, [3, 4, 5, 7, 8, 13, 16℄). We reall now a few mainde�nitions of lower semiontinuity of vetor-valued mappings with respet to theprodut topology σ × τ on X × Y , introdued in [7, 8, 10, 19℄.De�nition 8. (see [8℄) A mapping f : X → Y • is said to be sequentially lowersemiontinuous (s-ls) at x0 ∈ X, if for any y ∈ Y satisfying y ≤Λ f(x0) and forany sequene {xk}∞k=1 of X σ-onvergent to x0, there exists a sequene {yk}∞k=1 ⊂
Y τ -onverging to y in Y and satisfying ondition yk ≤Λ f(xk), for any k ∈ N.De�nition 9. (see [7℄) A mapping f : X → Y • is said to be quasi lowersemiontinuous (q-ls) at x0 ∈ X, if for eah b ∈ Y suh that b �Λ f(x0), thereexists a neighborhood O of x0 in the σ-topology of X suh that b �Λ f(x) foreah x in O.A mapping f is s-ls (resp., q-ls) if f is s-ls (resp., q-ls) at eah point of
X. It is lear that the s-ls-property of f at x implies its q-ls at this point. Toharaterize the properties of (Λ, σ × τ)-lower semiontinuity more preisely, wegive the following result.Proposition 3. (see [12℄) If a mapping f : X∂ → Y is q-lower semiontinuous at
x0 ∈ X∂ with respet to the σ× τ -topology on X × Y , then f is (Λ, σ × τ)-lowersemiontinuous at this point.As a onsequene of this result and the properties of quasi-lower semiontinuity,we have: if f is s-ls then f is (Λ, σ × τ)-ls. However, in general, (Λ, σ × τ)-lsontinuity of the vetor-valued mappings does not imply their q-ls property.Indeed, let us onsider the following example.Example 5. Let Xad = [−3,−1], Y = R2, and let Λ = R2

+ be the ordering oneof positive elements. We de�ne a vetor-valued mapping f : Xad → Y as follows(see Fig. 5):
f(x) =

{ [−x
2

]
, x 6= −1,

[2
1

]
, x = −1.

(3.6)Let x0 = −1. Then
f(x0) =

[
2

1

]
, lim infΛ,τ

x
σ
→ x0

f̂(x) =

{[
2

1

]
,

[
1

2

]} (3.7)(see Fig. 5). Let us take b =
[1,5

3

]. Obviously b �Λ f(x0) and there is noneighborhood of the point x0 suh that b �Λ f(x) for all x from this neighborhood.Hene, this mapping is neither q-ls nor ls mapping at the point x0. However,by (3.7), we have the inlusion
f(x0) ∈ lim infΛ,τ

x
σ
→x0

f̂(x).Hene, f is the (Λ, σ × τ)-lower semiontinuous mapping at x0 = −1.
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Fig. 5. The example of (Λ, σ × τ )-ls mapping whih is neither s-ls nor q-ls mappingBefore going on further, we presribe some additional properties to the orderingone Λ.De�nition 10. Let (Y, τ) be a real topologial linear spae with an ordering one
Λ. The onvex one Λ is alled Daniell, if for every dereasing net (i.e. i ≤ j =⇒
yj ≤Λ yi), whih is lower bounded, τ -onverges to its (Λ, τ)-in�mum.Condition ensuring the Daniall property are given by the next lemma.Lemma 1. Let (Y, τ) be a real topologial linear spae with an ordering one Λ. If
Y has ompat intervals [−z, z] and Λ is τ -losed and pointed, then Λ is Daniell.For this result see Borwein [6℄. A typial example of Daniell one with respetto the weak topology of Lp(Ω) (1 < p < +∞) is the so-alled natural orderingone in Lp(Ω) whih is de�ned as

ΛLp(Ω) = {f ∈ Lp(Ω) : f(x) ≥ 0 almost everywhere on Ω} .De�nition 11. We say that a non-empty subset Y0 of a real topologial spae
(Y, τ) with an ordering one Λ is lower semibounded if every dereasing net {yi} ⊂
Y0 is bounded from below.As a diret onsequene of De�nition 11, we have the following observation.Remark 5. Let Y0 be a lower semibounded subset of a partially ordered lineartopologial spae Y with a τ -losed ordering one Λ. Then, for any z ∈ Y0the setion Y z

0 = ({z} − Λ) ∩ Y0 of Y0 is bounded from below, that is, thereexists an element z∗ ∈ Y suh that z∗ ≤Λ y for all y ∈ Y z
0 . Hene, the lowersemiboundedness of a subset Y0 implies the lower semiboundedness of its τ -losure

clτ Y0.Now we are ready to formulate the main result of this setion.Theorem 1. Let (X,σ) and (Y, τ) be two real topologial linear spaes, and let Ybe partially ordered with the τ -losed pointed Daniell one Λ. Moreover, let X∂ bea non-empty sequentially σ-ompat subset of X and let f : X∂ → Y be a given
(Λ, σ × τ)-lower semiontinuous mapping. Then the vetor optimization problem(3.2) has a non-empty set of (Λ, τ)-e�ient solutions.



