
I.Szabó et al. / Carpathian Journal of Electronic and Computer Engineering 6/2 (2013) 50-54 50
__

ISSN 1844 – 9689 http://cjece.ubm.ro

Aggregated Dynamic Dataflow Graph

Generation and Visualization

István Szabó, Gábor Wacha, János Lazányi
Department of Measurement and Information Systems,

Budapest University of Technology and Economics,
Budapest, Hungary

sz.pista@gmail.com, {wacha, lazanyi}@mit.bme.hu

Abstract—Aggregated Dynamic Dataflow Graphs can assist
programmers to uncover the main data paths of a given
algorithm. This information can be useful when scaling a single-
threaded program into a multi-core architecture. The amount of
data movements is crucial when targeting for cache incoherent
and/or heterogeneous platforms. This paper presents two
methods for generating function-level Aggregated Dynamic
Dataflow Graphs. Instruction level trace log was used as a basis,
which was generated by Microsoft Giano processor simulator
platform. Top-down aggregation strategy and relational database
was used to speed up the generation of different views of the
aggregated dataflow and call graphs.

Keywords—Dynamic Dataflow Graph, Function level
aggregation, multi-core, program slicing

I. INTRODUCTION

In some of the algorithmic intensive embedded real time
streaming applications, a single CPU is not sufficient to handle
the task real time, but the processing power of 2-10 cores
would be theoretically enough. Algorithms are usually
implemented in C/C++ languages which natively do not
support parallel implementation and algorithm slicing into
multi-core processor systems.

Many of the embedded processing platforms -including
FPGA based soft core processor systems, or Cell architecture-
do not offer cache coherency among the processors. Standard
profiling results -showing runtime information only- are
sufficient to slice the algorithm into multiple CPUs, while
internal communication bandwidth is often a bottleneck.[1]

This paper describes efficient methods for generating
Aggregated Dynamic Dataflow Graphs (ADDFG) to record
internal data flow, and to visualize critical data paths. Our
future goal is to develop a method to assist efficient program
slicing and mapping in multi-core environment.

II. RELATED WORK

A call graph [2] is a graph that represents calling
relationships between subroutines in a program, which can be
recorded by standard profiling tools. The call graph is a
directed graph, where each node represents a procedure and
each edge indicates a function call. Static call graphs can be
generated based on static code analysis of the application
without executing it first. The benefit of the static call graph is

that it contains all possible direct function calls, but the
drawbacks are that it shows no information about the program
execution and calls made through function pointers. Dynamic
call graphs contain only the trace of a single execution of the
software, with given input arguments.

Dynamic Dataflow Graphs (DDFG) can be used to
visualize the data flow of a given algorithm. DDFGs are
directed acyclic graphs where nodes represents instructions
and edges represents data flow. Figure 1. shows a theoretical
DDFG of a four tap FIR filter calculating single output. Both
ADD and MUL are arithmetic instructions, input edges are
operands while output edges are results.

Fig. 1. Theroretical DFG of a four tap FIR filter.

DDFGs can be used during development very efficiently,
some examples are:

• Debugging. Using standard debuggers, breakpoints
can be set on certain data or instruction. After a breakpoint
occurs, the programmer faces the problem, but does not know
its root cause. Using DDFGs the program can be traced back
because the DDFG stores all previous calculations. This way
the root cause of the problem can be determined easily.

• Critical path, data flow visualization. As it can be
seen later, ADDFGs can be used to visualize main data flow of
the given algorithm. This can assist the programmer to have a
better understanding of the code being analyzed; moreover we
believe that it can be used for efficient program slicing in a
multi-core environment.

In order to generate DDFGs, code execution must be
traced at instruction level. A hardware trace module can track

I.Szabó et al. / Carpathian Journal of Electronic and Computer Engineering 6/2 (2013) 50-54 51
__

ISSN 1844 – 9689 http://cjece.ubm.ro

the code execution. Alternatively Just in Time compilation
techniques or processor simulators can be used.

