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In this paper we study an optimal control problem for a nonlinear elliptic
variational inequality with generalized solenoidal coe�cients which we adopt as
controls in L∞(Ω). We prove the existence of optimal solution of the stated problem.
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1. Introduction

The aim of this paper is to prove an existence result for optimal control
problem in coe�cients of a nonlinear elliptic variational inequality using the direct
method of calculus of variation and the compensated compactness lemma. As
Fran�cois Murat showed in 1970 (see [15], [16]), the optimal control problems in
coe�cients have no solution in general even for linear elliptic equations. It turns
out that this feature is typical for the majority of optimal control problems in
coe�cients. Besides, this fact is not just a mathematical problem, but it is also
very restrictive in view of numerical applications.

Let Ω be a �xed non-empty open subset of RN with a smooth boundary. The
optimal control problem we consider in this paper is to minimize the discrepancy
between a given distribution z∂ ∈ Lp(Ω) and the solution of a nonlinear elliptic
variational inequality by choosing an appropriate matrix of coe�cients

U ∈ L∞(Ω;RN×N ).

Namely, we consider the following minimization problem:

L(U , y) =
∫

Ω

|y(x)− z∂(x)|p dx → inf (1.1)

subject to

U ∈ Mα,β
p (Ω), y ∈ K, (1.2)

〈−div
(U(x) [(∇y)p−2]∇y

)
+ |y|p−2y, v − y〉V ≥ 〈f, v − y〉V ∀ v ∈ K, (1.3)

�����������������
c© O. P. Kogut, 2011



ON OPTIMAL CONTROL IN COEFFICIENTS FOR VARIATIONAL INEQUALITY 87

where K is a closed convex subset of V = W 1,p
0 (Ω), f ∈ Lq(Ω) is a �xed function,

and the matrix [ηp−2] is de�ned as follows

[ηp−2] = diag{|η1|p−2, |η2|p−2, . . . , |ηN |p−2} ∀η ∈ RN . (1.4)

We seek a matrix of coe�cients U ∈ Mα,β
p (Ω) such that the corresponding

weak solution yU ,f of (1.1)�(1.3) would be as close to the desired state z∂ as
possible.

Note that since the range of optimal control problems in coe�cients is very
wide, including as well the optimal shape design problems, optimization of certain
evolution systems, some problems originating in mechanics and others, this topic
has been widely studied by many authors. We mainly could mention Allaire [2],
Buttazzo & Dal Maso [3], [4], Calvo-Jurado & Casado-Diaz [5], [6], [7], Lions [12],
Linvinov [13], Lurie [14], Murat [16], Murat & Tartar [17], Raytum [18], Serova�iski�i
[19], Tiba [20], Mel'nik & Zgurovsky [21]. However, to the best knowledge of
author, the existence of the optimal solutions in coe�cients to variational inequa-
lities has not been considered in literature.

As was mentioned above, the principal feature of such problems is the fact that
there does not exist an optimal solution in general (see, e.g., [3], [5], [16], [18]). So
here we have a typical situation for the general optimal control theory. Namely,
the original control object is described by well-posed boundary value problem,
but the associated optimal control problem is ill-posed and requires relaxation.

Taking this fact into account, we restrict the problem (1.1)�(1.3) by intro-
ducing the so-called solenoidal controls U ∈ Usol (for comparison, see [9], [10]).
Notice that this class of admissible controls does not belong to the Sobolev space
W 1,∞(Ω), but still is a uniformly bounded subset of L∞(Ω). We give the precise
de�nition of such controls in Section 3 and prove that in this case the original
optimal control problem admits at least one solution. Note that we do not involve
the homogenization method and the relaxation procedure in this process.

2. Notation and Preliminaries

In this section we introduce some notation and preliminaries that will be useful
later on.

For two real numbers 1 < p < +∞, 1 < q < +∞ such that 1/p + 1/q = 1, the
space W 1, p

0 (Ω) is the closure of C∞
0 (Ω) in the classical Sobolev space W 1, p(Ω),

while W−1, q(Ω) is the dual space of W 1, p
0 (Ω).