TOPOLOGICAL ASPECTS IN VECTOR OPTIMIZATION PROBLEMS 73Remark 6. Before the proof, we note that in ontrast to the salar ase for vetoroptimization problem (3.2) with a sequentially σ-ompat subset ofX∂ and (Λ, σ×
τ)-lower semiontinuous objetive mapping f : X∂ → Y , the image set f(X∂) anbe unbounded from below. It means that, in general, there does not exist anelement y∗ ∈ Y suh that f(X∂) ⊂ {y∗}+Λ. Indeed, let us onsider the followingexample: let X = R, X∂ = [0; 1], Y = R2, and let Λ = R2

+ be the ordering oneof positive elements. We suppose that a vetor-valued mapping f : X → Y isde�ned as follows:
f(x) =

[−1/x

1/x

] if x ∈ [0; 1), and f(1) =

[−2

0

]
.Sine

Lσ×τ (f, 1) =

{[−2

0

]
,

[−1

1

]} and InfΛ,τ
x∈X∂

f(x) =

{[−2

0

]}
,it follows that

lim infΛ,τ

x
σ
→ 1

f̂(x) =

{[−2

0

]}
.Hene this mapping is (Λ, σ× τ)-lower semiontinuous on X∂ . However the imageset f(X∂) is unbounded from below (see Fig. 6).

Fig. 6. The example of (Λ, σ × τ )-ls mapping with lower unbounded imageProof. Sine the proof of this theorem is rather tehnial, we divide it into severalsteps.Step 1. First we show that the image set f(X∂) is lower semibounded in thesense of De�nition 11. Indeed, let us assume the onverse. Then, there exists asequene {xk}∞k=1 ⊂ X∂ suh that the orresponding image sequene
{yk = f(xk)}∞k=1 ⊂ f(X∂)is dereasing (i.e., yk+1 ≤Λ yk ∀ k ∈ N) and unbounded from below in Y . Hene

−∞Λ ∈ Lτ {yk}, where Lτ {yk} denotes the set of all its luster points with respetto the τ -topology of Y . By the initial assumptions, the family {xk}∞k=1 ⊂ X∂ issequentially σ-ompat, so we may suppose that xk
σ→ x∗ in X, where x∗ is some



74 P. I. KOGUT, R. MANZO, I. V. NECHAYelement of X∂ . Sine the sequene {f(xk)}∞k=1 is unbounded from below, we have
{−∞Λ} ∈ Lσ×τ

min (f, x∗). Hene, by De�nition 5,
lim infΛ,τ

x
σ
→x∗

f(x) = {−∞Λ} .On the other hand, taking into aount the (Λ, σ×τ)-lower semiontinuity propertyof f , we obtain
f(x∗) ∈ lim infΛ,τ

x
σ
→ x∗

f(x)whih ontradits the previous onlusion. This proves Step 1.Step 2. Let us prove that the set InfΛ,τ
x∈X∂

f(x) is non-empty. We show thatthere exists at least one dereasing sequene {yk}∞k=1 ⊂ f(X∂) suh that
yk

τ→ y∗ ∈ InfΛ,τ
x∈X∂

f(x) = InfΛ,τ {f(x) : ∀x ∈ X∂} .Let y be an arbitrary element of clτ f(X∂). To begin with, we show that for anyneighbourhood of zero Vτ in (Y, τ) there exists an element yV ∈ clτ f(X∂) suhthat
yV ≤Λ y and ({

yV
}
− Λ \ {0Y }

)
∩
(
clτ f(X∂) \ (Vτ +

{
yV
}
)
)

= ∅. (3.8)Having assumed the onverse, we suppose the existene of a sequene
{yk}∞k=1 ⊂ clτ f(X∂)suh that

y1 ∈ f(X∂), yk+1 ∈ ({yk} − Λ \ {0Y }) ∩ (clτ f(X∂) \ (Vτ + {yk})) ∀ k ∈ N.Sine yk+1 ∈ {yk} − Λ \ {0Y }, this sequene is dereasing. Taking into aountRemark 5, the set clτ f(X∂) is lower semibounded. Therefore, there exists anelement y∗ ∈ Y suh that y∗ ≤Λ yk for all k ∈ N. Hene, by Daniell property, thissequene τ -onverges to its (Λ, τ)-in�mum: yk
τ→ ỹ ∈ Y . However this ontraditsthe ondition

yk+1 ∈ clτ f(X∂) \ (Vτ + {yk}) ∀ k ∈ N.Thus the hoie by the rule (3.8) is possible for any neighbourhood Vτ .Let {Vk}∞k=1 be a neighbourhood system of zero in (Y, τ) suh that Vk+1 ⊂ Vkfor every k ∈ N, and for any neighbourhood V(0Y ) in (Y, τ) there is an integer
k∗ ∈ N suh that Vk∗ ⊆ V(0Y ). Then, using the hoie rule (3.8), we an onstruta sequene {uk}∞k=1 ⊂ clτ f(X∂), where u1 is an arbitrary element of f(X∂), asfollows
uk+1 ≤Λ uk and ({uk} − Λ \ {0Y })∩

∩ (clτ f(X∂) \ (Vk + {uk})) = ∅ ∀ k ≥ 1. (3.9)Sine uk+1 ∈ {uk} − Λ it follows that
uk+1 ∈ clτ f(X∂) and uk+1 6∈ clτ f(X∂) \ (Vk + {uk}).



