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In this paper we study an optimal control problem for a nonlinear elliptic
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1. Introduction

The aim of this paper is to prove an existence result for optimal control
problem in coefficients of a nonlinear elliptic variational inequality using the direct
method of calculus of variation and the compensated compactness lemma. As
Francois Murat showed in 1970 (see [15], [16]), the optimal control problems in
coefficients have no solution in general even for linear elliptic equations. It turns
out that this feature is typical for the majority of optimal control problems in
coefficients. Besides, this fact is not just a mathematical problem, but it is also
very restrictive in view of numerical applications.

Let Q be a fixed non-empty open subset of RY with a smooth boundary. The
optimal control problem we consider in this paper is to minimize the discrepancy
between a given distribution zg € LP(2) and the solution of a nonlinear elliptic
variational inequality by choosing an appropriate matrix of coefficients

U e L®°(Q; RV,

Namely, we consider the following minimization problem:

Lty = | ly(e) = (@) do — int (1.1)
Q

subject to

Ue M), yeK, (1.2)
(—div (U() (V)P IVy) + [yl Py, 0o —y)v 2 (flo—yy Vo e K, (1.3)
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where K is a closed convex subset of V = Wol’p(Q), f € LYR) is a fixed function,
and the matrix [7?~2] is defined as follows

(7% = diag{|m [P, [n2 P2l [P72) v € RY. (1.4)

We seek a matrix of coefficients U € Mﬁ’ﬂ(Q) such that the corresponding
weak solution g ¢ of (1.1)~(1.3) would be as close to the desired state zy as
possible.

Note that since the range of optimal control problems in coefficients is very
wide, including as well the optimal shape design problems, optimization of certain
evolution systems, some problems originating in mechanics and others, this topic
has been widely studied by many authors. We mainly could mention Allaire [2],
Buttazzo & Dal Maso [3], [4], Calvo-Jurado & Casado-Diaz [5], [6], [7], Lions [12],
Linvinov [13], Lurie [14], Murat [16], Murat & Tartar [17], Raytum [18], Serovaiskii
[19], Tiba [20], Mel'nik & Zgurovsky [21]. However, to the best knowledge of
author, the existence of the optimal solutions in coefficients to variational inequa-
lities has not been considered in literature.

As was mentioned above, the principal feature of such problems is the fact that
there does not exist an optimal solution in general (see, e.g., [3], [5], [16], [18]). So
here we have a typical situation for the general optimal control theory. Namely,
the original control object is described by well-posed boundary value problem,
but the associated optimal control problem is ill-posed and requires relaxation.

Taking this fact into account, we restrict the problem (1.1)-(1.3) by intro-
ducing the so-called solenoidal controls U € Uy (for comparison, see [9], [10]).
Notice that this class of admissible controls does not belong to the Sobolev space
W1oo(Q), but still is a uniformly bounded subset of L>(£2). We give the precise
definition of such controls in Section 3 and prove that in this case the original
optimal control problem admits at least one solution. Note that we do not involve
the homogenization method and the relaxation procedure in this process.

2. Notation and Preliminaries

In this section we introduce some notation and preliminaries that will be useful
later on.

For two real numbers 1 < p < 400, 1 < g < 400 such that 1/p+1/q =1, the
space Wol’p(Q) is the closure of C§°(Q) in the classical Sobolev space W1 P(Q),
while W~19(Q) is the dual space of Wol’p(Q).

For any vector field 7 € L4(Q) = [L4(Q)]", the divergence is an element of
the space W—19(Q) defined by the formula,

(div v, go)wol,p(ﬂ) = — /9(17, Vory dz, Vo€ Wol’p(Q), (2.1)

where (-, ‘>W01,p(Q) denotes the duality pairing between W~19(Q) and Wol’p(Q),

and (-, -)g~ denotes the scalar product of two vectors in RY.



