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Abstract - Evolutionary ontologies (EO) are a field of 

evolutionary computation as genetic algorithms (GA). Although 

there are commonalities between the two concepts, we will 

demonstrate by means of this article that there are significant 

differences, which makes them completely distinct. 
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I. INTRODUCTION 

Evolutionary computation is a field of computer 

research inspired by the natural evolution. The algorithms that 

appear in this area are called evolutionary algorithms and they 

include subdomains such as genetic algorithms, evolutionary 

strategies and genetic programming [26]. 

Genetic algorithms are adaptive heuristic search 

techniques based on the principles of genetics and natural 

selection, according to [6]. The individuals of GA are named 

“chromosomes” and they are usually encoded as binary bit 

strings. Initial population is chosen randomly. Each individual 

is evaluated by fitness function according to the objective 

problem. A series of steps are performed in a loop: parents are 

chosen by the selection mechanism, offspring are generated by 

crossing parents, offspring are modified through mutation 

operator, offspring are evaluated by fitness function, 

thereupon are selected the survivors that will form the 

population of the new generation and the loop resumes [30].  

In [19] Matei et al. have introduced the term of 

"evolutionary ontologies" (EO). They are evolutionary 

algorithms which manipulate ontologies as individuals. 

 This article shows several reasons for which EO's are a 

different field of genetic computation than GA, although they 

share some commons aspects. 

In section 2 we will present an overview of genetic 

algorithms, then, in section 3 we will describe the evolutionary 

ontologies and, finally, in section 4, the major differences 

between the two are detailed. 

II. GENETIC ALGORITHMS 

Genetic algorithms, intoduced by Holland and his 

students [9], are a family of computational models inspired by 

evolution, according to [27].  

Genetic algorithms are used in general for solving 

optimization problems and in particular for combinatorial 

problems [18]. 

A. GA Individuals 

In solving problem using genetic algorithms an 

important decision is the encoding of individuals. According 

to [21] there are many ways to represent individuals by type of 

problem to be solved. The most common encoding is a binary 

encoding of individuals which gives many possible 

chromosomes with a small number of alleles, according to 

[15]. 

In ordering or queuing problems is used mainly 

permutation encoding, where every chromosome is a string of 

integer numbers [15]. 

When complicated values are required, value encoding 

can be used. In this case every chromosome is a string of some 

values as form number, real number or characters [15].  

B.  GA Selection 

In GA selection operator is designed to allow the best 

individual to transmit their genes to the next generation, 

according to [25]. Usually, selection operator works at 

chromosome’s level by fitness function. 

An important parameter in GA is selection pressure 

[25]. Selection pressure is the probability of selecting the best 

individual compared with the average probability of selection 

of all individuals [31]. A selection mechanism should be 

chosen so as to achieve convergence to the global optimum 

without causing a blockage in a local optimum [25]. 

Sivaraj classifies the methods of selection as traditional 

mechanisms and alternative selection mechanisms. The first 

category comprises Proportionate Selection methods (Roulette 

Wheel selection, Deterministic Sampling, Stochastic 

Remainder Sampling, Stochastic Remainder selection with 

replacement, Stochastic remainder selection without 

replacement, Stochastic universal selection), Ranking 

Selection (Linear Ranking selection, Truncate selection) and 

Tournament Selection (Binary Tournament Selection, Larger 

Tournament Selection, Boltzmann tournament selection, 

Correlative Tournament Selection). The second category 

comprises of Range selection, Gender-Specific Selection 

(Genetic algorithm with chromosome differentiation, 

Restricted mating, Correlative Family- based selection) and 

GR based selection (Fitness Uniform selection scheme, 

Reserve selection). For a detailed description of these 

selection methods see [25]. 

The purpose of all selection methods regardless of their 

type is to create multiple copies of individual with high value 

of fitness function [25]. It is impossible to say that a selection 

method is better than another. It is important to choose the 

right type of selection method for the problem to be solved so 

as to achieve the optimality of the solution. 

C. GA Crossover 

The purpose of crossover operator is to recombine two 

chromosomes to get a better chromosome, according to [20]. 
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Malhotra et. al. classify crossover operator depending 

on the method of encoding data. If binary encoding is used, 

then one point, two point, uniformly or arithmetically 

crossover may be suitable for use. For permutation encoding 

one point crossover is appropriate. In case of value encoding 

all types of crossover used for binary encoding can be 

performed [15]. 

