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In this paper we study the inverse problems which can not be solved in the
classical framework: Krylov inverse problem, early diagnostics of a rotor unbalance,
the most probable solution. For obtaining the steady solutions of these problems
some algorithms based on the method of Tikhonov regularization are o�ered. Krylov
inverse problem in various statements has been considered and numerical calcula-
tion on real measurements has been executed. Non-standard statements of inverse
problems extend of regularization method possibilities.
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1. Introduction

Intensive development of methods of the solution of inverse problems had
begun after fundamental works of A.N.Tikhonov and scienti�c school which was
created by him [1,2]. It is di�cult to �nd an area of scienti�c researches where the
inverse problems would not be examined. The essential progress are available in
tomography [3], in processing of the images [4], in the non-destroying control [5],
in �nance [6], in inverse problems for the wave equations [7] and many other
areas [8]. As a result the inverse problems arise which can not are investigated
in standard setting. We shall consider a wide class of inverse problems for which
their solutions can be reduced to the solutions of the linear equation

Apz = uδ, (1.1)

where z ∈ Z, uδ ∈ U ; Z, U are functional spaces, Ap : Z → U . The operator
Ap is assumed to be compact. The function uδ is obtained by an experimental
measurements with the known error δ:

‖ uδ − uex ‖U≤ δ, (1.2)

where uex is precise right part which corresponds to absolutely precise experimen-
tal measurements.

Let zex be a solution of the equation Aexzex = uex, with Aex precise given
operator.
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Let's consider the set of functions Qδ,p each of which at substitution in the
equation (1.1) gives inaccuracy which does not exceed an error of initial data. In
further this set we call as the set of possible solutions. This set has the form

Qδ,p = {z : ‖ Apz − uδ ‖U ≤ δ}. (1.3)

It is clear that the set Qδ,p is an unbounded set with respect to the norm of
space Z provided Ap is compact operator [1].

However the solution zex does not belong to this set with guarantee if the
operator Ap is given with some error.

In many inverse problems it is required to estimate the exact solution zex of
the equation (1.1). Therefore set of the possible solutions should be constructed
so that the exact solution zex belongs to this set indeed. To this end it is necessary
to take into account an inaccuracy of the operator Ap.

Let's assume, that the following error estimate of the operator Ap is valid:

‖ Aex −Ap ‖Z→U≤ h. (1.4)

The set of possible solutions to the original equation has the form in this case:

Qh,δ = {z : z ∈ Z, ‖ Apz − uδ ‖U≤ δ + h‖ z ‖Z}.
The set Qh,δ is an unbounded set in norm of space Z too [1].
As for the calculation of the size h there are principal di�culties as the exact

operator Aex can not be constructed in principle. At the solution of practical
problems it is possible to obtain only rough rating from above of this size [9, 10].

The theoretical questions of the solution of inverse problems with the appro-
ximately given operator by a regularization method are investigated in works
[1,4,11�13]. Thus, the problem of solution to the original equation (1.1) is replaced
by the following extreme value problem on set of the possible solutions Qh,δ:

Ω[z0] = inf
z∈Qh,δ

Ω[z], (1.5)

where Ω[z] is a stabilizing functional de�ned on Z1 (Z1 is an everywhere dense
set in Z).

It is possible to interpret this solution as the lowest estimation of the exact
solution in the sense of the chosen stabilizing functional Ω[z]. But at the solution
of practical problems the regularized solution z0 coincides with the trivial solution
even by with small size of h in such statement [9, 10,13].

The success in removing the speci�ed lacks resulted in development of a
method of special mathematical models [9,13]. Such approach has allowed consi-
derably to increase accuracy of approximate regularized solution of problems
with the approximately given operator, and also has allowed to exclude from
calculations the size h. Brie�y, the method of special mathematical models can
be described as follows.