Valgrind [3] is a debug framework for memory debugging,
memory leak detection and profiling. Valgrind uses just-in-
time compilation techniques, including Dynamic
Recompilation and Dynamic Binary Instrumentation and
Analysis (DBA). Valgrind framework translates each
instruction of the code being analyzed into an intermediate
representation, instruments it with the selected DBA tool,
translates back to the machine code of the host system and
executes it.

Many different DBA tools are available. Cachegrind [4] is
an efficient tool to generate dynamic call graph, to track code
execution and cache usage at instruction level, while Redux
[5][6] can generate the dynamic dataflow graphs.

III. DYNAMIC DATAFLOW GRAPH GENERATION USING

PROCESSOR SIMULATOR

Processor simulators can be used to track all executed
instructions of the CPU. We have modified the Microsoft
Giano[7] processor simulator tool. Giano was selected,
because it supports multiple processor architectures, multi-
core configuration, hardware-software co-simulation and also
because it is available in source code.

Figure 2. depicts our implemented analysis tool flow:

Fig. 2. Analysis tool flow for DDFG generation

 C source was compiled with general GCC compiler.
(For ARM7 architecture)

 The binary was executed in the Giano processor
simulator system. Giano was modified to create a full
trace log of the program execution. Each line of the log
contains timestamp, processor opcode and
disassembled instruction, the value of all processor
registers, and a flag which denote if the register was
written and/or read in the current instruction.

 The developed analysis tool takes the trace log and the
original binary file to resolve the function names from

the debug symbols. The analysis tool generates three
different outputs as follows:

 Dynamic call graph is being generated using the
Cachegrind file format.

 Memory profiling results are visualized with GNUPlot

 ADDFGs are visualized using Graphviz. Henceforth
this paper focuses this output.

IV. DATA AGGREGATION USING BOTTOM-UP STRATEGY

DDFGs visualize data dependency among instructions at a
very fine grained level. While traditional call graphs can
represent only argument passing, using DDFGs data
dependency can be revealed independent from data passing
method, e.g. using global variables or pointers. This fine
grained analysis is very helpful in some cases, but usually a
real-word program results in unmanageable size of DDFGs,
with hundred-thousand nodes and edges, therefore some
aggregation is needed to reduce graph complexity.

Data aggregation is performed by grouping the DDFG’s
nodes into a hierarchical structure, and summing the
corresponding edges using bottom-up strategy. Figure 3.
shows the implemented hierarchy levels. DDFG atomic nodes
are representing the lowest hierarchical level. Each of these
nodes corresponds to a single assembly instruction,
represented by their memory address. Each assembly
instruction pertains to a C function, and finally C language
files consist of functions.

Fig. 3. Aggregation levels of the dataflow graph.

Graph edges are merged in a similar manner, using
hierarchical structures. Figure 4. shows edge aggregation
method between two hierarchical levels.

Fig. 4. Edge Aggregation of the dataflow graph.

I.Szabó et al. / Carpathian Journal of Electronic and Computer Engineering 6/2 (2013) 50-54 52
__

ISSN 1844 – 9689 http://cjece.ubm.ro

At the higher hierarchical level A and B nodes are
connected using single E edge. Both A and B nodes consist of
multiple lower hierarchical level sub-nodes and some internal
edges. Internal edges which connect sub-nodes inside a single
node do not appear at higher level representation. Multiple
lower hierarchical level edges are merged into a single E edge
at the higher hierarchical level. Node weight represents total
runtime (i.e. instruction count), while aggregated edge weight
corresponds to total data being transferred.

Visualized aggregated data graph can be generated at any
hierarchical level using depth-first search algorithm of the
aggregated graph, where the result of the algorithm (e.g. the
output of the program) is selected as a root node. Graphviz
program was used to visualize the generated ADDFG. In order
to thin-out the output image – to visualize only the critical
functions and corresponding data paths – aggregated edges
below a selected threshold level, and the corresponding nodes
are eliminated.

V. IMPLEMENTATION RESULTS

A real-world application, JPEG decompression was
selected to test the aggregated data graph generation, and to

visualize the main data paths. The Independent Jpeg Group
JPEG reference decompression code was primarily developed
for PC platform. The code had to be modified to accommodate
the embedded environment by eliminating dynamic memory
management and file I/O functions. To lessen the amount of
data, the decompression was done on a 64x64 pixel image.

