
D. Contras, O. Matei / Carpathian Journal of Electronic and Computer Engineering 8/1 (2015) 7-12 7 
 

ISSN 1844 – 9689 http://cjece.ubm.ro 

 

Why Evolutionary Ontologies are not Genetic 

Programming 

Diana Contraș 

Dept. of Automation 

Technical University of Cluj-Napoca 

Cluj-Napoca, Romania 

diana.contras@profinfo.edu.ro 

Oliviu Matei 

Dept. of Electrical Engineering 

TUC, North University Centre of Baia Mare 

Baia Mare, Romania 

oliviu.matei@cunbm.utcluj.ro

 
Abstract—Recently, the concept of evolutionary ontologies 

(EO) has been introduced. Ever since there are debates whether 

or not EO’s are genetic algorithms or genetic programming (GP). 

This article makes a comparison between genetic programming 

(GP) and evolutionary ontologies (EO). Between the two there 

are significant differences, which make them completely distinct, 

although for some specific representations of the ontologic 

individuals, such as RDF, there are some similarities. However, 

we prove that there is a large gap between GP's and EO's, which 

impose EO’s as a new, completely different field of evolutionary 

computation. 
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I.  INTRODUCTION 

Evolutionary computation is a field of artificial 
intelligence which deals with evolutionary principles such as 
natural selection and genetic inheritance in order to solve 
continuous optimization and combinatorial optimization 
problems. 

The major classical domains for evolutionary 
computations are: genetic algorithms (GA), evolutionary 
strategies (ES), genetic programming (GP). 

Genetic programming (GP) introduced by Koza [25] is 
aimed at designing, in the evolutionary manner, calculation 
methods (such as programs, algorithms) or structures (such as 
circuits, decision tree). Their principles are based on genetic 
algorithms, but the individuals are programs that evolve, 
rather than numbers of binary strings. Koza implemented GP 
using LISP language [25], which is a functional programming 
language with a tree-like structure of functions. That is why 
the classical approaches to GP are tree-based. But, again, the 
GP is not about evolving trees, but programs. 

In [32] Matei et al. have introduced the term of 
evolutionary ontologies (EO). They are evolutionary 
algorithms which manipulate ontologies as individuals. The 
use of ontologies is wide as there is knowledge available for 
many fields, such as biology [27], medicine [31], product 
development [29, 39, 40, 43], design [2, 9], geosciences [20, 
30], management [6, 36], semantic web [14], even for traffic 
safety [7], financial decision [15] or more specific areas, such 
as the design of data summarization engine [50] and the 
architecture of the enterprise [21]. The evolutionary 

computation has the strength of exploring all those ontologies 
in a wise way.   

Ever since, there is a debate whether or not evolutionary 
ontologies are in fact genetic programming. In this article we 
will show several reasons for which EO's are a different field 
of genetic computation than GP, although they share some 
commons aspects. 

The rest of the paper is organized as follows. In section II 
an overview of genetic programming is presented, then, in 
section III we describe the evolutionary ontologies and, 
finally, in section IV, the major differences between the two 
concepts are detailed, while the conclusions are drawn in 
section V. 

II. GENETIC PROGRAMMING 

Genetic programming addresses one of the central goals of 
computer science, namely automated programming, whose 
goal is to create, in an automated way, a computer program 
that enables the computer to solve the problem. As Arthur 
Samuel stated in [45], the goal of automatic programming 
concerns: "How can computers be made to do what needs to 
be done, without being told exactly how to do it?" 

A. GP individuals 

Cramer [11] and Koza [25], suggested that tree structure 
should be used as the representation of an individual. Cramer 
published the first method like this and used subtree crossover. 
Other innovative implementations followed evolving in LISP 
and PROLOG ([12, 17]). Koza, however, was the first that 
recognized the importance of the method and demonstrated its 
feasibility for automatic programming in general. 

Graphs are the newest arrival of the fundamental program 
structures [28, 49]. Teller and Veloso [48] proposed the name 
PADO for a graph-based GP system. Graphs are capable of 
representing very complex program structures compactly. A 
graph structure is no more than nodes connected by edges. 
One may think of an edge as a pointer between two nodes 
indicating the direction of the flow of program control. PADO 
does not just permit loops and recursion, but it embraces them. 
This is not a trivial point: other GP systems have 
experimented with loops and recursion only gingerly because 
of the great difficulties they cause. 
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B. GP selection 

The most commonly used selection method in genetic 
algorithms is roulette wheel selection, but in GP, according to 
[25] there are notably alternative methods such as tournament 
selection and rank selection. According to [44], in GP 
tournament selection is preferred to other types of selections 
because the rank that is used to select the winner is ordinal 
which means that is not depending on the total fitness value of 
the population.  