It is assumed that all operators Ap in equation (1.1) have identical structures
and depend on vector parameters of mathematical model p = (p1, p2, ...pN )T of
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researched process p ∈ RN ( (.)T is the mark of transposition). It is supposed that
the parameters of mathematical model are determined inexactly with some error
and by virtue of it they can accept values in the known limits p0

i ≤ pi ≤ p1
i , i =

1, 2, 3, ..., N . Therefore, the vector parameters p has not been de�ned inexactly
and that it can accept values in some closed area p ∈ D ⊂ RN . The operator Ap

in (1.1) will correspond to any vector-parameter p ∈ D and they form some class
of operators KA = {Ap}.

According accepted assumptions all operators Ap are completely continuous
operators. The exact operator Aex has the same structure as operators Ap and
corresponds to some vector pex ∈ D.

Let us consider the union of sets Qp,δ on all vectors p ∈ D

QU =
⋃

p∈D

Qp,δ,

(
⋃

is the union).
This set belongs to set Qh,δ for any h > 0 and any δ > 0.
Further, the approached solution z0 of an inverse problem (1) is found on the

set QU [14, 15]:

Ω[z0] = inf
z∈QU∩Z1

Ω[z] = inf
Ap∈KA

inf
z∈Qp,δ∩Z1

Ω[z],

where Ω[z] is a stabilizing functional, de�ned on Z1 (Z1 is an everywhere dense
set in Z).

In some cases among the sets Qp,δ it is possible to select the set (mathematical
description or operator Ap0 ∈ KA) with special properties [14, 15]. The use in
calculations of such set allows to replace the set of the possible solutions QU

with set Qp0,δ. In other words, such approach allows to reduce a problem with
approached operator to a problem with the �xed operator [14,15]:

Ω[z0] = inf
z∈QU∩Z1

Ω[z] = inf
Ap∈KA

inf
z∈Qp,δ∩Z1

Ω[z] = inf
z∈Qp0,δ∩Z1

Ω[z]. (1.6)

The historical analysis of the �rst inverse problems (Leverier problem, Krylov
problem [12], a problem of Newton about opening of the law of the world gravi-
tation) shows that they were solved without the account of an error of the
mathematical description of real physical process that is inadmissible. This contra-
diction can be removed if to assume that at the solution of the �rst inverse
problems, probably intuitively, the special mathematical models were used. This
method can be used at solution of an inverse problems in standard statement also.

2. Minimax Statement of Inverse Problems

In the process of solution of some inverse problems we face a situation when
approximate regularized solution z0 in statement (1.5) or (1.6) does not corres-
pond to ultimate goals of research. One of such problems is the inverse Krylov's
problem related to de�nition of the real pressure in compressors of ship guns [12].
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But solution of this problem with help of classical method has not resulted in
success.

Detailed description of this inverse problem and method of its solution are
given in work [12]. Let us to introduce in brief the content of this problem which
represents the certain methodological interest.

In January 1914 during the test of ready ship guns the diagrams of pressure in
the cylinder of the compressor were recorded by a special Vikkers indicator [12].
According to the records of this instrument the maximal pressure in the cylinder
of the compressor surpassed 45 MPa with the permissible pressure 25 MPa. The
replacement of a set of ready guns by new ones would require additional expenses
of 2.5 millions gold roubles and the term of readiness of the ships would be delayed
signi�cantly. The research carried out by Krylov showed that Vikkers indicator
worked during the tests under conditions when the records of the instrument
di�ered considerably from the real ones. During this research the following inverse
problem was originally considered by Krylov: to determine the real pressure in the
cylinder of the compressor using the curve of piston motion of Vikkers indicator
and the equation of mathematical model motion of the indicator (mass on a
spring) [12].

Fig. 1. The displacement of the piston of the cylinder during the test

The dependence of a piston motion of the indicator in time (Fig.1) was
approximated by Krylov by means of three terms. This approximation was done
so well, that the error in the uniform metrics did not surpass the thickness of
a pencil line on the diagram of motion of the piston of the indicator. Using
this information Krylov originally considered the following inverse problem: to
determine the real pressure in the cylinder of the compressor P (t), assuming
that the known mathematical model of the moving piston on a spring performs
the program of motion. As a result of the solution of such an inverse problem
was obtained the discontinuous function of pressure [12]. Such result does not
correspond to physical sense of the problem and Krylov rejected such a method
of its solution.