TOPOLOGICAL ASPECTS IN VECTOR OPTIMIZATION PROBLEMS 75Hene, in view of Daniell property, {uk}∞k=1 is the τ -onverging dereasing sequen-e. As a result, there is an element
u∗ ∈ InfΛ,τ {uk ∈ clτ f(X∂) : ∀ k ∈ N}suh that uk

τ→ u∗. It is lear that u∗ ∈ clτ f(X∂). Our aim is to prove that
u∗ ∈ InfΛ,τ {f(x) : ∀x ∈ X∂}. To do this, we assume that there exists an element

q ∈ InfΛ,τ {f(x) : ∀x ∈ X∂}suh that q ≤Λ u∗. Sine u∗ ≤Λ uk for all k ∈ N , it follows that q ≤Λ uk for all
k ∈ N . Then (3.9) ensures that

({q} − Λ \ {0Y }) ∩ (clτ f(X∂) \ (Vk + {uk})) = ∅ ∀ k ∈ N. (3.10)Hene (3.10) and the fat that q ∈ clτ f(X∂) imply q ∈ Vk +{uk} for every k ∈ N,that is, uk
τ→ q in Y . Thus u∗ = q and this onludes the Step 2.Step 3: We show that the set Effτ (X∂ ; f ; Λ) is non-empty. Let ξ be any elementof InfΛ,τ

x∈X∂
f(x). Then, by De�nition 4, there exists a sequene {yk}∞k=1 ⊂ Y suhthat yk

τ−→ ξ in Y . We de�ne a sequene {xk}∞k=1 ⊂ X∂ as follows xk = f−1(yk)for all k ∈ N. Sine the set X∂ is sequentially σ-ompat, we may suppose thatthere exists x0 ∈ X∂ suh that xk
σ−→ x0 in X. Hene ξ ∈ Lσ×τ (f, x0), and weget

Lσ×τ (f, x0) ∩ InfΛ,τ
x∈X∂

f(x) 6= ∅.Then, due to the (Λ, σ × τ)-lower semiontinuity of the mapping f on X∂ andDe�nition 5, we obtain
f(x0) ∈ lim infΛ,τ

x
σ
→ x0

f(x) = Lσ×τ (f, x0) ∩ InfΛ,τ
x∈X∂

f(x).Thus, on the one hand,
f(x0) ∈ Lσ×τ (f, x0),whih implies the equality

f(x0) = ξ = τ− lim
k→∞

yk.On the other hand, ξ ∈ InfΛ,τ
x∈X∂

f(x). Hene, x0 ∈ Effτ (X∂ ; f ; Λ) and thisonludes the proof.4. Vetor optimization problems for (Λ, σ × τ)-lowersemiontinuous objetive mappings and their salarizationTypially, salarization means the replaement of a vetor optimization prob-lem by a suitable salar optimization problem that is an optimization problemwith a real-valued objetive funtional. It is a fundamental priniple in vetoroptimization that optimal (minimal) elements of a subset of a partially orderedlinear spae an be haraterized as optimal solutions of ertain salar optimizationproblems. For the problem (3.1), a wide family of salar problems is known,



76 P. I. KOGUT, R. MANZO, I. V. NECHAYwhih fully desribe the set of all minimal elements Min(X∂ , f,Λ) under suitableassumptions (see, for instane, [9, 11, 14, 15℄ and the referenes therein). However,our prime interest is to desribe the set Effτ (X∂ ; f ; Λ) of (Λ, τ)-e�ient solutionsto the vetor problem (3.2) (see (3.5)), whih involves some topologial propertiesof the objetive mapping f and the spae Y . In order to do it, we will onsiderthe problem of salar representation of vetor optimization problem (3.2) witha (Λ, σ × τ)-lower semiontinuous mapping f : X∂ → Y , using the �simplest�method of the �weighted sum�.To begin with, we introdue some additional suppositions. As was mentionedabove, the objetive spae Y is dual to some separable Banah spae V (that is
Y = V ∗). Suppose that the spae V is partially ordered with a nontrivial pointedordering one K ⊂ V for whih Λ is the dual one, that is,

Λ = K∗ :=
{
y ∈ Y : 〈y, λ〉Y ;V ≥ 0 for all λ ∈ K

}
. (4.1)De�nition 12. We say that λ ∈ V is a quasi-interior point of the one K if

λ ∈ K and 〈b, λ〉Y ;V > 0 for all b ∈ Λ \ {0}.We denote byK♯ the set of all quasi-interior points ofK. Note that, in general,we have the inlusion cor (K) ⊆ K♯, where corK is an algebraial interior of theone K (for more details we refer to [11℄).In what follows, we assoiate with the vetor optimization problem (3.2) thefollowing salar minimization problem
fλ(x) = 〈f(x), λ〉Y ;V → inf subjet to x ∈ X∂ ⊂ X (4.2)where λ is an element of the one K.The main property of this problem an be haraterized as follows.Theorem 2. Let X and Y = V ∗ be two real Banah spaes, let Y be endowedwith the weak-∗ topology τ , and let Y be partially ordered with the one Λ = K∗,where K is an ordering one in V with a non-empty quasi-interior K♯. Let also

X∂ be a non-empty subset of X, and let f : X∂ → Y be a given mapping. Assumethat there are elements x0 ∈ X∂ and λ ∈ K♯ suh that x0 ∈ Argmin
x∈X∂

〈f(x), λ〉Y ;V .Then x0 is a (Λ, τ)-e�ient solution to the problem (3.2).Proof. By the initial assumptions, we have
fλ(x0) − fλ(x) =

〈
f(x0) − f(x), λ

〉
Y ;V

≤ 0, ∀x ∈ X∂ . (4.3)Let z be any element of the image set clτ f(X∂). Then there exists a sequene
{xk}∞k=1 ⊂ X∂ suh that f(xk)

τ
⇀ z in Y as k → ∞. Hene, in view of (4.3), weget 〈

f(x0) − f(xk), λ
〉
Y ;V

≤ 0, ∀ k ∈ N. (4.4)Passing to the limit in (4.4) as k → ∞, we obtain
〈
f(x0) − z, λ

〉
Y ;V

≤ 0, ∀ z ∈ clτ f(X∂). (4.5)



TOPOLOGICAL ASPECTS IN VECTOR OPTIMIZATION PROBLEMS 77Let us assume that x0 6∈ Effτ (X∂ ; f ; Λ). Then there exists an element h ∈
clτ f(X∂) suh that h <Λ f(x0). So, f(x0)−h ∈ Λ\{0Y }. Hene, by De�nition 12,

