
P. Molnár, Á. Kicsák, J Vegh/ Carpathian Journal of Electronic and Computer Engineering 8/1 (2015) 3-6 3

ISSN 1844 – 9689 http://cjece.ubm.ro

Accelerating and benchmarking operating system

functions in a “soft” system
Using reconfigurable technology to provide reliable performance characteristics

Péter Molnár, Ádám Kicsák

PhD School of Informatics

University of Debrecen

Debrecen, Hungary

pmolnar@lib.unideb.hu, pixels@vipmail.hu

János Végh

Institute of Informatics

University of Miskolc

Miskolc, Hungary

jvegh@mazsola.iit.uni-miskolc.hu

Abstract—The todays computing technology provokes serious

debates whether the operating system functions are implemented

in the best possible way. The suggestions range from accelerating

only certain functions through providing complete real-time

operating systems as coprocessors to using simultaneously

hardware and software implemented threads in the operating

system. The performance gain in such systems depends on many

factors, so its quantification is not a simple task at all. In addition

to the subtleties of operating systems, the hardware accelerators

in modern processors may considerably affect the results of such

measurements. The reconfigurable systems offer a platform,

where even end users can carry out reliable and accurate

measurements. The paper presents a hardware acceleration idea

for speeding up a simple OS service, its verification setup and the

measurement results.

Keywords—soft-processor, operating system, performance

measurement, hardware accelerator, reconfigurable systems

I. MOTIVATION

A decade ago, the impressive development of the single-
processor computing performance stalled, see Fig. 1 in [1]. On
one side, the reason is in electronic technology: the physical
limits of hardware implementation of sequential computing
seem to be reached, in clock rate [1], dissipation [2],
computational density [3], etc. Even since that time "Processor
and network architectures are making rapid progress with
more and more cores being integrated into single processors
and more and more machines getting connected with
increasing bandwidth. Processors become heterogeneous and
reconfigurable …" [5]. However, using out the available
hardware resources is not simple even with right hardware
support: for example, the hyper-threading "generally improves
processor resource utilization efficiency, but does not
necessarily translate into overall application performance
gain" [5].

The software side is also not more hopeful: "parallel
programs . . . are notoriously difficult to write, test, analyze,
debug, and verify, much more so than the sequential versions"
[7]. The conclusion is that “No current programming model is
able to cope with this development, though, as they essentially
still follow the classical van Neumann model”[5]. This

conclusion caused starting researches in several directions,
including those to speed up operating system functionality. To
draw quantitative conclusions, the performance of the modified
operations must be measured, both in hardware and software.

The performance measurements in computer systems are a
field, where solid background knowledge and carefully
designed measuring conditions are required, if one wants to
derive reasonable performance metrics. The performance can
be described from different points of view [8]. Functions of the
operating systems – from programmer’s point of view – can be
considered as formally short but functionally rather complex
machine instructions, and might consume typically many
thousands of clock cycles in modern operating systems [9].
The modern processors are constructed with many hardware-
accelerating solutions [10], the operation of which can change
the execution times in a considerable and nondeterministic
way. On top of this nondeterministic operation is superimposed
the operation of multitasking operation systems, where the
scheduling of the operating system can insert foreign code
parts – from the point of view of execution time – into the
tested code. Because all of this, maximum care must take place
when choosing platform and method for the measurements.

II. UNIT UNDER TEST

In modern computing, the services of the operating systems
are frequently used, because of comfort and safety. The
performance of their implementation may have serious impact
on the performance of the applications. It is especially so for
simple services, where the overhead needed to reach the
operating system is disproportionally large. This is the reason
why researchers attempt to accelerate reaching OS services,
using various methods. The methods include complete real-
time operating system coprocessor 0 or mixing software-
implemented and hardware-implemented threads [11] in the
operating system. Although the lack of synchronization was
early identified as one of the two fundamental issues of
computing [12], even today most of synchronization
functionality is done by software, in the operating systems.