88 O. P. KOGUT

A vector field U is said to be solenoidal, if divy = 0. For any vector field
v € LI(Q) the relations

(curlﬁ,@%&,p(m = —/ < gz ]§x1> de,Vp € VVO1 P(Q), 4,5=1,...,N,
define a skew-symmetric matrix curl 7, with elements in W~=19(Q). A vector field
U is said to be vortex-free, if curl? = 0. We say that a vector field v € LP(Q)
is potential, if ¥ can be represented in the form ¥ = Vu, where u € WhP(Q).
Obviously, any potential vector is vortex-free.

Monotone operators. Let a and 3 be constants such that 0 < a < 8 < +00. We
define the class Mﬁ’B(Q) as a set of all symmetric matrices U(z) = {a; ;(z)}1<ij<n
in L>°(Q; RY*N) such that the following conditions of growth, monotonicity, and
strong coercivity are fulfilled:

la;j(x)] < B aein Q, Vi,je{l,...,N}, (2.2)
(U@)([CP2)C = [P 2In), ¢ —n)pn =0 ace.in Q, V¢, e RY, (2.3)
N
U@ ) pn = D ag@)|GIP2 GG = el aein (2.4)
i,j=1

1/p
where |n|, = <Z |nk|p> is a Holder norm of order p in R and the matrix
k=1
[¢P~2] is defined in (1.4).

Remark 2.1. Tt is easy to see that Mﬁ’ﬁ(Q) is a nonempty subset of the space
L>®(Q; RV*N) and its typical representatives are diagonal matrices of the form

U(x) = diag{d1 (), d2(x),...,dn(x)},

where o < §;(x) < fae. in QVie {1,..., N}. Indeed, in this case the conditions
(2.2) and (2.4) obviously hold. To verify the monotonicity property (2.3), let us
fix two arbitrary vectors ¢ and 7 in RV, Then

U@) ([P = P2 ), ¢ = ) = ([P U ()¢, C) g
— ([¢" U ()¢, n)RN — ("t (x )777 Opn + (72U ()0, 0) gx

—Zé )IGIP2¢E — Zé )Gl Cims
_25 |772p2Cz771+25 !772”22
=1

N
Z z)|GIPT 2<z Gi Z(S nilP™ 2 i (G — i)

N
Z ) (G126 — [milP ) (G —mi) . (2.5)
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As aresult, the inequality (2.3) is a direct consequence of the well-known estimates

(lalP~2a — [b]P=2b)(a — b) > 2> Pla —bJP, p>2, VYa, bER,  (2.6)
(lafP~2a — [bP~2b)(a — b) = (Ja| + [B])" *|a—b*, 1<p<2, Va, bER,.
(2.7)

Lemma 2.1. For every fixzed control U € M;’ﬁ(Q) an operator Ay 'V — V*
defined as

(Ay v—Z/<am

i,7=1

Jy
81‘ 7

p=2 5
Y v —2
— dx + P2y v dzx,
a@j) oz, /Q "%y
is strictly monotone, coercive and semicontinuous (here by the semicontinuity
property we mean that the scalar function t — (Ay(y + tv),w)y is continuous
forally, v,weV).

Proof. To begin with, we prove the coercivity property of the operator Ay, i.e. we
prove that W — 400, as |ly||ly — oco. Let U € Mﬁ”g(Q) be a fixed matrix.
Then

(Ay v—Z/(am

2,7=1

(%zj

p—2
dy \ 9y
— dx Pde =11 + Is.
&Ej) oz, +/|y[ x="5L+1

Due to (2.4) we have I; > a/ |V y[l) dx. Therefore,
Q

L+ I > minfa, 1} / (g + [V ) de
Q
— min{a, Dllyl% = v(llv) lllv,  (28)

where v(s) = min{a, 1}sP~! — 0o as s — oo. Hence, the operator Ay is coercive.