〈
f(x0) − h, λ

〉
Y ;V

> 0,and we ome to a ontradition with (4.5). So, x0 ∈ Effτ (X∂ ; f ; Λ) and thisonludes the proof.As an evident onsequene of this result, we have the following onlusion.Corollary 1. Under suppositions of Theorem 2, we have
⋃

λ∈K♯

Argmin
x∈X∂

〈f(x), λ〉Y ;V ⊆ Effτ (X∂ ; f ; Λ). (4.6)Remark 7. Note that Theorem 2 generally fails when λ ∈ K \ K♯. Indeed, let
V = Y = R2, X∂ = [1, 2], and let Λ = R2

+ be the ordering one of positiveelements (then K = Λ). We de�ne the objetive mapping f : X∂ → Y as follows:
f(x) =

[x
1

] if x ∈ (1, 2], and f(x) =

[
1

2

] at the point x = 1(see Fig. 7). Straightforward alulations show that

Fig. 7. The example of the problem for whih Effτ (X∂ ; f ; Λ) = ∅

lim infΛ,τ
x→ 1 f(x) =

[
1

1

]
,and hene Effτ (X∂ ; f ; Λ) = ∅. However, if we take λ =

[1
0

]
∈ K \K♯, then

〈f(x), λ〉V ∗;V = xand hene
Argmin
x∈[1,2]

〈f(x), λ〉V ∗;V = {1} 6∈ Effτ (X∂ ; f ; Λ).Before proeeding further, we note that the objetive mapping in Theorem 2does not possess the (Λ, σ × τ)-lower semiontinuity property, in general. So thequestion is about the solvability of the assoiated salar minimization problems(4.2) with λ ∈ K♯. Following the diret method in the Calulus of Variations, the



78 P. I. KOGUT, R. MANZO, I. V. NECHAYonstrained minimization problem (4.2) has a non-empty set of solutions, provided
X∂ is a σ-ompat subset and

fλ(·) = 〈f(·), λ〉Y ;V : X∂ → Ris a proper lower σ-semiontinuous funtion. However, the harateristi featureof vetor optimization problems (3.2) is the fat that with any (Λ, σ × τ)-lowersemiontinuous mapping f : X∂ → Y , whih is neither lower semiontinuousnor quasi-lower semiontinuous on X∂ , there an be always assoiated a salarminimization problem (4.2) for whih the orresponding ost funtional fλ : X∂ →
R is not lower σ-semiontinuous on X∂ . Indeed, let τ be the weak-∗ topology on
Y , and let x0 be a point of X∂ where the quasi-lower semiontinuity of f is failed.Then there exists at least one element a∗ ∈ clτ (f(X∂)) suh that

a∗ ∈ lim infΛ,τ

x
σ
→x0

f(x), f(x0) ∈ lim infΛ,τ

x
σ
→ x0

f(x), and a∗ 6= f(x0). (4.7)Let {xk}∞k=1 ⊂ X∂ be a sequene suh that xk
σ→ x0 in X and f(xk)

τ→ a∗ in Y .Sine a∗ ≯Λ f(x0), it follows that a∗ − f(x0) 6∈ Λ and hene there exists a vetor
λ∗ ∈ K suh that 〈

a∗ − f(x0), λ∗
〉
Y ;V

< 0.As a result, we have
lim inf
k→∞

fλ∗(xk) = lim
k→∞

〈f(xk), λ
∗〉Y ;V

= 〈a∗, λ∗〉Y ;V <
〈
f(x0), λ

〉
Y ;V

= fλ∗(x0).Thus, the lower σ-semiontinuity property for fλ∗ fails at x0. Moreover, as thefollowing example shows, for (Λ, σ× τ)-lower semiontinuous mappings f : X∂ →
Y a situation is possible when none of the salar funtions fλ(x) = 〈f(x), λ〉Y ;Vis lower σ-semiontinuous for any λ ∈ K♯.Example 6. Let X∂ = [1, 2] ⊂ R, and let Λ = R2

+ be the ordering one of positiveelements in Y = R2. It is lear that in this ase V = Y and K = Λ. Let usonsider the mapping f : X∂ → R2 de�ned by (see Fig. 8)
f(x) =





[x
1

]
, if x ∈ [1, 2] \ {1 + 1/k, k ∈ N} ,

[
0

1+k

]
, if x = 1 + 1/k, k ∈ N.

I

x

1

2

X

z1

z2

1 2 1 2Fig. 8. The vetor-valued mapping in Example 6
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lim infΛ,τ

x
σ
→ 1

f(x) =

{[
1

1

]}
,

lim infΛ,τ

x
σ
→ (1+1/k)

f(x) =

{[
0

1 + k

]
,

[
1 + 1/k

1

]}
.Sine

f(1) ∈ lim infΛ,τ

x
σ
→ 1

f(x) and f(1 + 1/k) ∈ lim infΛ,τ

x
σ
→ (1+1/k)

f(x),it means that the mapping f : X∂ → R2 is (Λ, σ × τ)-lower semiontinuous atthese points and in fat on the whole domain X∂ . Let λ =
[

λ1

λ2

] be any vetorwith non-negative omponents, i.e. λ ∈ K. Then the salar funtion fλ, assoiatedwith the vetor-valued mapping f by the sheme of the �weighted sum�, an berepresented in the form
fλ(x) := 〈f(x), λ〉Y ;V =