In our case the idea was using an easy to understand,
implement and handle service: the binary semaphore. As
pointed out 0, in this particular case the real goal is to keep the

P. Molnár, Á. Kicsák, J Vegh/ Carpathian Journal of Electronic and Computer Engineering 8/1 (2015) 3-6 4

ISSN 1844 – 9689 http://cjece.ubm.ro

semaphore information in a place where it is not directly
reachable for the applications of the operating system. From
different reasons, this functionality is traditionally implemented
as one of the services of the operating system. This of course
needs the usual frame of using the OS services, with the
disadvantage of causing a disproportionally high overhead. Our
idea was to store this information in and handle by an
independent non “stored program” hardware accelerator unit,
which was implemented in a reconfigurable device and linked
to the processor implemented in the same reconfigurable
device. In this way any of the processes of the OS running on
the processor can reach the semaphore information only
through using the semaphore hardware interface 0.

III. RELATED WORK

In similar measurements several factors, influencing

performance measurements, have been scrutinized. Bershad et

al [13] have shown, that cache and write buffer have a crucial

role in system performance in writing and interpreting micro-

benchmarks. Jones et al. [14] provide cache behavior statistics

during program execution on a modified LEON processor.

Rajagopalan et al. [15] emphasize the high time consumption

of kernel bound crossing. Shannon and Chow[16] focus on

software performance measuring with gprof integration. The

importance of fine-granularity of performance measuring tools

is emphasized [17] not only in embedded systems, but also for

example in virtualized environments.

One of the fine points of the cooperation between CPU and
an independent hardware accelerator, like our HW-
implemented semaphore unit, is the method how they are
linked. Because most hardware accelerators are prepared to
assist commercially available processors, which cannot be
changed, the usual method is to link the accelerator as one of
the I/O peripherals.

Fig. 1. Performance counter custom instruction block diagram.

While this method of linking is simple, and in this way
some characteristics of the operation, like determinism, can be
improved 0, it is not performant. In modern operating systems
the I/O operations must run under the protection of the
operating system, the mandatory usage of which causes
considerable overhead. In our case this overhead would take
away most part of the expected speedup, so we took a different
approach.

Fig. 2. The SoPC setup used for the benchmarking.

IV. PLATFORM AND METHOD

The commercially available processors are not modifiable
and also many of the details of their internal operation are not
publicly known. Similarly, the commercial operating systems
are not available in open source form. Fortunately,
reconfigurable devices reached a high level of functionality,
and high quality processors with modern architecture, so called
“soft processors” can be implemented in their fabrics. Also,
complete open source operating systems can run on those
processors, allowing preparing complete soft “System on Chip”
applications. In order to avoid the dangers in timing that may
occur in modern computer systems, the possible simplest
measurement setup shall be assembled on such platform.

A. The hardware architecture

For our experiments the NIOS II [18] processor was
chosen, mainly because of its easy customizability of its
machine instructions. We employed our own developed
semaphore and performance counter 0 (see Fig. 1) modules for
measurements. We connected to the NIOS II platform the
manufacturers performance counter, Avalon bus, SRAM
controller, and JTAG debugger (Fig. 2). The minimum amount
of devices on the Avalon bus was used, in order to avoid
unpredictable overhead. Any unexpected interrupt on the bus
could modify the results.

Communication with the host computer is possible through
JTAG UART component and USB Blaster Download cable.
All the desired modules can be customized and configured for
the measurements. We used NIOS II economy and fast core
types of the processor during the benchmarking tasks. We
modified only the core type; other options remained at their
default values.

B. The software architecture

Similarly, mainly because of its easy customizability, the
Altera Hardware Abstraction Layer and μC/OS-II operating
system [19] was used and modified for our goals. The idea was
to implement semaphore handling as a (custom) machine
instruction, then implement semaphore handling in the OS both
the traditional way, though operating system service and in our
preferred way, implementing it through using a custom

P. Molnár, Á. Kicsák, J Vegh/ Carpathian Journal of Electronic and Computer Engineering 8/1 (2015) 3-6 5

ISSN 1844 – 9689 http://cjece.ubm.ro

instruction directly. The Nios II Economy core is optimized for
small area utilization instead of performance. Even if
semaphore operations ends up in one clock cycle,
processor instruction execution and data transfers needs
additional clock cycles ([18] pp 5-11).

Fig. 3. The Nios II custom instruction.

C. Linking the hardware semaphore to the processor

In our case we also had to solve to link a subsystem,
implemented in non “stored program” way, to the operating
system. This was accomplished in two steps. In the first step
the semaphore module 0 was implemented as custom
instruction, see Fig. 3. In the second step the semaphore
handling was re-implemented, using the custom instruction.
Another custom instruction was implemented to measure the
overhead of the measurement.