In order to prove the monotonicity of Ay, we make use of the estimate (2.3)
and the strict monotonicity of the term f(y) = |y|[P~2y with respect to estimations
(2.6) and (2.7). As a result, we have

(Auy) — Au(v),y — o)y = /Q (jyP~2 — [oP~20) (y — v) da
P=2 gy y ov
/ Z aij(x ( 85%) (&ci B 8@) dr
- /Q U (V)P IV — (V)P Vo), Vy - Vo) da

+/ (lyP~2y — [olP%v) (y — v) d > / (lylP~2y — [v[P~?v) (y — v) dz > 0,
Q Q

Vy #vae in Q. (2.9)

p—2 oy

856]'

v
8xj

O
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The semicontinuity property of Ay is a direct consequence of the continuity
of the following functions

/ Z V(y + tv)? ]V(y—i—tv),Vw)RN dx:/g(l)l(;p,t)da;,

2,7=1

29(t) ::/ \y+tv[p2(y+tv)wd$:/<1>2(a:,t)dx,
Q Q

Since |®1(x,t)| < ®Y(z) and |Pa(z,t)| < ®Y(z), by Holder inequality it follows
that ®Y(x) € LY(Q) and ®)(z) € L1(Q).
Ast — 0, we have

N
O (x,t) — P1(2,0) = Z (y)P~%Vy, Vw) for ae. z,

Dy (z,t) — <I>2(m, 0) = |y[P~2yw for a.e. x,

/ Dy (z,0)dx +/ Dy(2,0)dr = (Ay(y),w)y = 21(0) + 22(0).
Q

Q
Hence it is sufficient to cite Lebesgue’s dominated theorem to obtain the required

relations %ir% z1(t) = z1(0) and }iné 22(t) = 22(0). The proof is complete. O

FElliptic variable inequalities. Following Lions [11], let us cite some well known
results concerning solvability and uniqueness and smoothness properties for non-
linear variational inequalities which we use in the sequel.

Theorem 2.1. [11, Theorem 8.2] Let V' be a Banach space and K C V be a
closed convex subset. Suppose also that A : K — V™ is a nonlinear operator and
f € V* is a given element of the dual space. The following variational problem:
to find an element y € K such that

(A(y),v—y>v > <fav_y>V7 Vv € K, (210>
admits at least one solution provided the following conditions:

1. operator A is pseudomonotone, i.e. it is bounded and if yr — y weakly in
V, yk,y € K and limsupy,_, . (A(yk), yx — y)v < 0, then

hggf@‘l(yk)a Y —v)v > (A(y),y —v)v, Vv e V.

2. operator A is coercive, i.e. there exists an element vy € K such that

(A(y),y — vo)v
yllv

— 400 as [[yly — o0, y € K

Theorem 2.2. [11, Theorem 8.3] If the operator A : K — V* in Theorem
2.1 is strictly monotone on K, then variational inequality (2.10) admits a unique
solution.
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The pseudomonotonicity property plays the key role in solvability of the
problem (2.10). The following result concerns with the sufficient conditions for
fulfillment of this property.

Proposition 2.1. [11, Proposition 2.5] For a nonlinear operator A : V. — V*
the following implication takes place: A is a bounded monotone semicontinuous
operator = A is a pseudomonotone operator.

Referring to Lions [11]|, we make use the following assumptions.

Hypothesis 1. There exists a reflexive Banach space X such that X C V*,
the imbedding X <— V* is continuous, and X is dense in V*.

Hypothesis 2. There can be found a duality mapping J : X — X™ such that
Vy € K,Ve > 0 there exists an y. € K such that A(y.) € X and y.+eJ(A(y:)) =
Y.

Theorem 2.3. [11, Theorem 8.7] Assume that the Hypotheses 1 and 2 hold
true' . Let operator A : V. — V* be monotone, semicontinuous, bounded and satisfy
assumption 2 of Theorem 2.1. Then the inclusion f € X implies that any solution
y of variational inequality (2.10) is such that A(y) € X.

3. Setting of the optimal control problem

The optimal control problem we consider in this paper is to minimize the
discrepancy between a given distribution zp € LP(§2) and the solution y = vy ¢
of the variational inequality (1.2)-(1.3) by choosing an appropriate matrix of
coefficients U € L (€; RV*N). Namely, we consider the minimization problem in
the form (1.1)—(1.3).