Let's consider this problem from the position of the theory of unstable (incor-
rect) problems [12].
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Mathematical model of piston motion on spring was chosen as following:

mẍ + bẋ + cx = z(t),

where m is the mass of piston, b is the coe�cient of friction, c is the sti�ness
of the spring. Its solution can be reduced to the solution of the integral Volterra
equation of the �rst kind such as (1.1):

∫ t

0
sinω1(t− τ) exp(−b(t− τ))z(τ)dτ = Apz = uδ(t) = Bpxδ, (2.1)

where

uδ(t) = ω1xδ(t)− exp(−bt)[xδ(0) cosω1t +
1
ω1

(−bxδ(0) + ẋδ(0)) sinω1t],

uδ(t) ∈ U ; xδ(t) ∈ X is the function known from experiment; ω1 =
√

ω2 − b2; Ap

� linear operator which depends on vector parameters of mathematical model
p; Ap : Z → U ; Bp � linear operator which depends on vector parameters of
mathematical model p too; Bp : X → U ; z ∈ Z.

Let's assume, that Z = C[0, T ] ([0, T ] is the interval of time, on which the
behavior of function z(t) is being investigated), U = L2[0, T ], X = L2[0, T ].

The inaccuracy of the experimentally measured function xδ(t) in relation to
exact function xex(t) is given and is equal ‖ xδ(t)− xex(t) ‖X ≤ 0.0011 = δ.

The possible variations of parameters of mathematical model of the piston
motion on a spring are the following:

m0 ≤ m ≤ m̂, b0 ≤ b ≤ b̂, c0 ≤ c ≤ ĉ.

Thus, vector parameters which corresponded to mathematical model of process
has the form: p = (m, b, c)T .

Let's assume that

m0 = m = m̂ = 1, b0 = 0.0, b̂ = 2, c0 = ĉ = 103.

The size of the possible scattering of parameters determines the maximal size
of an error of the operator Ap.

Let pm = (0.5(m0 + m̂), 0.5(b0 + b̂), 0.5(c0 + ĉ)T = (mm, bm, cm)T ∈ D.
It is supposed that the exact operators Aex and Bex in the equation (2.1)

satisfy to inequalities:

‖ Aex −Apm ‖C→L2≤ sup
p∈D

‖ Ap −Apm ‖C→L2≤ h; (2.2)

‖ Bex −Bpm ‖C→L2≤ sup
p∈D

‖ Bp −Bpm ‖C→L2≤ d.

Let's estimate the maximal size of an inaccuracy of the operators Ap and Bp:

‖ Aex −Apm ‖C→L2≤ sup
‖z‖C≤1

‖ Aexz −Apmz ‖L2
≤
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≤ sup
p∈D

sup
‖z‖C≤1

{
∫ T

0
[
∫ t

0
K1(t− τ)z(τ) dτ ]2 dt}0.5 ≤

≤ sup
p∈D

{
∫ T

0
[
∫ t

0
| K1(t− τ) | dτ ]2 dt}0.5 = h,

where

K1(t− τ) = exp(−bm(t− τ)) sin ω1m(t− τ)− exp(−b(t− τ)) sin ω1(t− τ),

ω1m =
√

cm

mm
− b2

m, ω1m =
√

c

m
− b2;

‖ Bex −Bpm ‖C→L2≤ sup
‖x‖C≤1

‖ Bexx−Bpmx ‖L2
≤

≤ sup
p∈D

sup
‖x‖C≤1

‖ Bexx−Bpmx ‖L2
≤

≤ sup
p∈D

sup
‖x‖C≤1

{
∫ T

0
[K2(t− τ) + K3(t− τ)]2dt}0.5 = d,

where

K2(t− τ) = ∆ω1x(t)− exp(−bm(t))(−bmx(0)+
+ẋ(0) sinω1mt + ω1mx(0) cosω1mt),

K3(t− τ) = exp(−bt)(−bx(0) + ẋ(0)) sinω1t + ω1x(0) cos ω1t;

∆ω1 = ω1m − ω1.