For any vector �eld ~v ∈ Lq(Ω) = [Lq(Ω)]N , the divergence is an element of
the space W−1, q(Ω) de�ned by the formula

〈div~v, ϕ〉
W 1, p

0 (Ω)
= −

∫

Ω
(~v,∇ϕ)RN dx, ∀ϕ ∈ W 1, p

0 (Ω), (2.1)

where 〈·, ·〉
W 1, p

0 (Ω)
denotes the duality pairing between W−1, q(Ω) and W 1, p

0 (Ω),
and (·, ·)RN denotes the scalar product of two vectors in RN .
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A vector �eld ~v is said to be solenoidal, if div~v = 0. For any vector �eld
~v ∈ Lq(Ω) the relations

〈curl~v, ϕ〉i j

W 1, p
0 (Ω)

= −
∫

Ω

(
vi

∂ϕ

∂xj
− vj

∂ϕ

∂xi

)
dx, ∀ϕ ∈ W 1, p

0 (Ω), i, j = 1, . . . , N,

de�ne a skew-symmetric matrix curl~v, with elements in W−1, q(Ω). A vector �eld
~v is said to be vortex-free, if curl~v = 0. We say that a vector �eld ~v ∈ Lp(Ω)
is potential, if ~v can be represented in the form ~v = ∇u, where u ∈ W 1, p(Ω).
Obviously, any potential vector is vortex-free.

Monotone operators. Let α and β be constants such that 0 < α ≤ β < +∞. We
de�ne the class Mα,β

p (Ω) as a set of all symmetric matrices U(x) = {ai j(x)}1≤i,j≤N

in L∞(Ω;RN×N ) such that the following conditions of growth, monotonicity, and
strong coercivity are ful�lled:

|ai j(x)| ≤ β a.e. in Ω, ∀ i, j ∈ {1, . . . , N}, (2.2)(U(x)([ζp−2]ζ − [ηp−2]η), ζ − η
)
RN ≥ 0 a.e. in Ω, ∀ ζ, η ∈ RN , (2.3)

(U(x)[ζp−2]ζ, ζ
)
RN =

N∑

i,j=1

aij(x)|ζj |p−2 ζj ζi ≥ α |ζ|pp a.e. in Ω, (2.4)

where |η|p =
(

N∑
k=1

|ηk|p
)1/p

is a H�older norm of order p in RN and the matrix

[ζp−2] is de�ned in (1.4).
Remark 2.1. It is easy to see that Mα,β

p (Ω) is a nonempty subset of the space
L∞(Ω;RN×N ) and its typical representatives are diagonal matrices of the form

U(x) = diag{δ1(x), δ2(x), . . . , δN (x)},
where α ≤ δi(x) ≤ β a.e. in Ω ∀ i ∈ {1, . . . , N}. Indeed, in this case the conditions
(2.2) and (2.4) obviously hold. To verify the monotonicity property (2.3), let us
�x two arbitrary vectors ζ and η in RN . Then

(U(x)([ζp−2]ζ − [ηp−2]η), ζ − η
)
RN =

(
[ζp−2]U(x)ζ, ζ

)
RN

− (
[ζp−2]U(x)ζ, η

)
RN −

(
[ηp−2]U(x)η, ζ

)
RN +

(
[ηp−2]U(x)η, η

)
RN

=
N∑

i=1

δi(x)|ζi|p−2ζ2
i −

N∑

i=1

δi(x)|ζi|p−2ζiηi

−
N∑

i=1

δi(x)|ηi|p−2ζiηi +
N∑

i=1

δi(x)|ηi|p−2η2
i

=
N∑

i=1

δi(x)|ζi|p−2ζi(ζi − ηi)−
N∑

i=1

δi(x)|ηi|p−2ηi(ζi − ηi)

=
N∑

i=1

δi(x)
(|ζi|p−2ζi − |ηi|p−2ηi

)
(ζi − ηi) . (2.5)
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As a result, the inequality (2.3) is a direct consequence of the well-known estimates

(|a|p−2a− |b|p−2b)(a− b) ≥ 22−p|a− b|p, p ≥ 2, ∀ a, b ∈ R, (2.6)
(|a|p−2a− |b|p−2b)(a− b) ≥ (|a|+ |b|)p−2 |a− b|2, 1 < p ≤ 2, ∀ a, b ∈ R, .

(2.7)

Lemma 2.1. For every �xed control U ∈ Mα,β
p (Ω) an operator AU : V → V ∗

de�ned as

〈AU (y), v〉V =
N∑

i,j=1

∫

Ω

(
aij(x)

∣∣∣∣
∂y

∂xj

∣∣∣∣
p−2 ∂y

∂xj

)
∂v

∂xi
dx +

∫

Ω
|y|p−2y v dx,

is strictly monotone, coercive and semicontinuous (here by the semicontinuity
property we mean that the scalar function t → 〈AU (y + tv), w〉V is continuous
for all y, v, w ∈ V ).