Let &1, & be given functions of L*°(2) such that 0 < & (x) < &(x) a. e. in Q.
Let {Q1,..., Qn} be a collection of nonempty compact subsets of W~14(Q).

To define the class of admissible controls, we introduce two sets

Uy = { U = [ai5] € MgP(Q)|€1(2) < aij(2) < &a(a)
a.e. x € £, Vi,jzl,...,N}, (3.1)
Usor = {u — [@1,...,dn] € M;ﬂ(g)] divd; € Qi, Yi=1,... ,N}, (3.2)
assuming that the intersection Uy N Usy € L (; RV*N) is a nonempty set.

Definition 3.1. We say that a matrix & = [a,;] is an admissible control to the
variational inequality (1.2)—(1.3) if U € Uyg := Up N Usyy.

!(see also [11, Theorem 8.8.])
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Remark 3.1. We suppose that the set of admissible controls U,q is sufficiently
rich, otherwise, the optimal control problem

Lty = | 19(o) = zol@)l da — int, (33
Q
UEUu, y€ K, (3-4)
(—div (U() [(Vy)* 2 |Vy) + [P 2y v —y)v > (fo—y)y Yo e K,  (3.5)
becomes trivial. Notice also that this class of admissible controls does not belong

to W1>°(Q) or to the Sobolev space W14(Q), but still is a uniformly bounded
subset of L>(1Q2).

The existence of admissible controls is important both from a theoretical
and an applicational point of view. Usually controls of this type arise in the
optimization of materials (represented by the matrix ). So this question is largely
an open one, except for some special cases, and an affirmative answer is usually
just put as a hypothesis (see [2], [6], [14]).

Taking this fact into account we can indicate the following set of admissible
pairs to the optimal control problem (3.3)—(3.5):

E={U,y) €Uy xV |yeK,(U,y) are related by (1.3)}. (3.6)

As an obvious consequence of Theorems 2.1, 2.2, Proposition 2.1 and Lemma
2.1, we have the following conclusion.

Proposition 3.1. For every control U € Mﬁ’ﬁ(Q) and every f € L1(Q) there
exists a unique solution to the variational inequality (3.4)-(3.5).

Proof. Since the first assumption of Theorem 2.1 is obviously true, it remains to
verify the condition 2 of that Theorem. Let us fix an arbitrary element vg € K
and a matrix U € M;’B(Q)_ For all y € K we have:

<A(Z/lay)7y - UO>V = <A(va)7y>v - <A(u7y)7U0>V
= (lyllv) lyllv = (AU, v),vo)v = A(llyllv) lyllv — KA, ), vo)v . (3.7)
Using the estimate (2.8), we obtain

(AU, y),vo0)v| =

/Q UI(Vy)P2IVy, Vo) o da + /Q yP 2o da

{in view of (2.2)} < f ‘/Q ([(Vy)p_Q]Vy, VU())RN dx

1/q
+ ‘/Q ’y‘pinyUO dx < /BHVUOHLP(Q) </Q H(Vy)p*Q]vy‘Z dl’)

1/q
T lloollzogey ( PRk d:c) _ { since ¢ = p/(p— 1)}

1/q
—Bllwolly ([ 198 dz) " + oo Iy,
?)

< max{g, 1} ool Iyl . (3.8)
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Combining (3.7) and (3.8), we come to the required conclusion

<A(u7 y)v Yy — U0>V
lyllv

-1 .
— Il <mm{a, -

-2
> (llyllv) —max{B, 1} [lvollv [lyl3,

max{3, 1}|lvol|v
llyllv

) — 400, as ||y|lv — oco. (3.9)

As was mentioned in proposition 3.1, the set = is nonempty. So, we adopt the
following concept:
Definition 3.2. We say that a pair (U°,y°) € L®(Q;RV*N) x V is an optimal
solution to the problem (3.4)—(3.5) if (U°,4°) € Zand LU°,y°) = (uin)f LU,y).
Y)EE