However, according to [52], there are two situations that 
should be considered in terms of tournament selection in GP. 
The first one is called multi-sampled, when the some 
individuals in population are chosen many times to form the 
tournament. The second one is called not-sampled, when some 
individuals are never chosen as part of the tournament. In [52] 
it is shown that different sampling replacement strategies have 
not important impact on selection pressure and using them 
cannot adjust the selection pressure in dynamic evolution. So 
the solution is to develop automatic and dynamic selection 
pressure tuning methods instead of alternative sampling 
replacement strategies. 

C. GP crossover 

The crossover operator combines the genetic material of 
the two parents by swapping a part of one parent with a part of 
the other. We will discuss tree, linear and graph crossover 
separately.  

The tree-based crossover, proceeds by the following steps: 

 Choose two individuals as parents, based on mating 
selection policy. Usually, this policy is similar to the 
one described for genetic algorithms. However, one 
can use any kind of selection. 

 Select a random subtree in each parent. The selection 
of subtrees can be biased so that subtrees constituting 
terminals are selected with lower probability than other 
subtrees. 

 Swap the selected subtrees between the two parents. 
The resulting individuals are the children. 

The tree-based crossover swaps subtrees [37]; linear 
crossover (applicable for linear individuals) swaps segments 
of code between the parents [38]. 

The steps in linear crossover are: 

 Choose two individuals as parents, based on mating 
selection policy. Usually, this policy is similar to the 
one described for genetic algorithms. However, one 
can use any kind of selection. This steps is the case as 
for tree-based crossover. 

 Select a random sequence of instructions in each 
parent. 

 Swap the selected sequence between the two parents. 
The resulting individuals are the children. 

Graph crossover is somehow more complicated. The 
following procedure is employed by Teller [48]: 

 Choose two individuals as parents, based on mating 
selection policy. Usually, this policy is similar to the 
one described for genetic algorithms. However, one 
can use any kind of selection. This steps is the case as 
for tree-based crossover. 

 Divide each graph into two node sets: label all edges 
(pointers, arcs): as internal if they connect nodes within 
a fragment; as external otherwise and label nodes in 
each fragment as output if they are the source of an 
external edge and as input if they are the destination of 
an external edge. 

 Swap the selected fragments between the parents. 

 Recombine edges so that all external edges in the 
fragments now belonging together point to randomly 
selected input nodes of the other fragments. 

With this method, all edges are assured to have 
connections in the new individual and valid graphs have been 
generated. 

D. GP mutation 

According to [42] in GP mutation has been studied since 
the early 80. However Koza [25] has not used mutation, 
wanting to prove that it is not necessary in GP. In [42] is 
stated that nowadays GP mutation is used mainly in modeling 
applications. Mutation operators are different depending on 
the method of representation – tree, linear or graph. 

In case of tree representation are several types of mutation 
operators [42]: 

 Subtree mutation: a subtree is selected randomly and is 
replaced with another randomly created subtree [25]. 

 Size-fair subtree mutation: was introduced by Langdon 
[26]. Using this mutation operator, the new subtree is, 
on average, the same size as the subtree to be replaced. 

 Node replacement mutation: it is also known as point 
mutation. A node of the tree is selected randomly and 
is replaced with another node. In [33] is stated that in 
order to remain the tree legal the created node has to 
have the same number of parameters as the node that is 
replaced. 

 Hoist mutation: introduced by Kinnear in [24] 
determine the random choice of a non-terminal node 
and converting the node and its subtree into the main 
tree. 

 Shrink mutation: a subtree is selected randomly and is 
replaced with a randomly created terminal, according 
to [5]. This kind of operator is used in order to reduce 
program size. 

 Permutation mutation: a function node is selected 
randomly then its arguments are randomly permuted 
[25]. 

For the tree individuals, the mutation operator randomly 
selects a node in the tree and replaces the select subtree with a 
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new randomly generated subtree. The new subtree is created 
in the same way as the programs in the initial population.  

In linear GP, mutation is a little different [8]. The mutation 
operator selects an instruction from an individual. Then, it 
makes one or more changes in that instruction. 