Then
ω1 = 10.15, bm = 1, ω1m = 10.05.

The calculation of h and d in the given problem was carried out by numerical
methods with account that the maximal value of vector p is reached in a corner
point of area D when p = p1, and also when x(0) = ẋ(0) = 0. As a result we
obtain that h = 0.09333, d = 0.1. In the given problem we try to �nd the real
pressure on the piston, which should be examined with account of an error of the
operators Ap and Bp [1, 8, 9]. According to ideology of such problems the set of
the possible solutions Qh,d,δ of the equation (2.1) is de�ned in view of an error of
the operators Ap and Bp (having in mind that p is accepted as pm):

Qh,d,δ = {z : z ∈ Z, ‖Apmz −Bpmxδ‖U ≤ δ0b0 + d ‖ xδ ‖C +h ‖ z ‖C},

where

b0 = sup
p∈D

‖ Bp ‖, ‖ Aex −Apm ‖C→L2≤ h, ‖ Bex −Bpm ‖C→L2≤ d.
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The exact solution zex of the equation (2.1) belongs to the set Qh,d,δ with
guarantee. The functional Ω[z] is chosen as follows

Ω[z0] =‖ z ‖2
W 1

2 [0,T ]=
∫ T

0
(ż2 + z2) dt. (2.3)

The solution z0 of an extreme value problem (1.5) with the set of possible
solutions Qh,d,δ as a norm in C[0, T ] which equals 0.59 MPa. Such a result of the
solution of an inverse problem can not give the answer to the question - whether
it is necessary to accept or reject the ready ship guns?

The reason is, that in set Qh,d,δ there are functions which do not give piston
motion coinciding with the experimentally measured one with accuracy δ.

To eliminate the negative in�uence of such way of the account of inaccuracy
size of the operators Ap, Bp in the equation (2.1) here is o�ered to use at calcu-
lations the special mathematical model of object [9, 10,15].

Let's introduce into consideration the sets

Xδ = {x : x ∈ X, ‖ xδ − x ‖≤ δ};

Up = {u : u ∈ U, u = Bpx, x ∈ Xδ};

Qδ,p = {z : z ∈ Z; Apz ∈ Up};

Q∗ = ∪Qδ,p,

where ∪ is the union for all p ∈ D, zex ∈ Q∗.
It is obvious that Q∗ ⊂ Qh,d,δ for anyone δ > 0, d > 0 and h > 0.
To increase the accuracy of the approximate solution it is o�ered to use an

extreme value problem (1.5) which will replace extreme value problem suggested
in [8, 9, 13]:

Ω[z∗] = inf
z∈Q∗∩W 1

2

Ω[z] = inf
p∈D

inf
z∈Qδ,p∩W 1

2

Ω[z]. (2.4)

where W 1
2 [0, T ] is the Sobolev functional space.

The statement of Krylov's inverse problem as extreme value problem (2.4) is
more suitable. In this case each function from the set of the possible solutions
Q∗ under substitution into the equation (2.1) gives discrepancy, which does not
surpass δ with some possible parameters of mathematical model.
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Fig. 2. Regularizing solutions of Krylov's inverse problem

The solution [z∗] of an extreme value problem (2.4) with the set of possible
solutions Q∗ has 27MPa in the norm of C[0, T ] ( dotted line on Fig.2).

However there is no guarantee that the function z∗ corresponds to the most
favorable parameters of mathematical model. It is quite possible that there exists
vector parameters p ∈ D and the set Qδ,p, where there will be the function which
has the lowest norm in C[0, T ] larger than 30 MPa. In this case the set of ready
ship guns should be rejected.

With this purpose a statement of the following extreme value problem will be
more valid:

Ω[zs] = sup
p∈D

inf
z∈Qδ,p∩W 1

2

Ω[z] (2.5)

If function zs has the norm in C[0, T ] smaller than 30MPa then there is no
objective base for the rejection of ship guns. With any set of parameters of
mathematical model in a set of possible solutions Q∗ there will be a function
having the lowest amplitude bigger than 30MPa. In other words, with the most
adverse variant of parameters of mathematical model in a set of possible solutions
there will be a function with the minimal amplitude smaller than 30MPa.