The semaphore hardware implementation is connected to
the NIOS II core through extended type custom instruction
which determines the calling syntax. The assembler syntax:
custom N, xC, xA, xB, where xA, xB are input parameters, xC
an output register and N selects the desired custom instruction
([18], pp 8-47). At system generation time, C macros and
functions are generated for use in operating system. The
generated C macro syntax is the following:

ALT_CI_<name>_CUSTOM_INSTRUCTION_0(<N>,<A>,);

This macro can return custom instruction generated value.

D. The testbench

Two software projects were used: one for measuring
performance counter custom instruction overhead and another
one for measuring operating system semaphore performance
with semaphore custom instruction. The overhead
computations were realized with assembly instructions; the
semaphore measurements were implemented in C.

Table contains the result of one of the most important
validating steps: the measurement results of our performance
counter custom instruction overhead. To start or stop a counter,
two processor instructions need to be executed: a movi and a
custom. The former loads in the register the chosen counter
identifier and the latter instructs the processor to execute the
counter handling custom instruction. Reading the counter
values is a separate step, and it can be accomplished at any

time. Overhead tests are executed without using the operating
system. As shown, even in this simple case serious
indeterminism is introduced: the hardware accelerators
implemented in the full core make this overhead shorter,
typically 22 clock ticks; but – depending on the system state, in
a not predictable way – this time can also be 30 ticks.

TABLE I. PERFORMANCE COUNTER CUSTOM INSTRUCTION OVERHEAD (IN

CLOCK TICKS)

Custom

instruction
Nios II core type

Economy Full

Overhead 37 22; max 30

V. RESULTS

We employed our own developed semaphore and
performance counter modules for measurements. We
connected to the NIOS II platform the manufacturers
performance counter, Avalon bus, SRAM controller, JTAG
debugger, see Fig. 2. We measured the processor in the
smallest economy and the fastest full version configurations.
While the first one contains only the most necessary
components, the last one contains cache and branch predictor
as well. We used the minimum amount of devices on the
Avalon bus, in order to avoid unpredictable overhead. Any
unexpected interrupt on the bus could modify the results, so the
measurements run with disabled interrupts.

As an example, the measurement results for the operation
creating a semaphore is shown in Table II. Using hardware
acceleration in the full core changes the speedup both for the
hardware and software implemented versions, and makes the
execution time rather unpredictable.

TABLE II. MEASUREMENT SUMMARY OF SEMAPHORE FUNCTION CREATE (IN

CLOCK TICKS)

Time to

create
Nios II core type

Economy Full

In software 2726 851-1195

In hardware 77 43-75

Notice also how huge reserves in using resources are still
available in the operating mode of the stored program
computers: the semaphore operation itself needs only 1 clock
cycle, to use it as a single machine instruction takes 19 clock
cycles, as a C instruction 77 cycles. If the same functionality is
implemented in the operating system in the traditional way, it
takes 2726 cycles. Note that in our case the operating system
uses supervisor mode only, so there is no need to cross the
kernel bound. In the case of operating systems like Linux or
Windows the same operation needs about 20,000 cycles [9].

Orders of magnitude in performance are lost for the comfort

of using stored program processors and an operating system.

CONCLUSIONS

To measure performance either of a modern processor or
the operating systems running on it, or both, is a real challenge.
To separate the different contributions to the measurement time

P. Molnár, Á. Kicsák, J Vegh/ Carpathian Journal of Electronic and Computer Engineering 8/1 (2015) 3-6 6

ISSN 1844 – 9689 http://cjece.ubm.ro

from each other is an unsolvable task, if one has a commercial
processor and operating system. It is not guaranteed at all, that
the hardware platform and/or software services are really
comparable, if we do not know all of the relevant details of the
implementation. The completely “soft” systems provide a
platform, where hardware and/or software features are under
complete control, and those individual features can be virtually
switched on and off, through generating the ‘unit under test = a
specific HW/SW ensemble’ in some otherwise identical
environment.