{
λ1x+ λ2, if x 6= 1 + 1/k,
λ2(1 + k), if x = 1 + 1/k,

∀ k ∈ N, ∀x ∈ X∂ .(4.8)To be sure that the lower σ-semiontinuity property for this funtion at the points
xk = 1 + 1/k is valid, we have to hoose the parameters λ1 and λ2 so that theinequality

λ2(1 + k) ≤ λ1(1 + 1/k) + λ2 (4.9)holds true for every k ∈ N.However, taking into aount the non-negativeness of λi and passing in (4.9)to the limit as k → ∞, we obtain λ2 = 0. As a result, we have
fλ(x) =

{
λ1x, if x 6= 1 + 1/k,
0, if x = 1 + 1/k,

∀ k ∈ N, ∀x ∈ X∂ . (4.10)Nevertheless, as follows from (4.10), the inequality
fλ(1) ≤ lim inf

k→∞
fλ(xk)does not hold for any λ1 > 0 with the exeption of λ1 = 0. Thus, there is a uniquesalar funtion in the olletion (4.8) satisfying the lower semiontinuity propertyin the domain X∂ = [1, 2]. This funtion is fλ(x) ≡ 0.This example motivates the introdution of the following notion.De�nition 13. Let f : X∂ → Y be a given mapping. The one

Kσ
f := {λ ∈ K : fλ is lower σ-semiontinuous on X∂} (4.11)is alled the one of σ-semiontinuity for the mapping f .As a result, Theorem 2 an be sharped as follows.



80 P. I. KOGUT, R. MANZO, I. V. NECHAYTheorem 3. Let X be a re�exive Banah spae, let V be a separable Banah spae,and let Y = V ∗ be endowed with the weak-∗ topology τ and partially ordered with apointed Daniell one Λ = K∗, where K is a weakly losed ordering one in V . Letalso X∂ be a non-empty bounded weakly losed subset of X, and let f : X∂ → Ybe a (Λ, σ× τ)-lower semiontinuous mapping, where σ is the weak topology of X.Assume that Kσ
f \ 0V 6= ∅. Then

Argmin
x∈X∂

〈f(x), λ〉Y ;V ∩ Effτ (X∂ ; f ; Λ) 6= ∅ ∀λ ∈ Kσ
f \ 0V . (4.12)Proof. As follows from Theorem 1, under the above assumptions, we have

Effτ (X∂ ; f ; Λ) 6= ∅.Let λ be any element of Kσ
f \ 0V . Then, by the diret method in the Calulus ofVariations, we obtain
Argmin

x∈X∂

〈f(x), λ〉Y ;V 6= ∅.If λ ∈ K♯ then relation (4.12) is obvious by Theorem 2. So, we suppose that
λ ∈ Kσ

f \
(
K♯ ∪ 0V

). Assume that
Argmin

x∈X∂

〈f(x), λ〉Y ;V * Effτ (X∂ ; f ; Λ).Then, there exists an element x∗ ∈ X∂ suh that
x∗ ∈ Argmin

x∈X∂

〈f(x), λ〉Y ;V , (4.13)
x∗ 6∈ Effτ (X∂ ; f ; Λ). (4.14)Hene, by (4.14), there exists an element

y∗ ∈ MinΛ (clτf(X∂)) ⊆ clτf(X∂) suh that y∗ <Λ f(x∗).However, in view of (4.13) and (4.1), this leads us to the equality
fλ(x∗) = 〈f(x∗), λ〉Y ;V = 〈y∗, λ〉Y ;V . (4.15)Let {xk}∞k=1 be a sequene in X∂ suh that

f(xk)
τ→ y∗ as k → ∞. (4.16)Sine the set X∂ is sequentially weakly ompat, we may suppose that there exists

x0 ∈ X∂ suh that xk
σ−→ x0 in X. On the other hand, y∗ ∈ MinΛ (clτf(X∂)).Hene, y∗ ∈ InfΛ,τ

x∈X∂
f(x) by De�nition 6. As a result, we have x0 ∈ Effτ (X∂ ; f ; Λ).Taking into aount the lower σ-semiontinuity of the funtional fλ : X∂ → R,we get

〈f(x0), λ〉Y ;V ≤ lim inf
k→∞

〈f(xk), λ〉Y ;V

by (4.16)
= 〈y∗, λ〉Y ;V .Then, ombining this with (4.15), we obtain

〈f(x0), λ〉Y ;V ≤ 〈f(x∗), λ〉Y ;V ,
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x0 ∈ Argmin

x∈X∂

〈f(x), λ〉Y ;V .Thus, we have shown that there exists at least one element x0 ∈ X∂ whih is ajoint point of the sets Argmin
x∈X∂

〈f(x), λ〉Y ;V and Effτ (X∂ ; f ; Λ), respetively. Thisompletes the proof.As an evident onsequene of this theorem, we have the following onlusion:Corollary 2. Assume that in addition to the onditions of Theorem 3 there existsan element λ ∈ Kσ
f \ 0V suh that the in�mum in the salar problemMinimize fλ(x) = 〈f(x), λ〉Y ;V subjet to x ∈ X∂ (4.17)is attained at a unique point x∗ ∈ X∂. Then x∗ ∈ Effτ (X∂ ; f ; Λ).Note that, we do not give the onditions whih would guarantee the ful�lmentof the relation Kσ

f \ 0V 6= ∅. However, as a hypothesis, we an make the followingonjeture:If the image set f(X∂) is bounded in 〈Y, ‖ · ‖〉 and K has a non-empty quasi-interior (K♯ 6= ∅), then under onditions of Theorem 3, the one Kσ
f ontains atleast one nontrivial element.To motivate this hypothesis, we note that if a uniformly bounded mapping f :

