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Abstract—Aggregated Dynamic Dataflow Graphs can assist 
programmers to uncover the main data paths of a given 
algorithm. This information can be useful when scaling a single-
threaded program into a multi-core architecture. The amount of 
data movements is crucial when targeting for cache incoherent 
and/or heterogeneous platforms. This paper presents two 
methods for generating function-level Aggregated Dynamic 
Dataflow Graphs. Instruction level trace log was used as a basis, 
which was generated by Microsoft Giano processor simulator 
platform. Top-down aggregation strategy and relational database 
was used to speed up the generation of different views of the 
aggregated dataflow and call graphs.  
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I.  INTRODUCTION  

In some of the algorithmic intensive embedded real time 
streaming applications, a single CPU is not sufficient to handle 
the task real time, but the processing power of 2-10 cores 
would be theoretically enough. Algorithms are usually 
implemented in C/C++ languages which natively do not 
support parallel implementation and algorithm slicing into 
multi-core processor systems. 

Many of the embedded processing platforms -including 
FPGA based soft core processor systems, or Cell architecture- 
do not offer cache coherency among the processors. Standard 
profiling results -showing runtime information only- are 
sufficient to slice the algorithm into multiple CPUs, while 
internal communication bandwidth is often a bottleneck.[1] 

This paper describes efficient methods for generating 
Aggregated Dynamic Dataflow Graphs (ADDFG) to record 
internal data flow, and to visualize critical data paths. Our 
future goal is to develop a method to assist efficient program 
slicing and mapping in multi-core environment.  

II. RELATED WORK 

A call graph [2] is a graph that represents calling 
relationships between subroutines in a program, which can be 
recorded by standard profiling tools. The call graph is a 
directed graph, where each node represents a procedure and 
each edge indicates a function call. Static call graphs can be 
generated based on static code analysis of the application 
without executing it first. The benefit of the static call graph is 

that it contains all possible direct function calls, but the 
drawbacks are that it shows no information about the program 
execution and calls made through function pointers. Dynamic 
call graphs contain only the trace of a single execution of the 
software, with given input arguments.  

Dynamic Dataflow Graphs (DDFG) can be used to 
visualize the data flow of a given algorithm. DDFGs are 
directed acyclic graphs where nodes represents instructions 
and edges represents data flow. Figure 1. shows a theoretical 
DDFG of a four tap FIR filter calculating single output. Both 
ADD and MUL are arithmetic instructions, input edges are 
operands while output edges are results.  

 

Fig. 1. Theroretical DFG of a four tap FIR filter.  

DDFGs can be used during development very efficiently, 
some examples are: 

• Debugging. Using standard debuggers, breakpoints 
can be set on certain data or instruction. After a breakpoint 
occurs, the programmer faces the problem, but does not know 
its root cause. Using DDFGs the program can be traced back 
because the DDFG stores all previous calculations. This way 
the root cause of the problem can be determined easily.  

• Critical path, data flow visualization. As it can be 
seen later, ADDFGs can be used to visualize main data flow of 
the given algorithm. This can assist the programmer to have a 
better understanding of the code being analyzed; moreover we 
believe that it can be used for efficient program slicing in a 
multi-core environment.  

In order to generate DDFGs, code execution must be 
traced at instruction level. A hardware trace module can track 
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the code execution. Alternatively Just in Time compilation 
techniques or processor simulators can be used. 

Valgrind [3] is a debug framework for memory debugging, 
memory leak detection and profiling. Valgrind uses just-in-
time compilation techniques, including Dynamic 
Recompilation and Dynamic Binary Instrumentation and 
Analysis (DBA). Valgrind framework translates each 
instruction of the code being analyzed into an intermediate 
representation, instruments it with the selected DBA tool, 
translates back to the machine code of the host system and 
executes it.  

Many different DBA tools are available. Cachegrind [4] is 
an efficient tool to generate dynamic call graph, to track code 
execution and cache usage at instruction level, while Redux 
[5][6] can generate the dynamic dataflow graphs. 

III. DYNAMIC DATAFLOW GRAPH GENERATION USING 

PROCESSOR SIMULATOR 

Processor simulators can be used to track all executed 
instructions of the CPU. We have modified the Microsoft 
Giano[7] processor simulator tool. Giano was selected, 
because it supports multiple processor architectures, multi-
core configuration, hardware-software co-simulation and also 
because it is available in source code.  

Figure 2. depicts our implemented analysis tool flow: 

 

Fig. 2. Analysis tool flow for DDFG generation  

 C source was compiled with general GCC compiler. 
(For ARM7 architecture) 

 The binary was executed in the Giano processor 
simulator system. Giano was modified to create a full 
trace log of the program execution. Each line of the log 
contains timestamp, processor opcode and 
disassembled instruction, the value of all processor 
registers, and a flag which denote if the register was 
written and/or read in the current instruction.  