Proof. To begin with, we prove the coercivity property of the operator AU , i.e. we
prove that 〈AU (y),y〉V

‖y‖V
→ +∞, as ‖y‖V →∞. Let U ∈ Mα,β

p (Ω) be a �xed matrix.
Then

〈AU (y), y〉V =
N∑

i,j=1

∫

Ω

(
aij(x)

∣∣∣∣
∂y

∂xj

∣∣∣∣
p−2 ∂y

∂xj

)
∂y

∂xi
dx +

∫

Ω
|y|p dx = I1 + I2.

Due to (2.4) we have I1 ≥ α

∫

Ω
|∇ y|pp dx. Therefore,

I1 + I2 ≥ min{α, 1}
∫

Ω

(|y|p + |∇ y|pp
)

dx

= min{α, 1}‖y‖p
V = γ(‖y‖V ) ‖y‖V , (2.8)

where γ(s) = min{α, 1}sp−1 →∞ as s →∞. Hence, the operator AU is coercive.
In order to prove the monotonicity of AU , we make use of the estimate (2.3)

and the strict monotonicity of the term f(y) = |y|p−2y with respect to estimations
(2.6) and (2.7). As a result, we have

〈AU (y)−AU (v), y − v〉V =
∫

Ω

(|y|p−2y − |v|p−2v
)
(y − v) dx

+
∫

Ω

N∑

i,j=1

aij(x)

(∣∣∣∣
∂y

∂xj

∣∣∣∣
p−2 ∂y

∂xj
−

∣∣∣∣
∂v

∂xj

∣∣∣∣
p−2 ∂v

∂xj

)(
∂y

∂xi
− ∂v

∂xi

)
dx

=
∫

Ω

(U(x)([(∇y)p−2]∇y − [(∇v)p−2]∇v),∇y −∇v
)
RN dx

+
∫

Ω

(|y|p−2y − |v|p−2v
)
(y − v) dx ≥

∫

Ω

(|y|p−2y − |v|p−2v
)
(y − v) dx > 0,

∀ y 6= v a.e. in Ω. (2.9)
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The semicontinuity property of AU is a direct consequence of the continuity
of the following functions

z1(t) :=
∫

Ω

N∑

i,j=1

(U [∇(y + tv)p−2]∇(y + tv),∇w
)
RN dx =

∫

Ω
Φ1(x, t) dx,

z2(t) :=
∫

Ω
|y + tv|p−2(y + tv)w dx =

∫

Ω
Φ2(x, t) dx,

Since |Φ1(x, t)| ≤ Φ0
1(x) and |Φ2(x, t)| ≤ Φ0

2(x), by H�older inequality it follows
that Φ0

1(x) ∈ L1(Ω) and Φ0
2(x) ∈ L1(Ω).

As t → 0, we have

Φ1(x, t) → Φ1(x, 0) =
N∑

i,j=1

(U [∇(y)p−2]∇y,∇w
)
for a.e. x,

Φ2(x, t) → Φ2(x, 0) = |y|p−2yw for a.e. x,∫

Ω
Φ1(x, 0) dx +

∫

Ω
Φ2(x, 0) dx = 〈AU (y), w〉V = z1(0) + z2(0).

Hence it is su�cient to cite Lebesgue's dominated theorem to obtain the required
relations lim

t→0
z1(t) = z1(0) and lim

t→0
z2(t) = z2(0). The proof is complete.

Elliptic variable inequalities. Following Lions [11], let us cite some well known
results concerning solvability and uniqueness and smoothness properties for non-
linear variational inequalities which we use in the sequel.

Theorem 2.1. [11, Theorem 8.2] Let V be a Banach space and K ⊂ V be a
closed convex subset. Suppose also that A : K → V ∗ is a nonlinear operator and
f ∈ V ∗ is a given element of the dual space. The following variational problem:
to �nd an element y ∈ K such that

〈A(y), v − y〉V ≥ 〈f, v − y〉V , ∀v ∈ K, (2.10)

admits at least one solution provided the following conditions:

1. operator A is pseudomonotone, i.e. it is bounded and if yk → y weakly in
V , yk, y ∈ K and lim supk→∞〈A(yk), yk − y〉V ≤ 0, then

lim inf
k→∞

〈A(yk), yk − v〉V ≥ 〈A(y), y − v〉V , ∀v ∈ V.