In the case of one point crossover, an integer number 

between 0 and the length of the chromosome is selected. This 

number is the crossover point. The first offspring is composed 

of the genes to the left of crossover point from the first parent 

and the genes to the right of crossover point from the second 

parent [24]. The second offspring is composed of the genes to 

the left of crossover point from the second parent and the 

genes to the right of crossover point from the first parent. If 

we have two chromosomes 

x=(x1x2…xkxk+1…xr) (1) 

y=(y1y2…ykyk+1…yr) (2) 

and k is the cutting point will result two offspring 

x'=(x1x2…xkyk+1…yr) (3) 

y'=(y1y2…ykxk+1…xr) (4) 

For two point crossover are chosen two different points 

between 1 and r-1 (where r este the length of the 

chromosome). The first offspring is composed of the genes to 

the left of first crossover point from the first parent, the genes 

to the right of first crossover point and the left of second 

crossover point from the second parent and the genes to the 

right of second crossover point from the first parent. The 

second offspring is composed of the genes to the left of first 

crossover point from the second parent, the genes to the right 

of first crossover point and the left of second crossover point 

from the first parent and the genes to the right of second 

crossover point from the second parent [29]. If we have two 

chromosomes 

x=(x1x2…xk1xk1+1…xk2xk2+1…xr) (5) 

y=(y1y2…yk1yk1+1…yk2yk2+1…yr) (6) 

and k1, k2 are the two cutting points will result two offspring 

x'=(x1x2…xk1yk1+1…yk2xk2+1…xr) (7) 

y'=(y1y2…yk1xk1+1…xk2yk2+1…yr) (8) 

In uniform crossover each gene of the first offspring 

has a probability of 0.5 of inheriting from the first parent, 

otherwise it inherits from the second parent. The second 

offspring has genes selected inversely to the corresponding 

gene of the first offspring [29]. 

In [18] is stated that for arithmetic crossover are used 

arithmetic operation to produce offspring. The operation 

depends on the representation of the individuals. Thus for 

binary representation, operators like AND, OR, XOR may be 

used, whereas operator as average may be used for float 

representation. 

D. GA Mutation 

Mutation operator has the role of causing random 

changes in the chromosome, generally applied in the genes. 

Mutation restore genetic diversity of population helping it 

avoid a local optimum level locking [12]. 

Like crossover, mutation depends on type of encoding. 

For binary encoding mutation transform the bit 1 into bit 0 and 

reverse. In permutation encoding two genes are selected 

randomly and their order is changed. If value encoding is used 

a small number will be added or subtracted from the selected 

genes to produce offspring [15]. 

III. EVOLUTIONARY ONTOLOGIES 

In artificial intelligence the ontology term, borrowed 

from philosophy, was defined by Gruber [8] as an explicit 

specification of a conceptualization. Nowadays the ontologies 

are used in different areas from technological processes [14], 

[22], [23] to medical field [16], [17]. 

Using ontologies as individuals rather than any other 

data structure in a genetic algorithm an ontological 

evolutionary algorithm breeds. The ontological space (called 

"onto-space") is the definition given to the solution space, the 

restriction and boundaries of this evolution. 

The onto-space is an ontology describing a domain 

specific knowledge, containing all the concepts along with 

their allowed and denied relationships, according to [19]. The 

onto-space defines the degrees of freedom as well as the 

boundaries of the solution space to be searched by the 

evolutionary process. Quite often, the solution space is infinite 

and special algorithms are needed for exploring it efficiently. 

An onto-space would be the ontology about all electronic 

appliances and the solution required to be found is a possible 

arrangement of a kitchen given some restrictions. 

Formally, an onto-space  

OS = (C, P, I) (9), 

where C is the set of classes, P is the set of properties and I is 

the set of instances. 

Within the ontology OS, there are two disjunctive sub-

ontologies  

OSe = (Ce, Pe, Ie)  (10) 

OSf = (Cf, Pf, If)  (11) 

OSe ∪ OSf = OS  (12) 

 OSe is the sub-ontology which will undergo the 

evolutionary process and OSf is the fixed sub-ontology, e.g. 

which will not change under the evolutionary process. 

A. EO Individuals 

An individual is a subset of the ontology, represented 

as       

Ch = (Ci, Pi, Ii)  (13) 

where Ci ⊂  C is a subset of classes in OS, Pi ⊂ P is a subset of 

properties in OS and Ii ⊂ I is a subset of instances in OS. 