Suppose we have the instruction r0 + r1 = r2 has been 
chosen for mutation. The following changes can occur: any of 
the operands can be changed to another randomly chosen 
operand or the operator can be replaced by another valid 
operator. Some mutation for the above instruction are r1 = r1 + 

r2 or r0 = r2 + r2 or r0 = r1 OR r2. 

In [41] Parallel Distributed Genetic Programming (PDGP), 
a new form of genetic programming, was introduced, for the 
programs with parallelism. In PDGP the programs are 
represented as graphs and the mutation operator was adapted 
to this representation, resulting two forms of mutation: global 
mutation and link mutation. The first type of mutation 
generates a random subgraph that is inserted into the parent 
graph. The second type of mutation, change a randomly 
chosen link of a randomly chosen node from the graph. 

III. EVOLUTIONARY ONTOLOGIES 

An ontological evolutionary algorithm is a genetic 
algorithm in which the individuals are ontologies rather than 
any other data structure. The solution space, the restriction and 
bounderies of this evolution is defined by means of an 
ontological space (called onto-space). 

According to [32], the onto-space is an ontology 
describing a domain specific knowledge, containing all the 
concepts along with their allowed and denied relationships. 
The onto-space defines the degrees of freedom as well as the 
boundaries of the solution space to be searched by the 
evolutionary process. Quite often, the solution space is infinite 
and special algorithms are needed for exploring it efficiently. 
An onto-space would be the ontology about all electronic 
appliances and the solution required to be found is a possible 
arrangement of a kitchen given some restrictions. 

Formally, an onto-space is OS = (C, P, I), where C is the 
set of classes, P is the set of properties and I is the set of 
instances. Within the ontology OS, there are two disjunctive 
sub-ontologies OSe = (Ce, Pe, Ie) and OSf= (Cf, Pf, If), with 

OSeOSfOS. OSe is the sub-ontology which will undergo 
the evolutionary process and OSf is the fixed sub-ontology, 
e.g. which will not change under the evolutionary process. 

A. EO individuals 

An individual is a subset of the ontology, represented as 
Ch = (SC, SP, SI) where SC is a subset of classes in OS, SP is 
a subset of properties in OS and SI is a subset of instances in 
OS. Furthermore, an individual of EO consists of an evolving 
part Che, which will be subject to genetic operators, and a 
fixed part Chf. The two parts hold the following relations: 

CheChf = Ch and CheChf=. Moreover: CheOSe, 

ChfOSf, ChOS. 

A population consists of a given () such individuals does 
not necessarily cover the entire onto-space, therefore 

     
      (1)
    

B. EO selection 

Evolutionary ontologies are permissive, so selection 
operators can be folded easily on their technique. Roulette 
wheel selection, where the participants at the evolutionary 
process are chosen based on the fitness function (meaning the 
higher the fitness function is, the better the chance that a 
chromosome to be elected), is a good option for EO. 

The deterministic selection, is also suitable for EO. In the 

case of (µ,)-selection,  parents produce  (offspring 
and only the offspring undergo selection,  while in  the case of 

(µ+)-selection both parents and offspring are involved in the 
evolutionary process. 

In EO, both, Monte Carlo and deterministic techniques are 
used, depending on the specific problem to be solved. Thus, if 
the fitness function has subjective nature, it requires the use of 
Monte Carlo techniques, such as in the case of an application 
for automatic generation of scenes, where the grade that 
reflect user satisfaction is the fitness function. But if it is an 
application for automatic generation of products, where cost or 
time of production are objective parameters, deterministic 
technique must be used. 

C. EO crossover 

In the case of EO, we can talk about three distinctive 
crossover operators. 

Class crossover: in an ontology classes are organized 
hierarchically. Two parents are randomly selected as two 
groups of related classes and subclasses, a cutting point is 
chosen, it changes between the two parent classes to the point 
of cutting and the two resulted groups are the offspring. In 
doing so is likely the ontology to become inconsistent. In such 
cases the repair operator will be used to validate the ontology. 

Instance crossover: in an ontology for each class can be 
established as many individuals as wanted. The individuals are 
not independent, but related through object properties. Two 
such groups of related instances are selected as two parents. A 
cutting point is chosen and the instances that follow the 
cutting point are interchanged between parents, resulting two 
offspring. In case of inconsistencies is recommended the 
repair operator. 