The 64x64 pixel JPEG decompression took 680000
processor clock cycles to compute. The atomic level DDFG
had 540000 nodes and 840000 edges in between. It is
impossible to visualize such graph. Figure 5. depicts the result
of the function level aggregation of the DDFG, with 114 nodes
and 409 edges.

Figure 6 is generated automatically from Figure 5. by the
elimination of edges which perform less than 2% of the total
data movement. This graph can be used to uncover the main
data paths of a given algorithm. By following the thick edges,
all JPEG specific main functions appear in a logical order.
These are: file input, MCU decoding, IDCT, color up-
sampling, YCbCr to RGB conversion and file output.

Fig. 5. Function level ADDFG

Fig. 6. Function level ADDFG with edges and nodes thinned out.

I.Szabó et al. / Carpathian Journal of Electronic and Computer Engineering 6/2 (2013) 50-54 53
__

ISSN 1844 – 9689 http://cjece.ubm.ro

VI. ADDFG USING A TOP-DOWN STRATEGY

A. The top-down strategy

To generate an ADDFG, the bottom-up strategy can be
used, which enables to generate a view of the software's data
flow by first generating the instruction level graph. However -
as earlier mentioned- with an application of a larger code base
this method soon leads to unmanageable amounts of low level
graph data, which will be omitted anyway after the
aggregation process.

It is preferable to skip the low level graph generation, and
to generate the function level aggregated dataflow graph with
a top-down method. The top-down strategy collects every high
level, inter-function communication (e.g. arguments and return
value), without generating the low level, intra-function data
flow (e.g. variable assignments), thus decreasing the amount
of memory and processing time needed for the dataflow graph
generation.

The bottom-up generation of the ADDFG needs sequential
data access by parsing each processor instruction. In contrast,
the top-down strategy needs a random data access only of
values with specific requirements, thus storing the dump
information in a relational database is preferable.

The top-down strategy also enables to easily generate
different views of the data flow, since SQL queries can be
used to access the data.

B. Generating DDFG with top-down strategy

The construction of the ADDFG using the earlier, bottom-
up generation strategy analyses each processor instruction line
parsed from the trace log sequentially to examine the data flow
every time a graph is generated.

In contrary, the top-down strategy first searches for every
function entry and exit point in the program flow (loaded from
the debug symbol information stored in the executable), thus
partitioning the run time of the program to intervals. As seen
in Figure 7, for each interval a function name and call instance
(i.e. the number of the call of this function) is assigned, so the
interval stored as function call fragments. If no subroutine call
happens from a start clock cycle count to an end clock cycle
count every executed processor instruction is part of the
specific function. This sequence of intervals hereinafter will
be called the function control flow.

Fig. 7. The control flow

The control flow enables to generate the function level
ADDFG without parsing each executed processor instruction.
To build the DDFG, edges should be added. After the
generation of the control flow, the algorithm examines each
interval, searching for all inter-function communication. When
a data flow is detected between the intervals of two functions,
a graph edge is added to the DDFG.

C. Organization of the relational database

The database tables are organized into three groups as seen
in Figure 8. The first group can be considered as low level
information imported from a Giano trace log and the examined
user elf file. These low level database tables contain all
information necessary for DDFG generation (with both the
bottom-up and the top-down strategy).

Data access table stores every data access (register and
memory data transfer at a given address). Opcode lines table
contain each executed processor instruction and the processor
cycle count the instruction executed in. Function symbol table
is loaded from the debug information stored in the executable
under examination, containing the name of the function and
the address of the function entry point.

Fig. 8. The three levels of the database

For accelerating the generation of different DDFG views,
middle and high level tables are introduced. These tables are
created from the low level tables using database queries. The
middle and high level tables are organized so that the function-
level ADDFG view generation does not need to access low
level tables.

On the middle level Communications table holds every
memory and register communication pair. (A write instruction
to a data transfer cell paired by all of the subsequent reads
before the next write instruction.) Function calls table holds
every function call done during the execution of the software
(the entry and exit point of an instance of a function call).