 The developed analysis tool takes the trace log and the 
original binary file to resolve the function names from 

the debug symbols. The analysis tool generates three 
different outputs as follows: 

 Dynamic call graph is being generated using the 
Cachegrind file format. 

 Memory profiling results are visualized with GNUPlot 

 ADDFGs are visualized using Graphviz. Henceforth 
this paper focuses this output.  

IV. DATA AGGREGATION USING BOTTOM-UP STRATEGY 

DDFGs visualize data dependency among instructions at a 
very fine grained level. While traditional call graphs can 
represent only argument passing, using DDFGs data 
dependency can be revealed independent from data passing 
method, e.g. using global variables or pointers. This fine 
grained analysis is very helpful in some cases, but usually a 
real-word program results in unmanageable size of DDFGs, 
with hundred-thousand nodes and edges, therefore some 
aggregation is needed to reduce graph complexity.  

Data aggregation is performed by grouping the DDFG’s 
nodes into a hierarchical structure, and summing the 
corresponding edges using bottom-up strategy. Figure 3. 
shows the implemented hierarchy levels. DDFG atomic nodes 
are representing the lowest hierarchical level. Each of these 
nodes corresponds to a single assembly instruction, 
represented by their memory address. Each assembly 
instruction pertains to a C function, and finally C language 
files consist of functions.  

 

Fig. 3. Aggregation levels of the dataflow graph.  

Graph edges are merged in a similar manner, using 
hierarchical structures. Figure 4. shows edge aggregation 
method between two hierarchical levels.  

 

Fig. 4. Edge Aggregation of the dataflow graph.  
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At the higher hierarchical level A and B nodes are 
connected using single E edge. Both A and B nodes consist of 
multiple lower hierarchical level sub-nodes and some internal 
edges. Internal edges which connect sub-nodes inside a single 
node do not appear at higher level representation. Multiple 
lower hierarchical level edges are merged into a single E edge 
at the higher hierarchical level. Node weight represents total 
runtime (i.e. instruction count), while aggregated edge weight 
corresponds to total data being transferred.  

Visualized aggregated data graph can be generated at any 
hierarchical level using depth-first search algorithm of the 
aggregated graph, where the result of the algorithm (e.g. the 
output of the program) is selected as a root node. Graphviz 
program was used to visualize the generated ADDFG. In order 
to thin-out the output image – to visualize only the critical 
functions and corresponding data paths – aggregated edges 
below a selected threshold level, and the corresponding nodes 
are eliminated. 

V. IMPLEMENTATION RESULTS 

A real-world application, JPEG decompression was 
selected to test the aggregated data graph generation, and to 

visualize the main data paths. The Independent Jpeg Group 
JPEG reference decompression code was primarily developed 
for PC platform. The code had to be modified to accommodate 
the embedded environment by eliminating dynamic memory 
management and file I/O functions. To lessen the amount of 
data, the decompression was done on a 64x64 pixel image. 

The 64x64 pixel JPEG decompression took 680000 
processor clock cycles to compute. The atomic level DDFG 
had 540000 nodes and 840000 edges in between. It is 
impossible to visualize such graph. Figure 5. depicts the result 
of the function level aggregation of the DDFG, with 114 nodes 
and 409 edges.  

Figure 6 is generated automatically from Figure 5. by the 
elimination of edges which perform less than 2% of the total 
data movement. This graph can be used to uncover the main 
data paths of a given algorithm. By following the thick edges, 
all JPEG specific main functions appear in a logical order. 
These are: file input, MCU decoding, IDCT, color up-
sampling, YCbCr to RGB conversion and file output. 

 

 

 

Fig. 5. Function level ADDFG  

 

 

Fig. 6. Function level ADDFG with edges and nodes thinned out.  
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VI. ADDFG  USING A TOP-DOWN STRATEGY 

A. The top-down strategy 

To generate an ADDFG, the bottom-up strategy can be 
used, which enables to generate a view of the software's data 
flow by first generating the instruction level graph. However -
as earlier mentioned- with an application of a larger code base 
this method soon leads to unmanageable amounts of low level 
graph data, which will be omitted anyway after the 
aggregation process. 

It is preferable to skip the low level graph generation, and 
to generate the function level aggregated dataflow graph with 
a top-down method. The top-down strategy collects every high 
level, inter-function communication (e.g. arguments and return 
value), without generating the low level, intra-function data 
flow (e.g. variable assignments), thus decreasing the amount 
of memory and processing time needed for the dataflow graph 
generation. 

The bottom-up generation of the ADDFG needs sequential 
data access by parsing each processor instruction. In contrast, 
the top-down strategy needs a random data access only of 
values with specific requirements, thus storing the dump 
information in a relational database is preferable. 