Relational crossover: in an ontology, there are two types of 
properties: the object properties and the data properties. 
Regarding object properties crossover, are elected two object 

properties P1 and P2 as parents, P1, P2  P. Each property has 
a domain and a range from among the classes C11P1C12 and 

C21P2C22, with C11, C12, C21, C22  C and it materializes in 

relating the instances: I11P1I12 and I21P2I22 where I11C11, 

I12C12, I21C21 and I22C22. After crossover are obtained two 
offspring, as follow I21P1I12 and I11P2I22 or I11P1I22 and I21P2I12. 
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As in the class crossover case, the result may be inappropriate. 
The repair operator will remove the inconsistency. 

In an ontology each data property (DP) has a domain from 
among the classes and a range from different datatypes like 
int, integer, double, float etc. For data property crossover are 
elected two classes with several data properties as parents: 
C1(DP11, DP12, …, DP1k, …, DP1n)  and C2(DP21, DP22, …, 
DP2k, …, DP2n). A cuting point is selected and the result of the 
crossover will be the same classes with modified properties: 
C1(DP21, DP22, …, DP2k, …, DP1n) and C2(DP11, DP12, …, 
DP1k, …, DP2n). The repair operator will be also applied if 
appropriate result is not obtained. 

D. EO mutation 

The mutation operator is applied for each individual with a 
probability pm and requires different treatment for classes, for 
instances, respectively for properties. 

Instance mutation means replacing a randomly selected 

instance I1 belonging to a class C1 (I1C1) with another 
instance from the same class C1  (but not from the subclasses 
of the class C1). This operator preserves the number of 
ontological instances in an individual. 

A class mutation means replacing all the instances in a 
class C1 by other instances belonging to a random subclass of 
the class C1  in the onto-space. 

The property mutations may be approached separately for 
data properties, respectively for object properties. Mutation of 
data properties for an instance, means the replacement value 
of the instance with another value of the same data type as the 
initial value. Mutation of an object property means to replace 
with its inverse, if it exists, or with another suitable object-
property which is currently out the OS, or to replace one of the 
instances it relates to another instance of the same class or its 
subclasses as the initial instance. 

E. Repair operator 

The individuals of EO are complex data structures, not 
simple as binary strings. Due to their complexity, 
inconsistencies may arise after the evolutionary process. That 
is why Matei et al. [32] introduced a new operator, called 
repair, which is a deterministic operator. It can be applied on 
the population each time another genetic operator is used or 
only once, after crossover and mutation. Repairing an 
individual means adjusting its instances and properties so that 
they respect all the rules defined in the onto-space. 

IV. GENETIC PROGRAMMING VS EVOLUTIONARY ONTOLOGIES 

Evolutionary computation works with numbers rather than 
symbols, therefore is a sub-symbolic field of artificial 
intelligence [23]. From this point of view, we can affirm that 
evolutionary ontologies are symbolic simply because 
ontologies are symbolic intelligence [1, 22]. This is not the 
first attempt to create a bridge between the two domains: 
symbolic and subsymbolic. Thus, Goertzel presented in [19] a 
detailed design for incorporation of a subsymbolic system and 
a symbolic system into a integrative cognitive architecture, as 

a hybridization approach, and Andrews et al. offer a survey on 
the artificial neural networks in [4]. However, it is for the first 
time when Matei et al. [32] apply the genetic principles to 
ontologies. Evolutionary ontologies combine mathematical 
algorithms and ontologies, therefore they are not pure 
symbolic because they evolve using mathematical principles, 
which is never the case of other symbolic fields, such as 
knowledge-based systems [3, 18] and intelligent agents [47, 
51]. 

All the elements of the evolutionary ontologies, meaning 
classes, instances, relations, properties participate at the 
evolutionary process. Thus we can conclude that the 
individuals of EO are ontologies themselves. In EO classes 
and instances receive improved properties and relations as the 
result of their participation in the evolutionary act. On the 
other hand, the individuals of GP are source codes or more 
simply programs. Evolving programs is a difficult job that 
does not generally lead to some spectacular results. Therefore 
in GP is used the representation of the programs as trees (e.g. 
in LISP). Thus the evolution in GP does not imply 
evolutionary trees, but evolving programs thereby the result is 
a program that contains new and/or modified code sequences 
representing the optimal solution.  