X∂ → Y is quasi-lower semiontinuous on X∂ then f is lower semiontinuous (see[2℄). In this ase the funtions fλ(x) = 〈f(x), λ〉Y ;V are lower σ-semiontinuouson X∂ for every λ ∈ K. Hene Kσ
f \ 0V 6= ∅. Let x0 be a point of X∂ wherethe quasi-lower semiontinuity of f fails. Then there exists at least one element

a∗ ∈ clτ (f(X∂)) with properties (4.7). Let λ∗ be an element of K suh that
〈
f(x0), λ∗

〉
Y ;V

≤ 〈a∗, λ∗〉Y ;V ∀ a∗ ∈ lim infΛ,τ

x
σ
→x0

f(x). (4.18)The existene of λ∗ immediately follows from the fat that
f(x0) ≯Λ a

∗ for all a∗ ∈ lim infΛ,τ

x
σ
→x0

f(x).Let {xk}∞k=1 ⊂ X∂ be a sequene suh that xk
σ→ x0 in X. Sine eah of elements

a∗ belongs to the set
Lσ×τ (f, x0) :=

⋃

{xk}
∞
k=1∈Mσ(x0)

Lτ{f̂(xk)}of τ -luster points of the sequenes {f̂(xk)
}∞

k=1
, it follows from (4.18) that

〈
f(x0), λ∗

〉
Y ;V

≤ lim inf
k→∞

〈f(xk), λ
∗〉Y ;V .Thus, the funtion fλ∗ is sequentially lower σ-semiontinuous at the point x0.



82 P. I. KOGUT, R. MANZO, I. V. NECHAY5. The ill-posed vetor optimization problems and theirgeneralized solutionsLet λ be an arbitrary element of the one K. Denote by
Sol(X∂ ; fλ) := Argmin

x∈X∂

fλ(x)the solution set to the salar problem (4.17). We reall that the problem (4.17)is said to be well-posed in the generalized sense when every minimizing sequene
{xk}∞k=1 ⊂ X∂ (i.e. suh that fλ(xk) → infx∈X∂

fλ(x)) has a subsequene σ-onverging to some element of Sol(X∂ ; fλ). We reall also a generalization ofthe above mentioned notion. The problem (4.17) is said to be well-set whenevery minimizing sequene ontained in X∂ \ Sol(X∂ ; fλ) has a σ-luster pointin Sol(X∂ ; fλ). However, as follows from the arguments of this setion (see alsoExample 7 given below), the problem (4.17) an be neither well-posed nor well-set, in general. The main reason is the (Λ, σ× τ)-lower semiontinuity property ofthe objetive mapping f whih is the weakened property of lower semiontinuityfor vetor-valued mappings in Banah spaes.Example 7. Let X∂ = {x ∈ X : ‖x‖ ≤ 1} be a unit losed ball in a re�exiveBanah spae X. Let Y = R2 be the objetive spae partially ordered with theone Λ = R2
+ of positive elements in R2. We suppose that X and Y are endowedwith the strong topologies σ and τ , respetively. Let the objetive mapping f :

Xad → R2 be de�ned as
f(x) =

[
2 − ‖x‖
1 + ‖x‖

] if x ∈ Xad \ {0X ∪ S} ,

f(x) =

[
2

2

] if x ∈ S, f(0X) =

[
1

1

]
,where S = {x ∈ X : ‖x‖ = 1} is the unit sphere in X. Sine

MinΛ (clτf(X∂)) = MinΛ (f(X∂)) =

{[
1

1

]}
,it follows that

lim infΛ,τ

x
σ
→ 0X

f(x) =

{[
1

1

]}
,and hene f is (Λ, σ × τ)-lower semiontinuous on X∂ . Then, by Theorem 1, theorresponding vetor optimization problem 〈X∂ , f,Λ, τ〉 is solvable and, moreover,

xeff = 0X is its unique (Λ, τ)-e�ient solution.Let us onsider the following salar problemMinimize fλ(x) = (f(x), λ)
R2 subjet to x ∈ X∂ , (5.1)assoiated with the vetor problem 〈X∂ , f,Λ, τ〉, where

λ =

[
1

0

]
, fλ(x) := (f(x), λ)

R2 =





2 − ‖x‖, if ‖x‖ < 1 and x 6= 0X ,
2, if x ∈ S,
1, if x = 0X



TOPOLOGICAL ASPECTS IN VECTOR OPTIMIZATION PROBLEMS 83Through diret veri�ation we an show that Sol(X∂ ; fλ) = {0X}. However,this salar problem is neither well-posed nor well-set with respet to the strongtopology of X, beause all minimizing sequenes for (5.1) ontaining in X∂ \
Sol(X∂ ; fλ) have σ-luster points on the unit sphere S = {x ∈ X : ‖x‖ = 1}.In many appliations it has a sense to weaken the requirement on e�ientsolutions to the vetor optimization problem 〈X∂ , f,Λ, τ〉. In partiular, we maylet the objetive mapping to attain its e�ient in�mum on the set X∂ with someerror. On the other hand, the set of (Λ, τ)-e�ient solutions to suh problem anpossibly be empty, i.e., the e�ient in�mum of the objetive mapping is oftenunattainable on the given set X∂ . Nevertheless, the absene of its in�mum doesnot mean that the vetor optimization problem makes no sense, sine its e�ientin�mum exists and hene an be approahed with some auray.De�nition 14. We say that a sequene {xk}∞k=1 ⊂ X∂ is minimizing to the vetoroptimization problem 〈X∂ , f,Λ, τ〉, if f(xk)