The top-down strategy also enables to easily generate 
different views of the data flow, since SQL queries can be 
used to access the data. 

B. Generating DDFG with top-down strategy 

The construction of the ADDFG using the earlier, bottom-
up generation strategy analyses each processor instruction line 
parsed from the trace log sequentially to examine the data flow 
every time a graph is generated.  

In contrary, the top-down strategy first searches for every 
function entry and exit point in the program flow (loaded from 
the debug symbol information stored in the executable), thus 
partitioning the run time of the program to intervals. As seen 
in Figure 7, for each interval a function name and call instance 
(i.e. the number of the call of this function) is assigned, so the 
interval stored as function call fragments. If no subroutine call 
happens from a start clock cycle count to an end clock cycle 
count every executed processor instruction is part of the 
specific function. This sequence of intervals hereinafter will 
be called the function control flow. 

 

Fig. 7. The control flow 

The control flow enables to generate the function level 
ADDFG without parsing each executed processor instruction. 
To build the DDFG, edges should be added. After the 
generation of the control flow, the algorithm examines each 
interval, searching for all inter-function communication. When 
a data flow is detected between the intervals of two functions, 
a graph edge is added to the DDFG.  

C. Organization of the relational database 

The database tables are organized into three groups as seen 
in Figure 8. The first group can be considered as low level 
information imported from a Giano trace log and the examined 
user elf file. These low level database tables contain all 
information necessary for DDFG generation (with both the 
bottom-up and the top-down strategy). 

Data access table stores every data access (register and 
memory data transfer at a given address). Opcode lines table 
contain each executed processor instruction and the processor 
cycle count the instruction executed in. Function symbol table 
is loaded from the debug information stored in the executable 
under examination, containing the name of the function and 
the address of the function entry point. 

 

Fig. 8. The three levels of the database 

For accelerating the generation of different DDFG views, 
middle and high level tables are introduced. These tables are 
created from the low level tables using database queries. The 
middle and high level tables are organized so that the function- 
level ADDFG view generation does not need to access low 
level tables. 

On the middle level Communications table holds every 
memory and register communication pair. (A write instruction 
to a data transfer cell paired by all of the subsequent reads 
before the next write instruction.) Function calls table holds 
every function call done during the execution of the software 
(the entry and exit point of an instance of a function call).  

The high level database table holds the Control flow 
information. In a first pass for every executed function an 
interval is created with the call and return clock cycle count, 
then later these intervals are merged, and finally stored into 
the database, thus allowing classifying every clock cycle under 
a fragment of a function call instance. 

D. Different views of the ADDFG 

Using the top-down strategy and the relational database 
storage which enables to query the data flow information, 
function level ADDFG generation is faster compared to the 
bottom-up strategy, moreover allowing to combine the call 
graph and data flow information and also to create different 
views of the same graph.  
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Figure 9. shows an example merged call and dataflow 
graph for function B. The solid edges shows that B was called 
by function A, then B calls D and E. The dashed edges show 
data transfer. Since function C does not directly call B the 
edge means communication through pointers or global 
memory.  

With the control flow information, the function level 
aggregation can be extended to function instances, treating the 
different calls to a function as a separate entity. Figure 10. 
shows that the current instance of function B receives data 
from D and sends data to E. Another instance of the function 
can receive data also from A and C and can send data also to 
F. 

  

Fig. 9. Data and call edges of 
function B 

Fig. 10. Potential and current data 
edges of the instance of  function B 

The usage of a relational database as storage also allows to 
quickly map all data interchanges between two given 
functions, searching for a communication for which the data 
write happens in the first function and the data read is in the 
second function. 

With the low level database tables, the bottom-up strategy 
can be used to trace the intra-function dataflow. 

VII. RESULTS 

The generation time of an ADDFG with both the top-down 
and bottom-up strategy was measured using the JPEG 
decompression algoritm.  The bottom-up strategy finished in 3 
minutes, whereas the top-down strategy in 1.5 minutes. The 
other advantage of the top-down strategy is lower memory 
consumption. To generate the ADDFG, the bottom-up

 strategy’s peak memory usage was 3 GBytes of system 
memory, which is used for storing the low level graph nodes. 
On the other hand, the top-down strategy used only 6 Mbytes 
of memory, thus allowing to handle larger graphs. 

VIII. CONCLUSION AND FUTURE WORK 

In this paper we presented processor simulator based 
methods for generating Dynamic Dataflow Graphs. Function-
level aggregation was applied to help visualizing critical data 
paths. By using a top-down aggregation strategy and relational 
database different views can be generated very easily.  

In the future we will introduce loop-level into the 
aggregation hierarchy levels (between instruction and function 
levels) and detect control dependencies to efficiently identify 
and visualize data cycles.  
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