The high level database table holds the Control flow
information. In a first pass for every executed function an
interval is created with the call and return clock cycle count,
then later these intervals are merged, and finally stored into
the database, thus allowing classifying every clock cycle under
a fragment of a function call instance.

D. Different views of the ADDFG

Using the top-down strategy and the relational database
storage which enables to query the data flow information,
function level ADDFG generation is faster compared to the
bottom-up strategy, moreover allowing to combine the call
graph and data flow information and also to create different
views of the same graph.

I.Szabó et al. / Carpathian Journal of Electronic and Computer Engineering 6/2 (2013) 50-54 54
__

ISSN 1844 – 9689 http://cjece.ubm.ro

Figure 9. shows an example merged call and dataflow
graph for function B. The solid edges shows that B was called
by function A, then B calls D and E. The dashed edges show
data transfer. Since function C does not directly call B the
edge means communication through pointers or global
memory.

With the control flow information, the function level
aggregation can be extended to function instances, treating the
different calls to a function as a separate entity. Figure 10.
shows that the current instance of function B receives data
from D and sends data to E. Another instance of the function
can receive data also from A and C and can send data also to
F.

Fig. 9. Data and call edges of
function B

Fig. 10. Potential and current data
edges of the instance of function B

The usage of a relational database as storage also allows to
quickly map all data interchanges between two given
functions, searching for a communication for which the data
write happens in the first function and the data read is in the
second function.

With the low level database tables, the bottom-up strategy
can be used to trace the intra-function dataflow.

VII. RESULTS

The generation time of an ADDFG with both the top-down
and bottom-up strategy was measured using the JPEG
decompression algoritm. The bottom-up strategy finished in 3
minutes, whereas the top-down strategy in 1.5 minutes. The
other advantage of the top-down strategy is lower memory
consumption. To generate the ADDFG, the bottom-up

 strategy’s peak memory usage was 3 GBytes of system
memory, which is used for storing the low level graph nodes.
On the other hand, the top-down strategy used only 6 Mbytes
of memory, thus allowing to handle larger graphs.

VIII. CONCLUSION AND FUTURE WORK

In this paper we presented processor simulator based
methods for generating Dynamic Dataflow Graphs. Function-
level aggregation was applied to help visualizing critical data
paths. By using a top-down aggregation strategy and relational
database different views can be generated very easily.

In the future we will introduce loop-level into the
aggregation hierarchy levels (between instruction and function
levels) and detect control dependencies to efficiently identify
and visualize data cycles.

REFERENCES

[1] Kim, Martha A., and Stephen A. Edwards. "Computation vs. memory
systems: pinning down accelerator bottlenecks." Computer Architecture.
Springer Berlin Heidelberg, 2012.

[2] Graham, Susan L., Peter B. Kessler, and Marshall K. Mckusick. "Gprof:
A call graph execution profiler." ACM Sigplan Notices 17.6 (1982):
120-126.

[3] Nethercote, Nicholas, and Julian Seward. "Valgrind: a framework for
heavyweight dynamic binary instrumentation." ACM Sigplan Notices
42.6 (2007): 89-100.

[4] Weidendorfer, Josef, Markus Kowarschik, and Carsten Trinitis. "A tool
suite for simulation based analysis of memory access behavior."
Computational Science-ICCS 2004. Springer Berlin Heidelberg, 2004.
440-447.

[5] Nethercote, Nicholas, and Alan Mycroft. "Redux: A dynamic dataflow
tracer." Electronic Notes in Theoretical Computer Science 89.2 (2003):
149-170.

[6] Nethercote, Nicholas, and Julian Seward. "How to shadow every byte of
memory used by a program." Proceedings of the 3rd international
conference on Virtual execution environments. ACM, 2007.

[7] Forin, Alessandro, Behnam Neekzad, and Nathaniel L. Lynch. "Giano:
The two-headed system simulator." Microsoft Research, Redmond
(2006).

[8] Rul, Sean, Hans Vandierendonck, and Koen De Bosschere. "Function
level parallelism driven by data dependencies." ACM SIGARCH
Computer Architecture News 35.1 (2007): 55-62.