2. operator A is coercive, i.e. there exists an element v0 ∈ K such that

〈A(y), y − v0〉V
‖y‖V

→ +∞ as ‖y‖V →∞, y ∈ K

Theorem 2.2. [11, Theorem 8.3] If the operator A : K → V ∗ in Theorem
2.1 is strictly monotone on K, then variational inequality (2.10) admits a unique
solution.
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The pseudomonotonicity property plays the key role in solvability of the
problem (2.10). The following result concerns with the su�cient conditions for
ful�llment of this property.

Proposition 2.1. [11, Proposition 2.5] For a nonlinear operator A : V → V ∗

the following implication takes place: A is a bounded monotone semicontinuous
operator ⇒ A is a pseudomonotone operator.

Referring to Lions [11], we make use the following assumptions.
Hypothesis 1. There exists a re�exive Banach space X such that X ⊂ V ∗,

the imbedding X ↪→ V ∗ is continuous, and X is dense in V ∗.
Hypothesis 2. There can be found a duality mapping J : X → X∗ such that

∀ y ∈ K, ∀ ε > 0 there exists an yε ∈ K such that A(yε) ∈ X and yε+εJ(A(yε)) =
y.

Theorem 2.3. [11, Theorem 8.7] Assume that the Hypotheses 1 and 2 hold
true1. Let operator A : V → V ∗ be monotone, semicontinuous, bounded and satisfy
assumption 2 of Theorem 2.1. Then the inclusion f ∈ X implies that any solution
y of variational inequality (2.10) is such that A(y) ∈ X.

3. Setting of the optimal control problem

The optimal control problem we consider in this paper is to minimize the
discrepancy between a given distribution z∂ ∈ Lp(Ω) and the solution y = yU ,f

of the variational inequality (1.2)�(1.3) by choosing an appropriate matrix of
coe�cients U ∈ L∞(Ω;RN×N ). Namely, we consider the minimization problem in
the form (1.1)�(1.3).

Let ξ 1, ξ2 be given functions of L∞(Ω) such that 0 < ξ1(x) ≤ ξ2(x) a. e. in Ω.
Let {Q1, . . . , QN} be a collection of nonempty compact subsets of W−1, q(Ω).

To de�ne the class of admissible controls, we introduce two sets

Ub =
{
U = [ai j ] ∈ Mα,β

p (Ω)
∣∣∣ ξ1(x) ≤ ai j(x) ≤ ξ2(x)

a.e. x ∈ Ω, ∀ i, j = 1, . . . , N
}

, (3.1)

Usol =
{
U = [~a1, . . . ,~aN ] ∈ Mα,β

p (Ω)
∣∣∣div~ai ∈ Qi, ∀ i = 1, . . . , N

}
, (3.2)

assuming that the intersection Ub ∩ Usol ⊂ L∞(Ω;RN×N ) is a nonempty set.

De�nition 3.1. We say that a matrix U = [ai j ] is an admissible control to the
variational inequality (1.2)�(1.3) if U ∈ Uad := Ub ∩ Usol.

1(see also [11, Theorem 8.8.])
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Remark 3.1. We suppose that the set of admissible controls Uad is su�ciently
rich, otherwise, the optimal control problem

L(U , y) =
∫

Ω
|y(x)− z∂(x)|p dx → inf, (3.3)

U ∈ Uad, y ∈ K, (3.4)
〈−div

(U(x) [(∇y)p−2]∇y
)

+ |y|p−2y, v − y〉V ≥ 〈f, v − y〉V ∀ v ∈ K, (3.5)
becomes trivial. Notice also that this class of admissible controls does not belong
to W 1,∞(Ω) or to the Sobolev space W 1,q(Ω), but still is a uniformly bounded
subset of L∞(Ω).

The existence of admissible controls is important both from a theoretical
and an applicational point of view. Usually controls of this type arise in the
optimization of materials (represented by the matrix U). So this question is largely
an open one, except for some special cases, and an a�rmative answer is usually
just put as a hypothesis (see [2], [6], [14]).