Theorem 1. There exists a solution zs of an extreme value problem (2.5) with
functional Ω[z] such as (2.4).

Proof. It is known that the solution of an extreme value problem (2.5) exists
for any vector p ∈ D if functional Ω[z] is stabilizing [1]. Functional Ω[z] is the
continuous function of a vector p at the �xed function x(t) ∈ X, i.e. Ω[zp] = Ω[p].
By Weierstrass theorem a least upper bound of function Ω[p] is reached on closed
limited �nite-dimensional set D for a vector p1 ∈ D. Then the function zs will
give the solution of an extreme value problem (2.5). The statement of the theorem
is proved.

Theorem 2. If functional Ω[z] is stabilizing and if the equation Aexz = Bexxex

has unique solution zex, then at h → 0, d → 0, δ → 0, xs C[0,T ]→ zex.
Proof. Let ηk = (hk, dk, δk) be a sequence converging to zero (hk, dk, δk)

independently to converge to zero at k → 0). To everyone ηk there corresponds
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an element zk ∈ W 1
2 [0, T ]. Let zk ∈ Qp0 ⊂ Q∗. The set zk is bounded in W 1

2 [0, T ].
Really, ‖zk‖W 1

2 [0,T ] ≤ ‖zex‖W 1
2 [0,T ] = ∆. As far as the operator of imbedding

W 1
2 [0, T ] into C[0, T ] is completely continuous, the sequence zk belongs to compact

set N in C[0, T ] which is de�ned as: N = {z : ‖z‖W 1
2 [0,T ] ≤ ∆} ⊂ C[0, T ].

Hence, from zk it is possible to choose converging subsequence zkl
such, that

zkl

C[0,T ]→ z0∈ [0, T ] at l → ∞. For convenience we shall save for elements of this
sequence the same designations as for an initial sequence, i.e. let zk converges on
norm C[0, T ] to z0. We have

‖Aexz0 −Bexxex‖U ≤ ‖Aexz0 −Apmx0‖U + ‖Apmz0 −Apmzk‖U +

+ ‖Apmzk −Bpmxδ‖U + ‖Bpmxδ −Bpxδ‖U +

+ ‖Bpxδ −Bpxex‖U + ‖Bpxex −Bexxex‖U ≤ ‖Aex −Apm‖ ‖z0‖Z +

+ ‖Apm‖ ‖z0 − zk‖Z + ‖Apmzk −Ap0zk‖U + ‖Ap0zk −Bp0xδ‖U +

+ ‖Bp0xδ −Bpmxδ‖U + ‖Bp −Bpm‖ ‖xδ‖X + ‖Bp‖ δk + ‖Bp −Bex‖ ‖xex‖X

≤ hk ‖z0‖Z + ‖Apm‖ ‖z0 − zk‖Z + hk ‖zk‖Z +

+2b0δk + 2dk ‖xδ‖X + dk ‖xδ‖X ≤

≤ 2hk∆ + ‖Apm‖ ‖z0 − zk‖Z + 2b0δk + 3dk ‖xex‖X + dkδk.

From here, in view of continuity and bounded of the operator Apm at any hk,
convergence ηk

k→∞→ 0 and strong convergence zk
k→∞→ z0, we receive

‖Aexz0 −Bexxex‖U = 0

By virtue of prospective uniqueness of the solution of the equation

Aexzex = uex = Bexxex,

we have that z0 = zex.
But zex ∈ W 1

2 [0, T ] ⊂ C[0, T ]. So zk
C[0,T ]→ zex at k → ∞. As all terms of an

initial sequence zk have the bounded norm in C[0, T ] ( ‖zk‖C[0,T ] ≤ ‖zk‖W 1
2 [0,T ] ≤

‖zex‖W 1
2 [0,T ] = ∆ ), the initial sequence zk also converges to zex at k →∞ in the

norm C[0, T ]. The theorem is proved.
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By analogy of work [11,12] it is possible to show, that zk
W 1