The main question to be answered on the problem (3.3)—(3.5) is about solva-
bility: does an optimal pair (U°, y°) in Lo°(Q; RV*N) x Wol’p(Q) satisfying (3.3)-
(3.5) exist? To begin with, we need the following result (see [9]):

Proposition 3.2. The set U,q is sequentially compact with respect to the weak-*
topology of L®(Q; RV*N),

Proof. Let {Uy = [d1,...,dN k] }ren C Uaq be an arbitrary sequence of admissible
controls. Since Uyqg C U, and Uy is the sequentially weakly-x compact subset of
L (Q; RV*N) e may suppose that there exist a matrix Uy = [@10,...,an0] € Up
and elements f; € Q; ¢ =1,..., N such that

/(dik,go)RN dz — / (@0, 9)ry dx, as k — oo,
Q Q
Vo e LY(Q) = [LYQ)]Y, Vi=1,2,...,N, (3.10)
and divd;p— f; stronglyin W 19(Q), ask —ooVi=1,...,N.  (3.11)

It remains to prove that diva;g = f; for all ¢« = 1,...,N. To do this, we

choose ¢ in (3.10) as a potential vector, that is, ¢ = Vv, where v € Wol’p(Q).

Then, the relation (3.11) implies [, (@jk, VO)gn dz = *(divajik,v>wl,p(g) —
0

—<fi,v>W01,p(Q), as k — oo, Vi = 1,...,N. Using this and relation (3.10), we
finally get

lim (c’iik,Vv)RN d$:/ (6i0,vv>RN dx
k—oo J Q
= —(div(iig,v)W&,p(Q) = —(fi7v>W01,p(Q) Vi=1,...,N.

As a result, we have Uy = [d10,...,dN0] € User- This concludes the proof. ]

4. Existence of optimal solutions

In order to discuss the existence of solutions for the problem (3.3)-(3.5), we
make use of the following result (for comparison see [22]).
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Lemma 4.1. [9] Let {Fitven C LIQ), {Gilren C LP(Q) be the bounded se-

quences of vector-functions such that fr, — fo in LY(Q) and g — Go in LP(Q).

If {divf;;}k N is compact with respect to the strong topology of W—14(Q), and
€

curlgp, =0 Vk €N, then

lim [ ¢ (ﬁ,gk)RN dz = /ng) (ﬁ),go)RN dr, V¢eCP(Q).  (4.1)

k—oo J

Now we are in a position to study the topological properties of the set = C
L(Q; RVXNY % Wol’p(Q) of all admissible pairs to the optimal control problem
(3.3)-(3.5). Let 7 be the topology on the set L(Q;RN*N) x W, ?(Q) which
we define as the product of the weak-* topology of L°(€; RV*N) and the weak
topology of Wy ?(9).

Theorem 4.1. Assume that for the set K in problem (3.4)—(3.4) the hypothesis 2
holds true provided X = L4(SY). Then for every f € L1(2) the sel = is sequentially
T-closed.

Proof. Let {(Ug,yx)}ken C Z be any 7-convergent sequence of admissible pairs
to the problem (3.3)-(3.5). Let (Up,yo) be its 7-limit. Our aim is to prove that
(Uo, yo) € E. Let us set

AU, y) = —div U(x) [(Vy)P 2] Vy) + [yl 2y = AU, y) + AU, y),
Aty y) = ~div (U) ()72 Vy) = —divaU(z), V).

By Proposition 3.2 and the initial assumptions, we have Uy € U,q. Therefore,

Uy — Uy = [d10,-..,d@Nn0] weakly-* in L=(Q, RVN*N), (4.2)
div d@;, — divd;o strongly in W=59(Q), Vi=1,...,N, (4.3)
ye = yo in WP (Q). (4.4)

Hence

{[(Vyk)p_2] Vyk}kGN is bounded in L‘](Q)’ q= p/(p - 1)1
{lyrlP "y} e is bounded in LI(9), (4.5)
yr — yo strongly in LP(Q), yr(z) — yo(x) a.e. in Q. (4.6)