Further on, a genetic individual consists of an evolving part  

Che = (Cie, Pie, Iie)  (14) 

which will be changed during the evolutionary process, and a 

fixed part  

Chf = (Cif, Pif, Iif)  (15) 

The two parts hold the following relations: 

Che ∪ Chf = Ch  (16) 

Che ∩ Chf = ∅  (17) 

Moreover: 

Che ⊂ OSe  (18) 

Chf ⊂ OSf  (19) 

Ch ⊂ OS (20) 
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A population consists of a given (µ) such individuals 

and does not necessarily cover the entire onto-space, therefore 

 ∪i Chi ⊂ OS  (21) 

B. EO Selection 

In the case of EO it is used deterministic selection (µ, 

λ) – selection or (µ + λ) – selection. For first type of selection 

µ parents produce λ offspring (λ > µ) and  only the offspring 

undergo selection. For the second type of  selection µ parents 

produce λ offspring and all solutions compete to survival.  

The deterministic selection is chosen in favor of other 

types of selections as it is rather difficult to correlate 

mathematically ontologies with their relative fitness, needed 

for other techniques. 

C. EO Crossover 

For EO can distinguish three types of crossover 

operators: class crossover, instance crossover and relation 

crossover. 

In an ontology classes are organized hierarchically. 

Two groups of related classes and subclasses are randomly 

selected as parents, a cutting point is chosen, it changes 

between the two parent classes to the point of cutting and the 

two resulted groups are the offspring. In doing so is likely the 

ontology to become inconsistent. In such cases the repair 

operator (see subsection 3.5) will be used to validate the 

ontology. 

In an ontology for each class can be established as 

many instances as wanted. The instances are not independent, 

but related through object properties. For crossover, two 

groups of related instances are selected randomly as parents.  

In an ontology, there are two types of properties: the 

object level and the data level. At object level are elected two 

object properties P1 and P2 as parents. Each property has a 

domain and a range from among the classes:  

C11 P1 C12    (22) 

C21 P2 C22    (23) 

After crossover will get: 

C21 P1 C12    (24) 

C11 P2 C22    (25) 

or 

C11 P1 C22    (26) 

C21 P2 C12    (27) 

As in the class crossover case the result may be 

inappropriate. The repair operator (see subsection 3.5) will 

remove inconsistency. 

In an ontology each data property (DP) has a do-main 

from among the classes and a range from different data types 

like integer, double, float etc. At data level crossover are 

selected as parents two classes with several data properties: 

C1 (DP11, DP12 , DP13,..., DP1n) (28) 

C2 (DP21, DP22 , DP23,..., DP2m) (29) 

A cuting point is selected and the result of the 

crossover will be the same classes with modified properties: 

C1 (DP21, DP22 , DP13,..., DP1n) (30) 

C2 (DP11, DP12 , DP23,..., DP2m) (31) 

The repair operator (see subsection 3.5) will be also 

applied if appropriate result is not obtained. 

The pseudo code for the crossover operator is de-

scribed in algorithm 1. 

Algorithm 1 Crossover - pseudo code showing the 

crossover operator 

1: procedure recombine(population) 

2: newPopulation = ∅; 

3: parentPopulation = select λ individuals  randomly 

4: for all ind1 and ind2 ∈ parentPopulation do 

5:  choose a random cutting point (in the tree  

                  formed by the classes) 

6:  create two offspring by preserving the ordering  

                 position of symbols in the corresponding  

                 sequences of the parents 

7:  adjust the object properties according to the new  

                  class structure 

8:  add the two offspring to the newPopulation 

9: end for 

10: end procedure 

D. EO Mutation 

Like crossover, the mutation operator for EO requires 

different treatment for classes, for instances, respectively for 

properties. It is applied for each individual with a probability 

pm. 

The pseudo code for mutation is shown in algorithm 2. 

Algorithm 2 The Mutation - pseudo code describing the 

mutation procedure 

1: procedure mutate(newPopulation) 

2: for all ind ∈ newPopulation do 

3:  choose a random number r ∈ [0, 1) 

4:  if r < pm then 

5:       choose a random integer number rm ∈ 1, 2 

6:       if rm = 1 then 

7:          applyInstanceMutation(ind) 

8:      else 

9:          applyClassMutation(ind) 

10:      end if 

11:  end if 

12: end for 

13: end procedure 

Instance mutation means replacing a randomly se-

lected instance i belonging to a class C (i ∈ C) with another 

individual i' ∈ C from the onto-space OS. This operator 

preserves the number of ontological instances in an individual. 