Taking this fact into account we can indicate the following set of admissible
pairs to the optimal control problem (3.3)�(3.5):

Ξ = {(U , y) ∈ Uad × V | y ∈ K, (U , y) are related by (1.3)} . (3.6)
As an obvious consequence of Theorems 2.1, 2.2, Proposition 2.1 and Lemma

2.1, we have the following conclusion.
Proposition 3.1. For every control U ∈ Mα,β

p (Ω) and every f ∈ Lq(Ω) there
exists a unique solution to the variational inequality (3.4)�(3.5).
Proof. Since the �rst assumption of Theorem 2.1 is obviously true, it remains to
verify the condition 2 of that Theorem. Let us �x an arbitrary element v0 ∈ K
and a matrix U ∈ Mα,β

p (Ω). For all y ∈ K we have:

〈A(U , y), y − v0〉V = 〈A(U , y), y〉V − 〈A(U , y), v0〉V
≥ γ(‖y‖V ) ‖y‖V − 〈A(U , y), v0〉V ≥ γ(‖y‖V ) ‖y‖V − |〈A(U , y), v0〉V |. (3.7)

Using the estimate (2.8), we obtain

|〈A(U , y), v0〉V | =
∣∣∣∣
∫

Ω

(U [(∇y)p−2]∇y,∇v0

)
RN dx +

∫

Ω
|y|p−2yv0 dx

∣∣∣∣

{ in view of (2.2)} ≤ β

∣∣∣∣
∫

Ω

(
[(∇y)p−2]∇y,∇v0

)
RN dx

∣∣∣∣

+
∣∣∣∣
∫

Ω
|y|p−2yv0 dx

∣∣∣∣ ≤ β ‖∇v0‖Lp(Ω)

(∫

Ω

∣∣[(∇y)p−2]∇y
∣∣q
q

dx

)1/q

+ ‖v0‖Lp(Ω)

(∫

Ω

(|y|p−1
)q

dx

)1/q

= { since q = p/(p− 1)}

= β ‖v0‖V

(∫

Ω
|∇y|pp dx

)1/q

+ ‖v0‖Lp(Ω)‖y‖p−1
Lp(Ω)

≤ max{β, 1} ‖v0‖V ‖y‖p−1
V . (3.8)
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Combining (3.7) and (3.8), we come to the required conclusion

〈A(U , y), y − v0〉V
‖y‖V

≥ γ(‖y‖V )−max{β, 1} ‖v0‖V ‖y‖p−2
V

= ‖y‖p−1
V

(
min{α, 1} − max{β, 1}‖v0‖V

‖y‖V

)
→ +∞, as ‖y‖V →∞. (3.9)

As was mentioned in proposition 3.1, the set Ξ is nonempty. So, we adopt the
following concept:
De�nition 3.2. We say that a pair (U0, y0) ∈ L∞(Ω;RN×N )× V is an optimal
solution to the problem (3.4)�(3.5) if (U0, y0) ∈ Ξ and L(U0, y0) = inf

(U ,y)∈Ξ
L(U , y).

The main question to be answered on the problem (3.3)�(3.5) is about solva-
bility: does an optimal pair (U0, y0) in L∞(Ω;RN×N )×W 1, p

0 (Ω) satisfying (3.3)�
(3.5) exist? To begin with, we need the following result (see [9]):
Proposition 3.2. The set Uad is sequentially compact with respect to the weak-∗
topology of L∞(Ω;RN×N ).
Proof. Let {Uk = [~a1 k, . . . ,~aN k]}k∈N ⊂ Uad be an arbitrary sequence of admissible
controls. Since Uad ⊂ Ub and Ub is the sequentially weakly-∗ compact subset of
L∞(Ω;RN×N ), we may suppose that there exist a matrix U0 = [~a1 0, . . . ,~aN 0] ∈ Ub

and elements fi ∈ Qi i = 1, . . . , N such that
∫

Ω
(~ai k, ϕ)RN dx→

∫

Ω
(~ai 0, ϕ)RN dx, as k →∞,

∀ϕ ∈ L1(Ω) = [L1(Ω)]N , ∀ i = 1, 2, . . . , N, (3.10)

and div~ai k→ fi strongly in W−1, q(Ω), as k →∞ ∀ i = 1, . . . , N. (3.11)
It remains to prove that div~ai 0 = fi for all i = 1, . . . , N . To do this, we
choose ϕ in (3.10) as a potential vector, that is, ϕ = ∇v, where v ∈ W 1, p

0 (Ω).
Then, the relation (3.11) implies

∫
Ω (~ai k,∇v)RN dx = −〈div~a i k, v〉W 1, p

0 (Ω)
→

−〈fi, v〉W 1, p
0 (Ω)

, as k →∞, ∀i = 1, . . . , N . Using this and relation (3.10), we
�nally get

lim
k→∞

∫

Ω
(~a i k,∇v)RN dx =

∫

Ω
(~a i 0,∇v)RN dx

= −〈div~a i 0, v〉W 1, p
0 (Ω)

= −〈fi, v〉W 1, p
0 (Ω)

∀ i = 1, . . . , N.