2 [0,T ]→ zex as k →∞.
Thus, the speci�ed algorithm of the solution of an extreme value problem (2.5)
is regularized [1]. For the solution of an extreme value problem (2.5) the method
of special mathematical models is suggested. For this purpose it is necessary to
choose among all possible mathematical models of system (operators Ap and Bp

in (2.1)) the mathematical model (operators Ap1 , Bp1) for which the inequality is
carried out

Ω[A−1
p1 Bp1x] ≥ Ω[A−1

p Bpx],

for any admissible function x ∈ Xδ and any vector p ∈ D(A−1
p is the inverse

operator to Ap). We have in mind as the admissible function such function x(t),
at which z(t) ∈ Z. Mathematical model for vector parameters p1 ∈ D we shall
name as a special maximal mathematical model in the given problem.

If the special maximal mathematical model exists then the problem (2.5) can
be replaced by following more simple extreme value problem

Ω[zs] = inf
z∈Qδ,p1∩Z1

Ω[z] (2.6)

Theorem 3. The solution of an extreme value problem (2.6) coincides with one of
the solutions of an extreme value problem (2.5).

Theorem 4. In the inverse Krylov problem the special maximal mathematical
model exists for any admissible function x ∈ Xδ, and this model corresponds to
the parameter p1.

Proof. Using the general results of the regularization method, we can a�rm
that the extreme value problem

Ω[zδ,p] = inf
z∈Qδ,p∩W 1

2 [0,T ]
Ω[z]

has a solution for any vector p ∈ D, including p1 ∈ D (see [1]). For a �xed
admissible function x ∈ X, the functional Ω[z] is a continuous function of the
parameter p:

Ω[ẍ(t) + 2hẋ(t) + ω2x(t)] = Ω[p].

Furthermore,

dΩ
dp

= 4
∫ T

0
(zẋ + żẍ) dt = 4p

∫ T

0
(ẋ2 + ẍ2) dt+

+2{ẋ2(T )− ẋ2(0) + ẍ2(0) + ω2[x2(T )− x2(0) + ẋ2(T )− ẋ2(0)]}.
and the conditions x(0) = ẋ(0) = ẍ2 = 0 hold. Therefore, dΩ

dp > 0 for any
admissible function x(t). Obviously, the function Ω[p] has the global maximum at
the point p = p1. The theorem is proved.

The solution of the extreme value problem (2.5) has the norm in C[0, T ] which
equals to 28.9 MPa (Fig.2. dotted line). The solution of the extreme value problem
(2.6) has the norm in C[0, T ] which equals to 29.8 MPa (Fig.2. continuous line).
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Thus there are no objective reasons for the rejection of guns as defective. The
minimax statement of inverse problems as in (2.6) is admitted practically for
any inverse problems. As the second example of such type of a inverse problem
we shall consider a inverse problem of a estimation of a rotor unbalance by a
method of identi�cation [17,18]. The motion of a rotor in two non rigid supports
is described by system of the ordinary di�erential equations of 18th order [17,18].
By analytical transformations three similar integral equations concerning three
required characteristics of unbalance z1(t), z2(t), z3(t) are obtained ( z1(t) =
mrrϕ̇

2 sin(θ + ϕ), z2(t) = mrrϕ̇
2 cos(θ + ϕ), z3(t) = hmrrϕ̇

2 sin(θ + ϕ), r is the
radius of rotor, mr is the mass of unbalance reduced to a surface of rotor, ϕ̇ is
the angular velocity of rotation, h is unbalance arm, θ is angular deviation of the
factor of unbalance with respect to correction plane):

∫ t

0
Ki(t− τ)zi(τ) dτ = ui,δ(t)

or
Azi = ui,δ = Bi,pxδ, zi ∈ Z, uδ ∈ U, xδ ∈ X, i = 1, 2, 3; (2.7)

where Z,U,X are functional spaces, Bi,p : X → U . The vector-function xδ is
obtained from the experiment with the known error δ:

‖xex − xδ‖U ≤ δ,

where xex is an exact response of object to real external load (or unbalance).
It is important to note, that for inverse problems of the investigated type it is

necessary to take into account an error of the operator in (2.7). If this error is not
taken into account, the solution of inverse problems will have another meaning.