Four types of crossover operator are found in EO: class 
crossover, instance crossover and two types of crossover based 
on ontology properties. The four types of operators behave 
differently depending on individuals used as operands. Class 
crossover operator generates a new structure of evolutionary 
ontology classes. Instance crossover results in modification of 
genetic individual instances. Finally, properties crossover 
determine new relations or new properties in the onto-space. 
In GP three types of crossover operator are mentioned: tree-
based crossover, linear crossover and graph crossover. The 
tree-based crossover operator generates mutual exchange of 
subtrees. If the tree is the representation of a program then the 
crossover operator means joining some sequences of source 
code to sequences from other source code. In the case of linear 
crossover the exchange is made between sequences of 
instructions. The last type of crossover operator in GP, graph 
crossover, interchange subgraphs such that the resulted graphs 
to respect the relation between nodes and edges. 

Four types of mutation operator are also encountered in 
EO depending on which element from the onto-space they are 
applied. Class mutation generates a new class structure by 
replacing all instances of a class with the instances of a 
random subclass of that class. Instance mutation signify the 
replacement of an instance with another instance from the 
same class as the initial instance, i.e the introduction of new 
instances into genetic individuals. Data property mutation 
means the change of the initial value depending on the type of 
data. The main contribution of object property mutation is the 
mirror effect, by replacing a relation with its inverse. In GP 
are identified three types of mutation operator: for tree 
representation, for linear representation and for graph 
representation. They are different types of operators with 
different results. In the tree representation we witness to 
modifying a node or subtree. Regarding linear representation, 
the mutation determine the change of an operator or an 
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operand from an instruction. For graph representation, two 
forms of mutation are identified which generate the change of 
a subgraph or of a node’s link. 

The selection operator used in EO is based on the models 

used in evolutionary strategies, namely (µ,)-selection or 

(µ+)-selection or on the model used in genetic algorithms, as 
Monte Carlo technique, unlike GP where is used mainly 
tournament selection. 

The repair operator is mandatory in evolutionary 
ontologies, to remove inconsistencies generated by crossover 
and mutation. In GP repair operator is mentioned [13, 16, 46], 
but it is not imposed. 

Other operators outside the standard ones were introduced 
in GP. Thus, new operators called geometric semantic 
operators were presented in [35]. Another new operator in GP 
called forking was introduced in [34]. EO hold classical 
genetic operators: selection, crossover, mutation, that have 
been adapted to the ontological character of the individuals or 
are completely new operators (as relational crossover and 
relational mutation). Further we consider as future work in EO 
the implementation of new operators due to the complexity of 
the genetic individuals. 

V. CONCLUSIONS 

The gap between GP and EO, shown in Table I is so large 
that make the evolutionary ontologies a distinct domain. 

TABLE I.  THE DIFFERENCES BETWEEN GP AND EO 

Aspect GP instantiation of the 

aspect 

EO instantiation of the 

aspect 

Inteligence 

level 

Subsymbolic, entirely 

mathematical algorithms 

Symbolic concepts evolved 

with subsymbolic 

algorithms 

Solution 

space 

The set of programs, 

defined depending on the 

problem at hand 

An ontological space 

containing the possible  

instances and their relations 

The 

individuals 

Programs Ontologies 

Crossover Three basic types  

tree-based crossover, 
linear crossover, graph 

crossover 

Actually we have four 

different operators, one for 
classes, one for instances 

and two for properties 

Mutation Three basic types 

 for tree representation, 
for linear representation, 

for graph representation 

Like in the case of 

crossover, there are four 
different mutations for 

classes, instances, data 
properties and object 

properties 

Repair 

operator 

 Needed sometimes, 

although it did not exist  
in the early stages of GP 

Absolutely needed as the 

individuals may contain 
very complex internal and 

external relations 

Selection Tournament selection  Deterministic or Monte 

Carlo based 

New 

operators 

Geometric semantic 

operators 

Forking operator 

New specific operators may 

be defined because 

ontologies imply different 
concepts and princples 

In this article we show that between evolutionary 
ontologies and genetic programming there are significant 

differences, although they are both fields of genetic 
computation and share common aspects: 

 both are fields of evolutionary computation; 

 their algorithms are very similar, implying individuals 
which evolve undergoing some genetic operators, out 
of which three are classical: crossover, mutation and 
selection; 

 both have the purpose of optimization; 

 in certain cases, the representation of individuals is 
tree-based, therefore some operators (crossover and 
mutation) may be similar, however, not identical.  

As future work, evolutionary computation and ontologies 
may be used together, especially in the context of multi-agent 
systems, which are complicated and hard to create, according 
to [10]. 
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