τ→ ξ in Y , where ξ is an element of
InfΛ,τ

x∈X∂
f(x).De�nition 15. We say that the vetor optimization problem 〈X∂ , f,Λ, τ〉 is well-posed in the Tikhonov sense with respet to the σ-topology of X, if it is solvableand every minimizing sequene {xk}∞k=1 ⊂ X∂ has a subsequene σ-onverging tosome element of Effτ (X∂ ; f ; Λ). In this ase a minimizing sequene is alled aTikhonov minimizing sequene. We also say that the vetor optimization problem

〈X∂ , f,Λ, τ〉 is well-set in the Tikhonov sense with respet to the σ-topology of X,if it is solvable and every minimizing sequene ontained in X∂ \ Effτ (X∂ ; f ; Λ)has a σ-luster point in Effτ (X∂ ; f ; Λ).Note that having a Tikhonov minimizing sequene, we an guarantee boththe proximity of the orresponding values of the objetive mapping to its e�ientin�mum and the proximity of the approximation itself to one of the (Λ, τ)-e�ient solutions of the problem. Nevertheless it should be stressed that evenin simple applied problems the onstrution of Tikhonov minimizing sequenesand orresponding Tikhonov approximate solutions usually turns out to be a veryompliated and sometimes unsolvable problem. In view of this, it is reasonableto weaken the requirements on approximate solutions to the vetor optimizationproblem 〈X∂ , f,Λ, τ〉.De�nition 16. We say that an element x∗ ∈ X∂ is the (σ, τ)-generalized solutionto vetor optimization problem (3.2), if there exist a sequene {xk}∞k=1 ⊂ X∂ andan element ξ ∈ InfΛ,τ
x∈X∂

f(x) suh that xk
σ
⇀ x∗ in X and f(xk)

τ→ ξ in Y .Thus, a vetor optimization problem may have an approximate solution evenin the absene of its solvability. It is lear that any Tikhonov approximate solutionto the problem 〈X∂ , f,Λ, τ〉 is also a (σ, τ)-generalized solution. However, even if a
(Λ, τ)-e�ient solution is available (xeff ∈ Effτ (X∂ ; f ; Λ)), we annot guaranteethe proximity of an (σ, τ)-generalized solution x∗ to Effτ (X∂ ; f ; Λ) in the σ-topology of X.We denote by GenEffσ,τ (X∂ ; f ; Λ) the set of all (σ, τ)-generalized solutionsto the problem 〈X∂ , f,Λ, τ〉. It is lear that

Effτ (X∂ ; f ; Λ) ⊆ GenEffσ,τ (X∂ ; f ; Λ).



84 P. I. KOGUT, R. MANZO, I. V. NECHAYMoreover, as evident onsequene of Theorem 1, we have the following obviousresult:Proposition 4. Under suppositions of Theorem 1, the vetor optimization prob-lem 〈X∂ , f,Λ, τ〉 is well-set in the Tikhonov sense with respet to the topology of
X, and in addition GenEffσ,τ (X∂ ; f ; Λ) = Effτ (X∂ ; f ; Λ).However, as the next example indiates, the inverse inlusion

GenEffσ,τ (X∂ ; f ; Λ) ⊂ Effτ (X∂ ; f ; Λ)does not generally hold.Example 8. Let X∂ = {x ∈ X : ‖x‖ ≤ 1} be a unit ball in a Banah spae X, let
Y = R2 be partially ordered with the one Λ = R2

+ of positive elements in R2.Let the mapping f : X∂ → R2 be de�ned by
f(x) =

[
1 + ‖x‖
1 + ‖x‖

] if x ∈ X∂ \ {0X ∪ S} ,

f(x) =

[
1

2

] if x ∈ S, f(0X) =

[
2

1

]
,where S = {x ∈ X : ‖x‖ = 1} is the unite sphere in X. We endow the spaes X

Fig. 9. The set f(X∂) to Example 8and Y with the weak (σ) and the strong (τ) topologies, respetively. Sine
MinΛ (f(X∂)) =

{[
1

2

]
,

[
2

1

]} and MinΛ (clτf(X∂)) =

{[
1

1

]}
,it follows that Min(X∂ , f,Λ) = {0X} ∪ S whereas Effτ (X∂ ; f ; Λ) = ∅. However,the set of (σ, τ)-generalized solutions to the problem 〈X∂ , f,Λ, τ〉 is non-empty.Indeed, let us �x a sequene {xk}∞k=1 ⊂ X∂ suh that

xk ⇀ 0X in X and f(xk) →
{[

1

1

]}
.Then, following De�nition 16, we have

0X ∈ GenEffσ,τ (X∂ ; f ; Λ)
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GenEffσ,τ (X∂ ; f ; Λ) = {0X} .Having taken λ∗ =

[1
0

], we onsider the following salar problem assoiatedwith the vetor problem 〈X∂ , f,Λ, τ〉:
fλ(x) := (f(x), λ)