A class mutation means replacing all the instances in a 

class C by other individuals belonging to a random subclass 

SC ⊆ C in the onto-space. 

The property mutations may be approached separately 

for data properties, respectively for object properties. 

E. Repair Operator 

Applying classical genetic operators: crossover and 

mutation on ontologies, they can be easily corrupted on the 

strength of their complex structure. That is why Matei et al. 

[19] introduced a new operator, called repair, which is a 
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deterministic operator. It can be applied on the population 

each time another genetic operator is used or only once, after 

crossover and mutation. Repairing an individual means 

adjusting its instances and properties so that they respect all 

the rules defined in the onto-space. 

F. Other Genetic Operator 

The EO’s have a strong expressivity power due to it 

symbolic nature. Therefore several new genetic operators may 

be defined at a class level as well as at individual level. 

Moreover, the relationships of an ontology are very suited for 

subject of new operators, such as union, intersection and 

composition. 

IV. GENETIC ALGORITHMS VS. EVOLUTIONARY 

ONTOLOGIES 

First of all, although evolutionary computation is a sub-

symbolic field of artificial intelligence [11], evolutionary 

ontologies are symbolic simply because ontologies are 

symbolic intelligence [1]. However this is not the first step 

towards bridging the two major domains: symbolic and 

subsymbolic, as shown by Goertzel in [7]. For instance, 

Andrews et al. try in [5] to extract rules from neural networks. 

However, it is for the first time when Matei et al. [19] apply 

the genetic principles to ontologies. 

The strength of EO consists in the fact that they make 

use of the power of mathematical algorithms and the 

expressivity of ontologies. We cannot say anymore that 

evolutionary ontologies are subsymbolic intelligence as they 

make use of ontologies, therefore semantic; on the other hand 

they are not pure symbolic because they evolve using 

mathematical principles, which is never the case of other 

symbolic fields, such as knowledge-based systems [3] and 

intelligent agents [28]. 

The individuals of EO are ontologies themselves as 

they contribute to the evolutionary algorithm with all their 

elements: classes, individuals, relations, properties. In EO 

classes and instances increase in number and/or receive 

improved properties and relations as the result of their 

participation in the evolutionary act. On the other hand, the 

individuals of GA are strings of integer or float number or 

characters depending on the specific problem to be solved. 

The crossover operator is represented in EO in three 

stages: class crossover, instance crossover and relation 

crossover. As shown in subsection 3.3 the three types of 

operators behave differently depending on individuals used as 

operands. If it is applied class crossover operator the result 

would be new class structure. When applying instance 

crossover the result would be new instances. Finally, relation 

crossover determines new relations or new properties in the 

ontology. In GA there are several types of crossover operator 

depending on the data encoding. Whatever crossover operator 

is applied to two strings representing parents will get two 

strings (not very different from the default) which are the 

offspring. 

The mutation operator in EO is also differentiated 

according to the ontological element to which it applies. With 

class mutation it is obtain a new class structure by replacing 

all individuals of a class with individuals of a random subclass 

of that class. Instance mutation signifies the replacement of an 

individual with another individual from the same class as the 

initial individual. Data property mutation means the change of 

initial value depending on the type of data. In GA are 

identified more types of mutation operator based on the kind 

of encoding chosen. No matter what mutation operator is 

applied the result would be a string representing a 

chromosome with random genes modified from the default. 

The selection operator used in EO is based on the 

model used in ES, namely (µ, λ)-selection or  (µ +  λ)-

selection, unlike GA where are used mainly types of selection 

based on fitness function. 

The need of repair operator is required by the results of 

crossover and mutation operators in EO. The resulting 

evolutionary ontology may present evidence of inconsistency, 

which will be removed by repair operator. Affenzeller et al. 

show in [2] that a repair operator is often used in GA in order 

to convert an illegal chromosome to a legal one. There are 

more than one repair operators in GA depending on the 

specificity of the problem. 