As a result, we have U0 = [~a1 0, . . . ,~aN 0] ∈ Usol. This concludes the proof.

4. Existence of optimal solutions

In order to discuss the existence of solutions for the problem (3.3)�(3.5), we
make use of the following result (for comparison see [22]).
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Lemma 4.1. [9] Let {~fk}k∈N ⊂ Lq(Ω), {~gk}k∈N ⊂ Lp(Ω) be the bounded se-
quences of vector-functions such that ~fk ⇀ ~f0 in Lq(Ω) and ~gk ⇀ ~g0 in Lp(Ω).
If

{
div ~fk

}
k∈N

is compact with respect to the strong topology of W−1, q(Ω), and
curl~gk = 0 ∀ k ∈ N, then

lim
k→∞

∫

Ω
φ

(
~fk, ~gk

)
RN

dx =
∫

Ω
φ

(
~f0, ~g0

)
RN

dx, ∀φ ∈ C∞
0 (Ω). (4.1)

Now we are in a position to study the topological properties of the set Ξ ⊂
L∞(Ω;RN×N ) ×W 1, p

0 (Ω) of all admissible pairs to the optimal control problem
(3.3)�(3.5). Let τ be the topology on the set L∞(Ω;RN×N ) × W 1, p

0 (Ω) which
we de�ne as the product of the weak-∗ topology of L∞(Ω;RN×N ) and the weak
topology of W 1, p

0 (Ω).

Theorem 4.1. Assume that for the set K in problem (3.4)�(3.4) the hypothesis 2
holds true provided X = Lq(Ω). Then for every f ∈ Lq(Ω) the set Ξ is sequentially
τ -closed.

Proof. Let {(Uk, yk)}k∈N ⊂ Ξ be any τ -convergent sequence of admissible pairs
to the problem (3.3)�(3.5). Let (U0, y0) be its τ -limit. Our aim is to prove that
(U0, y0) ∈ Ξ. Let us set

A(U , y) = −div
(U(x) [(∇y)p−2]∇y

)
+ |y|p−2 y = A1(U , y) + A2(U , y),

A1(U , y) = −div
(U(x) [(∇y)p−2]∇y

)
= −div a(U(x),∇y).

By Proposition 3.2 and the initial assumptions, we have U0 ∈ Uad. Therefore,

Uk ⇀ U0 = [~a1 0, . . . ,~aN 0] weakly- ∗ in L∞(Ω, RN×N ), (4.2)
div~ai k → div~ai 0 strongly in W−1, q(Ω), ∀ i = 1, . . . , N, (4.3)

yk ⇀ y0 in W 1, p
0 (Ω). (4.4)

Hence
{
[(∇yk)p−2]∇yk

}
k∈N is bounded in Lq(Ω), q = p/(p− 1),

{|yk|p−2yk

}
k∈N is bounded in Lq(Ω), (4.5)

yk → y0 strongly in Lp(Ω), yk(x) → y0(x) a.e. in Ω. (4.6)

Then, by (4.6) and monotonicity of the function g(ζ) = |ζ|p−2ζ, we have
|yk|p−2yk → |y0|p−2y0 almost everywhere in Ω. Using this and (4.5), we conclude
(see [11]): |yk|p−2yk ⇀ |y0|p−2y0 in Lq(Ω). Since f ∈ Lq(Ω), in view of theorem
2.3 we have −div

(Uk [(∇yk)p−2]∇yk

)
+ |yk|p−2 yk ∈ Lq(Ω), ∀ k ∈ N and, hence,

−div a(Uk,∇yk) ∈ Lq(Ω) ∀ k ∈ N. The sequence {yk}k∈N is bounded in the space
W 1,p

0 (Ω) due to the coercivity of the operator A(U , y) (see (3.9)). Therefore, the
sequence {Uk[(∇y)p−2]∇y}k∈N is bounded in Lq(Ω). So, passing to a subsequence,
we may assume that there exists a vector-function ~ξ ∈ Lq(Ω) such that

a(Uk,∇yk) = Uk[(∇y)p−2]∇y =: ~ξk ⇀ ~ξ in Lq(Ω). (4.7)
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In view of this and the fact that