R2 =





1 + ‖x‖, if ‖x‖ < 1 and x 6= 0X ,
1, if ‖x‖ = 1,
2, if x = 0X

(5.2)Straightforward alulations show that
Argmin

x∈X∂

fλ(x) = {x ∈ X∂ : ‖x‖ = 1} .As a result, we have
GenEffσ,τ (X∂ ; f ; Λ) ∩ Argmin

x∈X∂

fλ(x) = ∅.Thus, any solution of the salar problem (5.2) is neither a (Λ, τ)-e�ient solutionnor a generalized one to the vetor problem 〈X∂ , f,Λ, τ〉. Thus, in view of De�ni-tion 15, 〈X∂ , f,Λ, τ〉 an be haraterized as the ill-posed vetor optimizationproblem.To obtain the su�ient onditions whih would guarantee that the set of
(σ, τ)-generalized solutions to the problem 〈Ξ, I,Λ, τ〉 is non-empty, we use thesalarization of this problem in the form (4.2).Let sc−σ fλ : X∂ → R denote the lower σ-semiontinuous envelope of thefuntional fλ(x) = 〈f(x), λ〉Y ;V with some λ ∈ K, that is, sc−σ fλ is the greatestlower σ-semiontinuous funtional majorized by fλ on X∂ . Then, following thediret method in the Calulus of Variations, we get:Proposition 5. Let X∂ be a sequentially losed subset of a linear topologialspae (X,σ). Assume that for a �xed λ ∈ K the funtional sc−σ fλ : X∂ → Ris ountably σ-oerive, i.e. the σ-losure of the set {x ∈ X∂ : sc−σ fλ(x) ≤ t}is ountably σ-ompat for every t ∈ R. Then every minimizing sequene for
infx∈X∂

sc−σ fλ(x) has a σ-luster point whih is a minimum point of sc−σ fλ on X∂ ,i.e., Sol(X∂ ; sc−σ fλ) 6= ∅.Remark 8. It is lear that this theorem remains valid if instead of the ountable
σ-oeriveness of sc−σ fλ on X∂ we assume the sequential σ-ompatness of the set
X∂ .Now we are able to prove the main result of this paper.Theorem 4. Let X be a re�exive Banah spae, σ be the weak topology on X,
V be a separable Banah spae, and the Banah spae Y = V ∗ be endowed withthe weak-∗ topology τ and partially ordered with a pointed one Λ = K∗, where Kis a onvex pointed one in V with non-empty algebrai interior cor (K). Let also
X∂ be a non-empty sequential σ-ompat subset of X, and let f : X∂ → Y be a



86 P. I. KOGUT, R. MANZO, I. V. NECHAYgiven mapping (not neessary (Λ, σ × τ)-lower semiontinuous on X∂). Then thefollowing inlusion is valid:
⋃

λ∈K♯

Argmin
x∈X∂

sc−σ fλ(x) ⊆ GenEffσ,τ (X∂ ; f ; Λ). (5.3)Proof. To begin with, we note that the onvexity of the pointed one K andondition cor (K) 6= ∅ imply the inlusion cor (K) ⊂ K♯ (see [11℄). Hene thequasi interior K♯ of K is non-empty. Let λ be any element of K♯. Then, byProposition 5, there exists at least one element x∗ ∈ X∂ suh that
x∗ ∈ Argmin

x∈X∂

sc−σ fλ(x). (5.4)Sine sc−σ fλ(x) is the lower σ-semiontinuous envelope of the
fλ(x) = 〈f(x), λ〉Y ;V ,it follows that there exists a sequene {xk}∞k=1 ⊂ X∂ suh that xk

σ→ x∗ and
lim

k→∞
〈f(xk), λ〉Y ;V = sc−σ fλ(x∗) ≤by ondition (5.4)

≤ sc−σ fλ(x) ≤ 〈f(x), λ〉Y ;V (5.5)
∀x ∈ X∂ . SineK♯∪0V is a nontrivial onvex one in V with non-empty algebraialinterior, it follows that it is a reproduing one in V , that is,

[
K♯ ∪ 0V

]
−
[
K♯ ∪ 0V

]
= V(see [11℄). Then, following Peressini [17℄ and Borwein [6℄, we have that in the dualspae Y = V ∗ the ordering one Λ = K∗ is normal with respet to the normtopology of Y , that is,

y <Λ z =⇒ ‖y‖ < ‖z‖. (5.6)Now, turning bak to the formula (5.5), we get: there exist an integer k̂ ∈ N andan element ŷ ∈ Y suh that
〈f(xk), λ〉Y ;V < 〈ŷ, λ〉Y ;V ∀ k > k̂.Sine λ ∈ K♯, this implies f(xk) <Λ ŷ for all k > k̂. Using the normality property(5.6) of the one Λ for the norm topology of Y , we ome to the onlusion: thereexists a onstant c > 0 suh that
‖f(xk)‖Y ≤ C for all k > k̂.Hene, without loss of generality, we may suppose that the sequene {f(xk)}∞k=1is bounded in Y . So, by Banah-Alaoglu Theorem, there exist an element η ∈ Yand a subsequene of {f(xk)}∞k=1 (still denoted by su�x k) suh that f(xk)

τ→ ηin Y as k → ∞.
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x∗ 6∈ GenEffσ,τ (X∂ ; f ; Λ). (5.7)Then, as follows from De�nition 16, η 6∈ InfΛ,τ

x∈X∂
f(x). Hene, there an be foundan element ξ ∈ InfΛ,τ

x∈X∂
f(x) suh that ξ <Λ η. Therefore, η − ξ ∈ Λ \ {0Y }, andusing the fat that λ ∈ K♯, we just ome to the inequality

〈η, λ〉Y ;V > 〈ξ, λ〉Y ;Vwhih is equivalent to
lim

k→∞
〈f(xk), λ〉Y ;V > 〈ξ, λ〉Y ;V . (5.8)On the other hand, for the element ξ ∈ InfΛ,τ

x∈X∂
f(x) there exists a sequene

{vk}∞k=1 ⊂ X∂ suh that f(vk)
τ→ ξ in Y . Sine the set X∂ is sequentially σ-ompat, we may suppose that vk

σ→ v∗ ∈ X∂ . Then, by inequality (5.5), wededue
lim

k→∞
〈f(xk), λ〉Y ;V ≤ 〈f(vi), λ〉Y ;V , ∀ i ∈ N. (5.9)Passing to the limit in (5.9) as i→ ∞, we get

lim
k→∞
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