From the 70 GA is an open research area. Were thus 

introduced several new operators to the standard ones, like a 

new mutation operator developed to increase GA performance 

to find the shortest distance in the Traveling Salesman 

Problem [4] or new crossover operators namely sequential and 

random mixed crossover applied to a deep beam problem and, 

a concrete mix design problem [10] and the list goes on. EO is 

a new field of evolutionary computation. We customized the 

standard genetic operators: selection, crossover, mutation to 

EO and we have demonstrated the need to use repair operator 

in EO. Further we consider as future work the implementation 

of new operators due to the complexity of ontology elements 

and the relations between them. 

V. CONCLUSIONS 

We have proved in this article that between genetic 

algorithms and evolutionary ontologies there are several 

similarities: 

• both are instantiations of evolutionary computation; 

• the general algorithms are very similar, implying 

individuals which evolve undergoing some genetic 

operators, out of which three are classical: crossover, 

mutation and selection; 

• the aim of both is optimization. 

 

However, the gap between them, shown in table 1 is so 

large that make the evolutionary ontologies a distinct domain. 

 

 

Table 1. The differences between GA and EO 

 
Aspect GA instantiation 

of the aspect 

EO instantiation 

of the aspect 

Intelligence level Subsymbolic, 

entirely 

mathematical 

algorithms 

Symbolic 

concepts evolved 

with subsymbolic 

algorithms 
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Solution space The set of strings 

with the encode 

depending on the 

problem to be 

solved 

An ontological 

space containing 

the possible 

instances and their 

relations 

The individuals Strings Ontologies 

Crossover Depends on the 

type of encoding – 

binary, 

permutation or 

value 

Actually we have 

three different 

operators, one for 

classes, one for 

instances and one 

for relations 

Mutation Depends on the 

type of encoding – 

binary, 

permutation or 

value 

There are three 

different 

mutations for 

classes, instances 

and relations 

Repair operator Frequently used, 

but not mandatory 
Absolutely needed 

as the individuals 

may contain very 

complex internal 

and external 

relations 

Selection Based on fitness 

function 
Deterministic 

New operators New operators 

were introduced 

and continue to 

occur 

New specific 

operators may be 

defined because 

ontologies imply 

different concepts 

and princples 

 

 
Acknowledgments. This paper was supported by the Post-

Doctoral Programme POSDRU/159/1.5/S/137516, project co-

funded from European Social Fund through the Human 

Resources Sectorial Operational Program 2007-2013. 

 

 

REFERENCES  

 

[1] Aerts, Diederik, and Marek, Czachor, (2003). Quantum aspects of 

semantic analysis and symbolic artificial intelligence. arXiv preprint 

quant-ph/0309022. 

[2] Affenzeller, Michael, Wagner, Stefan, Winkler, Stephan and Beham 

Andreas, (2009). Genetic Algorithms and Genetic Programming: 

Modern Concepts and Practical Applications p. 131 ISBN 978-1-

58488-629-7 

[3] Akerkar, Rajendra, and Priti Sajja, (2010). Knowledge-based systems 

p. 19 ISBN-13: 978-0-7637-7647-3. 

[4] Albayrak, Murat, and Novruz, Allahverdi, (2011). Development a 

new mutation operator to solve the Traveling Salesman Problem by 

aid of Genetic Algorithms. Expert Systems with Applications, vol. 38, 

ISSN 09574174 p. 1313-1320. 

[5] Andrews, Robert, Joachim Diederich, and Alan B. Tickle, (1995). 

Survey and critique of techniques for extracting rules from trained 

artificial neural networks. Knowledge-based systems, vol. 8, ISSN 

0950-7051 p. 373-389. 

[6] Ferariu, Lavinia, (2013). Sisteme inteligente hibride. zharieBucurești: 

Conspress. 

[7] Goertzel, Ben, (2012). Perception processing for general intelligence: 

Bridging the symbolic/subsymbolic gap. Artificial General 

Intelligence, vol. 7716, ISSN 1946-0163 p. 79-88. 

[8] Gruber, Thomas R., (1993). A translation approach to portable 

ontology specifications. Knowledge acquisition, vol. 5, ISSN 1042-

8143 p. 199-220. 

[9] Holland, John, (1975). Adaptation in natural and artificial system 

ISBN 0-262-58111-6 

[10] Kaya, Mustafa, (2011). The effects of two new crossover operators on 

genetic algorithm performance. Applied Soft Computing, vol. 11, 

ISSN 1568-4946 p. 881-890. 