Let's assume that the operators Bi,p depend on vector parameters of mathe-
matical model p = (p1, p2, ...pn)T , p ∈ Rn. It is supposed that the parameters
of mathematical model are determined inexactly with some error and by virtue
of it they can accept values in the known limits p0

i ≤ pi ≤ p̂i, i = 1, 2, 3, ..., n.
Therefore, the vector parameters p has not been de�ned precisely and that it can
accept values in some closed area p ∈ D ⊂ Rn. The operators Bi,p in (13) will
correspond to any vector parameter p ∈ D and they form some class of operators
Ki,B = {Bi,p}. Let's designate by di the sizes of the maximal deviation of the
operators Bi,p from Ki,B:

‖Bi,ex −Bi,p‖X→U ≤ di.

It is supposed that the exact operators Bi,ex have the structure similar to the
structure of Bi,p and that vector parameters of Bi,ex also belongs to domain D.

In this cases the sets of possible solutions have the forms:

Qdi,δ = {z : z ∈ Z, ‖ Az −Bi,pxδ ‖U≤ δ0bi,0 + di ‖ xδ ‖Z},
where

bi,0 = sup
p∈D

‖Bi,p‖X→U , i = 1, 2, 3.
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The sets Qdi,δ are an unbounded sets in norm of space Z when operator A is a
completely continues operator [1]. Further, the method of Tikhonov regularization
for equation with inexactly given operator is a possible way to obtain the steady
solution of problem (2.7) [1]. Let Ω[z] is a stabilizing functional, de�ned on Z1 (Z1

is an everywhere dense set in Z). Let us denote by zi,p the regularized solutions
of equations (2.7):

Ω[zi,p] = inf
z∈Qdi,δ∩Z1

Ω[z] (2.8)

In some cases the problem (2.8) can be transformed to solution of the following
problem [14,15]

Ω[z0
i,p] = inf

Bi,p∈Ki,B

inf
z∈Qi,δ,p∩Z1

Ω[z] (2.9)

where Qi,δ,p = {z : z ∈ Z, ‖Az −Bi,pxδ‖U ≤ δbi,0}. It is possible to interpret this
solution as the lowest estimation of the exact solution in the sense of the chosen
stabilizing functional Ω[z]. However, in some inverse problems such interpretation
of the approached solution has no sense. For example, the real unbalance charac-
teristic zi can distinct from zero and its estimation from below zi,p will be equal
to zero. Let's consider minimax statement of an inverse problem of estimation of
unbalance characteristics of a rotor. Instead of the extreme value problem solution
(2.9) we shall examine the solutions of the following extreme value problems:

Ω[zs
i,p] = sup

Bi,p∈Ki,B

inf
z∈Qi,δ,p∩Z1

Ω[z], i = 1, 2, 3 (2.10)

It was shown in work [16] that for a inverse problem of unbalance de�nition
there exists maximal special mathematical models. On basis of it the extreme
value problem (2.10) can be replaced by more simple extreme value problems
(2.6) with special mathematical models. If functions zs

i,p 6= 0 then real unbalance
is probably distinct from zero. If all functions zs

i,p = 0, then the guaranteed
conclusion about size of real unbalance cannot be take [16]. In traditional way
such answer can not be received in principle. The result of its solution is the
function which allows to carry out some early diagnostics of rotor unbalance. If
this function is equal to zero then the unbalance of a rotor is absent with absolute
guarantee. Rotor unbalance probably exists but without any guarantee if this
function di�ers from zero solution. Probably such a statement of inverse problems
has sense for problems of early technical, medical or other diagnostics.