Then, by (4.6) and monotonicity of the function g(¢) = |¢|[P~2(, we have

lye P2y, — |yo|P~2yo almost everywhere in Q. Using this and (4.5), we conclude
(see [11]): |yr|P"2yr — |yolP2yo in L4(Q). Since f € L(), in view of theorem
2.3 we have —div (U [(Vyr)? 2] Vi) + [yelP 2 yr € LU(Q), Yk € N and, hence,
—diva(Uy, Vyi) € L1(Q) Yk € N. The sequence {yx }ren is bounded in the space
Wol’p(Q) due to the coercivity of the operator A(U,y) (see (3.9)). Therefore, the
sequence {Us[(Vy)P~2|Vy}ren is bounded in LI(Q). So, passing to a subsequence,
we may assume that there exists a vector-function £ € L4(Q) such that

a(Uy, V) = Ue[(Vy)P | Vy =: & — € in LIQ). (4.7)
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In view of this and the fact that
(~divGirhy = [ (6 Ve)aw do
~ [ (€ Vol do = (~divE ey, Vo € CR(@),

we have: divg, — divE weakly in W-19(Q). The fact that divé, € L4(Q)
VEk € N implies (see [1]): Hdivﬁ_/;HLq(Q) = ||div§_;;||W71,q(Q), Vk € N. Hence,
the sequence {div 5;}%1\1 is bounded in L%(Q2). Therefore, due to the compact-
ness of the embedding L4(Q)) — W~14(Q), we may suppose that the strong
convergence in W~14(Q) of this sequence takes place. In what follows, we show
that £ = U [(Vyo)P~2]Vyo. To do so, we consider the scalar function

v(x) = (z,2)pnN, (4.8)

where z is a fixed element of RY. Since the operator A; is monotone, it follows
that for every z € R and every positive function ¢ € C5°(9), we have

Jo (@) (e, Vyr) — ally, V), Vyi — Vo)py dz > 0, or, taking into account
(4.8), this inequality can be rewritten as

/Qcp(x) (a(Ui, Vi) — a(Uy, 2),Vyr — 2)gny dz > 0. (4.9)

Our next intention is to pass to the limit in (4.9) as k¥ — oo using Lemma 4.1.
Since

—div a(Uy, Vi) — —div € strongly in W—19(€), } (4.10)

curv (Vyg —2) =curvVy, =0, VkeN,

it remains to show that the sequence {diva(Uy, z) }ren is compact with respect
to the strong topology of W~14(Q).
Indeed, for every ¢ € C§°(Q2), we have

(—diva(ly, z), ¢)y :/(a(Uk7z)7Vg0)RN dx

)
(@1 k(2), [2P72]2)pn
:/(Uk[zp %)z, V) dx:/ . , Vi dx =
0 5 (@n k(2), [P72]2)pN RN
N N
= [ 2 o ) o = [ 325 e -
Q =1 Q =1 j=1

N N
=Y bl %y @), Vil do = 3 572 (—div i, )y = e
(4.11)
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Then using (4.3), we get

n n
lim J. = (P2, 4 —diva. — NP2, (_diva. )
kgf)lo k jz_:l‘zy‘ Zj kgrolo< 1Vajk790>v ;’ZJ’ zj 1VaJOa<P>V

(4.12)

Making the converse transformations with (4.12) as we did it in (4.11), we come
to the relation

klim (—diva(Uy, 2), )y = (—diva(ldo, 2),¢)y - (4.13)
—00
Since for every ¢ = 1,..., N the sequences {div @;j }xen are strongly conver-

gent in W~14(Q), from (4.11)-(4.13) it follows that

lim (—diva(Uy, 2), pr)y = (—diva(lo, ), ¢)y (4.14)

k—o0

for each sequence {prlren C C§°(€2) such that ¢ — ¢ in Wol’p(Q). Thus,
summing up the above results, we obtain
diva(Uy, z) — diva(ly,z) strongly in W~59(Q), (4.15)
a(Up,z) = U272z = Up[2P~ %]z weakly-* in L>®(Q). '
As a result, combining properties (4.10) and (4.15), it has been shown that all

suppositions of Lemma 4.1 are fulfilled. So, taking into account (4.4), (4.10),
(4.15), and passing to the limit in inequality (4.9) as k — oo, we get