〈−div ~ξk, ϕ〉V =
∫

Ω
(ξk,∇ϕ)RN dx

→
∫

Ω
(ξ,∇ϕ)RN dx = 〈−div ~ξ, ϕ〉V , ∀ϕ ∈ C∞

0 (Ω),

we have: div ~ξk → div ~ξ weakly in W−1,q(Ω). The fact that div ~ξk ∈ Lq(Ω)
∀ k ∈ N implies (see [1]): ‖div ~ξk‖Lq(Ω) = ‖div ~ξk‖W−1,q(Ω), ∀ k ∈ N. Hence,
the sequence {div ~ξk}k∈N is bounded in Lq(Ω). Therefore, due to the compact-
ness of the embedding Lq(Ω) ↪→ W−1,q(Ω), we may suppose that the strong
convergence in W−1,q(Ω) of this sequence takes place. In what follows, we show
that ~ξ = U0[(∇y0)p−2]∇y0. To do so, we consider the scalar function

v(x) = (z, x)RN , (4.8)

where z is a �xed element of RN . Since the operator A1 is monotone, it follows
that for every z ∈ RN and every positive function ϕ ∈ C∞

0 (Ω), we have∫
Ω ϕ(x) (a(Uk,∇yk)− a(Uk,∇v),∇yk −∇v)RN dx ≥ 0, or, taking into account
(4.8), this inequality can be rewritten as

∫

Ω
ϕ(x) (a(Uk,∇yk)− a(Uk, z),∇yk − z)RN dx ≥ 0. (4.9)

Our next intention is to pass to the limit in (4.9) as k → ∞ using Lemma 4.1.
Since

−div a(Uk,∇yk) → −div ~ξ strongly in W−1, q(Ω),

curv (∇ yk − z) = curv∇ yk = 0, ∀ k ∈ N,

}
(4.10)

it remains to show that the sequence {div a(Uk, z)}k∈N is compact with respect
to the strong topology of W−1, q(Ω).

Indeed, for every ϕ ∈ C∞
0 (Ω), we have

〈−div a(Uk, z), ϕ〉V =
∫

Ω

(a(Uk, z),∇ϕ)RN dx

=
∫

Ω

(Uk[zp−2]z,∇ϕ
)

dx =
∫

Ω







(~a1 k(x), [zp−2]z)RN

. . .
(~aN k(x), [zp−2]z)RN


 ,∇ϕ



RN

dx =

=
∫

Ω

N∑

i=1

(
~ai k(x), [zp−2]z

)
RN

∂ϕ

∂xi
dx =

∫

Ω

N∑

i=1

N∑

j=1

ak
i j(x)

∂ϕ

∂xi
|zj |p−2zj dx =

=
N∑

j=1

|zj |p−2zj

∫

Ω

(~aj k(x),∇ϕ)RN dx =
N∑

j=1

|zj |p−2zj 〈−div~aj k, ϕ〉V = Jk.

(4.11)
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Then using (4.3), we get

lim
k→∞

Jk =
n∑

j=1

|zj |p−2zj lim
k→∞

〈−div~aj k, ϕ〉V =
n∑

j=1

|zj |p−2zj 〈−div~aj 0, ϕ〉V .

(4.12)

Making the converse transformations with (4.12) as we did it in (4.11), we come
to the relation

lim
k→∞

〈−div a(Uk, z), ϕ〉V = 〈−div a(U0, z), ϕ〉V . (4.13)

Since for every i = 1, . . . , N the sequences {div~ai k}k∈N are strongly conver-
gent in W−1, q(Ω), from (4.11)�(4.13) it follows that

lim
k→∞

〈−div a(Uk, z), ϕk〉V = 〈−div a(U0, z), ϕ〉V (4.14)

for each sequence {ϕk}k∈N ⊂ C∞
0 (Ω) such that ϕk ⇀ ϕ in W 1, p

0 (Ω). Thus,
summing up the above results, we obtain

div a(Uk, z) → div a(U0, z) strongly in W−1, q(Ω),

a(Uk, z) = Uk[zp−2]z ⇀ U0[zp−2]z weakly- ∗ in L∞(Ω).