[11] Kelley, Troy D., (2003). Symbolic and sub-symbolic representations 

in computational models of human cognition what can be learned 

from biology? Theory & Psychology, vol. 13, ISSN 0959-3543 p. 

847-860. 

[12] Konak, Abdullah, David W. Coit, and Alice E. Smith, (2006). Multi-

objective optimization using genetic algorithms: A tutorial. Reliability 

Engineering & System Safety, vol. 91, ISSN 0951-8320 p. 992-1007. 

[13] Koza, John, (1992). Genetic programming: on the programming of 

computers by means of natural selection ISBN 0-262-11170-5 

[14] Lobonțiu, Mircea and Petrovan, Adrian, (2012). A Product 

development ontology(1). Information integration concepts. Revista 

de Management și Inginerie Economică, vol. 11, ISSN 1583-624X p. 

43-56 

[15] Malhotra, Rahul, Narinder, Singh and Yaduvir Singh, (2011). Genetic 

algorithms: Concepts, design for optimization of process controllers. 

Computer and Information Science, vol 4, ISSN 1913-8989 p. 39. 

[16] Matei, Oliviu, (2008). Defining an Ontology for the Radiograph 

Images Segmentation. 9th International Conference on Development 

and Application Systems, place Suceava, Romania, 22.05.2008 

[17] Matei, Oliviu, (2008). Ontology-Based Knowledge Organization for 

the Radiograph Images Segmentation. Advances in Electrical and 

Computer Engineering, vol 8, ISSN 1582-7445 p. 56-61. 

[18] Matei, Oliviu, (2008). Evolutionary Computation: Principles and 

Practices p. 19-29 ISBN 978-973-751-944-3 

[19] Matei, Oliviu, Contraș, Diana and Pop Petrică, (2014). Applying 

Evolutionary Computation for Evolving Ontologies. Proceedings of 

CEC 2014, China, 06.07.2014 

[20] Mathew, Tom, (2012). Genetic algorithm. Report submitted at IIT 

Bombay. 

[21] Nedjah, Nadia and Macedo Mourelle, Luiza de, (2002). Minimal 

Addition-Subtraction Chains Using Genetic Algorithms. Advances in 

Information Systems, vol. 2457, ISSN 1532-0936  p. 303-313 

[22] Petrovan, Adrian and Lobonțiu, Mircea, (2012). Product development 

ontology. A case study, Quality - Access to Success, vol. 13, ISSN 

1582-2559 p. 393-398. 

[23] Petrovan, Adrian and Lobonțiu, Mircea, (2013). Broadening the Use 

of Product Development Ontology for One-off Products. Applied 

Mechanics and Materials, vol. 371, ISSN 1662-7482 p. 878-882 

[24] Shukla, Anupam, Ritu, Tiwari and Rahul, Kala, (2012). Real life 

applications of soft computing p.161 ISBN 978-1-4398-2289-0 

[25] Sivaraj, R. and Ravichandran, T. (2011). A review of selection 

methods in genetic algorithm. International journal of engineering 

science and technology, vol. 3, ISSN 2141-2820 p. 3792-3797. 

[26] Stoean, Cătălin and Stoean, Ruxandra, (2010). Evoluție și inteligență 

artificială. Paradigme moderne și aplicații ISBN 978-973-650-277-4 

[27] Whitley, Darrell, (1994). A genetic algorithm tutorial. Statistics and 

computing, vol. 4, ISSN 0960-3174 p. 65-85. 

[28] Wooldridge, Michael and Nicholas, R. Jennings, (1995). Intelligent 

agents: Theory and practice. The knowledge engineering review, vol. 

10, ISSN 0269-8889 p. 115-152. 

[29] Xinjie, Yu and Mitsuo Gen, (2010). Introduction to evolutionary 

algorithms p.43-44 ISBN 978-1-84996-129-5 

[30] Zaharie, Daniela, (2013). Curs Calcul neuronal și evolutiv. Facultatea 

de Matematică și Informatică, Universitatea de Vest Timișoara. 

[31] Zaharie, Daniela, (2006). Algoritmi genetici - Curs 3. Algoritmi 

evolutivi - metode de selecție  

O.Matei, D.Contras, A.Pintescu / Carpathian Journal of Electronic and Computer Engineering 7/1 (2014) 19-24 23

ISSN 1844 - 9689 http://cjece.ubm.ro