/g&(l‘) (5 - a(uUaZ)avyO - Z)RN dx > 0, Vz € RN
Q

for all positive ¢ € C§°(£2). After localization, we have (§ —a(Uy, z), Vyo — 2)py >
0, for a.a. x € Q, Vz € RV,

Remark 4.1. The operator a(U,-) : RY — R is monotone and continuous.

Indeed, for any sequence {up = [u,lc,,u]kv]} C RY such that up, — ug =
[ud,...,udY] in RN it follows that uf — u) in R, Vi = 1,...,N. Then, it
is easy to see that |u|P™?ul — |ui|P72ul in R Vi = 1,...,N and, therefore,

[(ur)P~2Jus, — [(uo)P~2Jug in RY. Then the monotonicity property immediately
follows from the estimate (2.3).

Further, since the operator a(i,-) : RY — RY is monotone, and continuous,
then in view of |8, Lemma II1.1.3| it follows that

& =a(lly, Vyo) = L{O[(Vyo)p_2]Vyo, for a.a. z € Q. (4.16)
Now, we can pass to the limit in the variational inequality

(AU, yk), yk —v)v < (f,yr —v)v, Vv € K, (4.17)



ON OPTIMAL CONTROL IN COEFFICIENTS FOR VARIATIONAL INEQUALITY 97

using again for its left hand-side the Compensated Compactness Lemma 4.1.

k1LH;O<A(Uk, Yk)s Yk — V)V
= ;E&(diV a(Ui, Vyr), yr — v)v + k1LH;o<|yk|p_zyk, Yk — V)V

= (diva(lo, Vyo),yo — v)v + k1LH;O<|yk\p_2yk, Yk — V)V

Since |yr|P"2yr — |yo/P"%yo in LI(2), in view of compactness of the embedding
LY(Q) — W=19(Q) we have: |yx|P2yr — |yo|P 2yo strongly in W~14(Q). The-
refore, imp_ oo (|y2P " 2ur, & — v)v = {0 ">y0,%0 — v)v. Passing to the limit
in (4.17), we obtain (A(Uo,y0),y0 — v)v < (f,yo — v)v, Yv € K, Hence, the
7-limit pair (Ao, yo) is admissible to the problem (3.3)—(3.5), and this concludes
the proof. O

Now we can turn to the existence of optimal pairs.

Theorem 4.2. Under the control admissibility hypothesis (Uyq = Up N\ Uy # 0),
the optimal control problem (3.3)—(3.5) admits at least one solution (UP!,y°P!) €
= C L0 RV*N) x W P(Q) for every f € LI(Q).

Proof. The control admissibility condition ensures the existence of a minimizing
sequence {(Uk,Yk) € Z}pen, 1€ limg oo LUk, yr) = infyy ez LU, y) < +oo.
Since the sequence of admissible controls {Uy, € Usa}jcy is bounded in the space
L®(Q; RV*N) and using the arguments of Theorem 4.1 one can easily to show
that the minimizing sequence is bounded in L>(€; RV*NV) x Wol’p(ﬂ) and hence,
within a subsequence, there exists a pair (U*,y*) such that Uy — U* weakly-
% in LO(Q,RVXN) e — y* in Wol’p(ﬂ). By Theorem 4.1 the pair (U*,y*)
is admissible to the problem (3.3)-(3.5). Moreover, since the cost functional L
is lower semicontinuous, we get L(U*,y*) < lilggfL(Uk,yk) = (uin)f :L(Z/l,y).

5 =

Hence, (U*,y*) is an optimal pair. O

Remark 4.2. The argumentas used in the proof of Theorem 4.2 is related to the
so-called “direct method” of the Calculus of Variations which, roughly speaking,
intends to construct a minimizing sequence {(Uy, yx) € E}cn-
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