3. The Most Probable Solution of Inverse Problems

Besides, there is a su�ciently wide class of inverse problems which di�er from
problems given in (1.5), (1.6). For example, for the equation (1.1) the inverse
problem of �nding the most probable solution can be considered in situation when
all operators from the class KA are equivalent. The following inverse problem in
this case can be considered: to �nd function ztr for which the following equality
is valid

‖Aatrztr − uδ‖U = inf
z∈QD,δ

sup
Aa∈KA

‖Aaz − uδ‖U , a ∈ D. (3.1)



140 YU. L. MENSHIKOV

where
QD,δ = {zp : Ω[zp] = inf

z∈Qp,δ∩Z1

Ω[z]}.

The function ztr gives the least deviation of the system response from the
experiment for all operators simultaneously. So it can be considered as the most
probable solution of an inverse problem.

Theorem 5. The function ztr exists and steady with respect to small variations
of initial data if Ω[z] is a stabilizing functional and the Frecher derivative of Ω[z]
di�ers from zero. Proof of this theorem see in work [19].

Extreme problem (17) can be considered as problem of synthesis of model
external load for class operators also (see [8, 15, 19]). In this case class KA can
consist of �nal number of the operators

KA = A1, A2, ..., AN = Ai(i = 1, 2, , 3, ..., N).

Then extreme problem (17) is being reduced to following problem:

inf
zj∈Q̂D,δ

sup
Ai∈KA

‖Aizj − uδ‖U = ‖Aunzun − uδ‖U =

= min
j

max
i
‖Aizj − uδ‖U ,

where

Q̂D,δ = {zj : Ω[zj ] = inf
z∈Qj,δ∩Z1

Ω[z]}, Qj,δ = {z : ‖Ajz − uδ‖U ≤ δ}.

Function zun was named as unitary model of the external load for class of
operators (see [8]).

It is obvious, that the inequality is correct

δ < ‖Aoptzopt − uδ‖U .

As an example of the problem of synthesis of the unitary model for class
of operators was examined the problem of synthesis of model of technological
resistance moment on the part of metal on a working barrels of rolling mill [17,18].

In this case functional spaces Z, U are chosen as the spaces of continuous
functions with the uniform metrics (Z[0, T ] = U [0, T ] = C[0, T ]). The size d is
de�ned by an error of the measuring equipment and it is equal δ = 0.0665 MNm.
The operator Ap in this case looks like

Ap =
∫ t

0
sinω(t− τ)exp(−b1(t− τ))z(τ)dτ, (3.2)

where ω =
√

c
m − b2

4m ; b1 = −b
2m ; c,m, b are parameters of mathematical model

of the object (c is rigidity on twisting, m is moment of inertia, b is coe�cient
of friction). Let class of the operators KA consist of three operators A1, A2, A3,
which have identical structure (3.2) and are de�ned by three sets of parameters
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p1 = (c1,m1, b1)T , p2 = (c2,m2, b2)T , p3 = (c3,m3, b3)T . For the chosen structure
of the mathematical model of a rolling mill these parameters are equal:

c1 = 737.MNm2/s2, c2 = 755MNm2/s2, c3 = 774MNm2/s2,

m1 = 323KNm2,m2 = 336KNm2,m3 = 349KNm2,

b1 = 194KNm2/s, b2 = 217KNm2/s, b3 = 245KNm2/s.

The maximal deviation of the operators Ap ∈ KA from one another is de�ned by
an error of parameters of mathematical model of the rolling mill. The size of the
maximal deviation of the operators Ai ∈ KA was obtained by numerical methods
and it is appeared to be equal h = 0.121. As the characteristic of the stability of
the solution the such functional Ω[z] is accepted

Ω[z] =
∫ T

0
(z2 + ż2)dt.

Fig. 3. The diagram of the most probable function ztr of the moment of technological resistance
on rolling-mill

In Fig. 3 the diagram of function ztr for a typical case of rolling on a smooth
working barrels (top) is submitted [17,18]. For comparison the model of external
load for a class of models KA on the set of the possible solutions Qh,δ is given. The
function, which is the solution of inverse problem in this case has the maximal
deviation from zero equal 0.04 MNm. Such function does not represent interest
as far as it practically coincides with trivial function.

4. Conclutions

Nontraditional statements of inverse problems permit to solve new practical
problems and also to extend the possibilities of regularization method.
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