}
(4.15)

As a result, combining properties (4.10) and (4.15), it has been shown that all
suppositions of Lemma 4.1 are ful�lled. So, taking into account (4.4), (4.10),
(4.15), and passing to the limit in inequality (4.9) as k →∞, we get

∫

Ω

ϕ(x) (ξ − a(U0, z),∇ y0 − z)RN dx ≥ 0, ∀z ∈ RN

for all positive ϕ ∈ C∞
0 (Ω). After localization, we have (ξ−a(U0, z),∇y0−z)RN ≥

0, for a.a. x ∈ Ω, ∀z ∈ RN .
Remark 4.1. The operator a(U , ·) : RN → RN is monotone and continuous.
Indeed, for any sequence {uk = [u1

k, . . . , u
N
k ]} ⊂ RN such that uk → u0 =

[u1
0, . . . , u

N
0 ] in RN , it follows that ui

k → ui
0 in R, ∀ i = 1, . . . , N . Then, it

is easy to see that |ui
k|p−2ui

k → |ui
k|p−2ui

k in R ∀ i = 1, . . . , N and, therefore,
[(uk)p−2]uk → [(u0)p−2]u0 in RN . Then the monotonicity property immediately
follows from the estimate (2.3).

Further, since the operator a(U , ·) : RN → RN is monotone, and continuous,
then in view of [8, Lemma III.1.3] it follows that

ξ = a(U0,∇y0) = U0[(∇y0)p−2]∇y0, for a.a. x ∈ Ω. (4.16)

Now, we can pass to the limit in the variational inequality

〈A(Uk, yk), yk − v〉V ≤ 〈f, yk − v〉V , ∀ v ∈ K, (4.17)
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using again for its left hand-side the Compensated Compactness Lemma 4.1.

lim
k→∞

〈A(Uk, yk), yk − v〉V
= lim

k→∞
〈div a(Uk,∇yk), yk − v〉V + lim

k→∞
〈|yk|p−2yk, yk − v〉V

= 〈div a(U0,∇y0), y0 − v〉V + lim
k→∞

〈|yk|p−2yk, yk − v〉V .

Since |yk|p−2yk ⇀ |y0|p−2y0 in Lq(Ω), in view of compactness of the embedding
Lq(Ω) ↪→ W−1,q(Ω) we have: |yk|p−2yk → |y0|p−2y0 strongly in W−1,q(Ω). The-
refore, limk→∞〈|yk|p−2yk, yk − v〉V = 〈|y0|p−2y0, y0 − v〉V . Passing to the limit
in (4.17), we obtain 〈A(U0, y0), y0 − v〉V ≤ 〈f, y0 − v〉V , ∀ v ∈ K, Hence, the
τ -limit pair (A0, y0) is admissible to the problem (3.3)�(3.5), and this concludes
the proof.

Now we can turn to the existence of optimal pairs.

Theorem 4.2. Under the control admissibility hypothesis (Uad = Ub ∩ Usol 6= ∅),
the optimal control problem (3.3)�(3.5) admits at least one solution (Uopt, yopt) ∈
Ξ ⊂ L∞(Ω;RN×N )×W 1, p

0 (Ω) for every f ∈ Lq(Ω).

Proof. The control admissibility condition ensures the existence of a minimizing
sequence {(Uk, yk) ∈ Ξ}k∈N, i.e. limk→∞ L(Uk, yk) = inf(U ,y)∈Ξ L(U , y) < +∞.
Since the sequence of admissible controls {Uk ∈ Uad}k∈N is bounded in the space
L∞(Ω;RN×N ) and using the arguments of Theorem 4.1 one can easily to show
that the minimizing sequence is bounded in L∞(Ω;RN×N )×W 1, p

0 (Ω) and hence,
within a subsequence, there exists a pair (U∗, y∗) such that Uk ⇀ U∗ weakly-
∗ in L∞(Ω,RN×N ), yk ⇀ y∗ in W 1, p

0 (Ω). By Theorem 4.1 the pair (U∗, y∗)
is admissible to the problem (3.3)�(3.5). Moreover, since the cost functional L
is lower semicontinuous, we get L(U∗, y∗) ≤ lim inf

k→∞
L(Uk, yk) = inf

(U , y)∈Ξ
L(U , y).

Hence, (U∗, y∗) is an optimal pair.

Remark 4.2. The argumentas used in the proof of Theorem 4.2 is related to the
so-called �direct method� of the Calculus of Variations which, roughly speaking,
intends to construct a minimizing sequence {(Uk, yk) ∈ Ξ}k∈N.
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