Because of the complexity of the HW/SW interactions,
even in such controlled environment special care must be
exercised, partly because some consequences of the switched
features interfere, partly because the measurement device
overlaps with the measured system. When using open-source
operating system on open source hardware processor,
everything is under complete control. As the presented results
show, with carefully designed measurements accurate values
can be derived, where the nature of the studied process is
deterministic, and range of execution times can be determined
where it is not. In the simple case presented the results
completely match our expectations: the execution times
received verify that using our ‘single-shot’ measurements both
processor and operating system service functionalities can be
studied with clock cycle accuracy. The prepared measurement
setup and environment settings are authentic to carry out such
measurements, even in such a complex environment. The
measurement setup and methodology allow qualifying
hardware and/or software acceleration solutions. The
measurements also proved that with proper changes in the
functionality of OS services, considerable performance
enhancement could be reached, while maintaining
compatibility with the traditional solution.

REFERENCES

[1] S. H. Fuller, L. I. Millett, Computing Performance: Game Over or Next
Level?, Computer 44 (2011) 31-38.

[2] V. Agarwal et al, Clock Rate versus IPC: The End of the Road for
Conventional Microarchitectures, in: Proc. of the 27th Annual Internat.
Symp. on Computer Architecture, 2000.

[3] H. Esmaeilzadeh et al., Dark Silicon and the End of Multicore Scaling,
IEEE Micro 32 (3) (2012) 122-134.

[4] J. Williams et al., Computational density of fixed and reconfigurable
multi-core devices for application acceleration, Proceedings of
Reconfigurable Systems Summer Institute, Urbana, IL, Jul. 2008.

[5] S(o)OS project, Resource-independent execution support on exa-scale
systems, http://www.soos-project.eu/index.php/related-initiatives, 2010.

[6] S. Saini et al, The impact of hyper-threading on processor resource
utilization in production applications, Proceedings of 18th International
Conference on High Performance Computing (HiPC), 2011. Bangalore,
India. pp 1-10, DOI: 10.1109/HiPC.2011.6152743

[7] J. Yang, et al, Making Parallel Programs Reliable with Stable
Multithreading, Communications of the ACM 57 (3) (2014) 58-69.
doi:10.1145/2500875.

[8] D. J. Lilja: Measuring computer performance. Cambridge university
Press, 2004. ISBN 0-511-03627-2.

[9] B. E. Randal and D. R. O'Hallaron: Computer Systems: A Programmer's
Perspective, Pearson 2010

[10] J. L. Hennessy and D. A. Patterson: Computer Architecture: A
Quantitative Approach. Morgan Kaufmann/Elsevier, 2006. ISBN
9780080475028

C. M. Ferreira and S. R. Oliveira: RTOS Hardware Coprocessor
Implementation in VHDL. 2009. http://www.academia.edu/
200563/RTOS_Hardware_Coprocessor_Implementatio_in_VHDL

[11] H. K-H. So, BORPH: An Operating System for FPGA-Based
Reconfigurable Computers, PhD Thesis 2000, University of California,
Berkeley.

[12] Arvind and Iannucci, Robert A.: Two Fundamental Issues in
Multiprocessing. 1988 4th Internat. DFVLR Seminar on Foundations of
Engineering Sciences on Parallel Computing in Science and
Engineering, pp. 61–68.

J. Végh, Á. Kicsák, Zs. Bagoly and P Molnár: An Alternative
Implementation for Accelerating Some Functions of Operating System.
Proceedings of the 9th International Conference on Software
Engineering and Applications, Vienna, Austria, 29-31 August, 2014. pp
494-499, http://dx.doi.org/10.5220/ 0005104704940499

[13] B. Bershad, R. P. Draves, and A. Forin, Using microbenchmarks to
evaluate system performance. In IEEE Proceedings of the Third
Workshop on Workstation Operating Systems 1992, pp 148–153.

[14] P. Jones, P., et al.: Extracting and improving microarchitecture
performance on reconfigurable architectures. International Journal of
Parallel Programming, 2005, 33:136.

[15] M. Rajagopalan, et al. (2003). System call clustering: A profile directed
optimization technique. doi:10.1.1.127.4691.

[16] L. Shannon, L. and P. Chow, P. (2004). Using reconfigurability to
achieve real-time profiling for hardware/ software codesign. In
Proceedings of the 2004 ACM/SIGDA 12th International Symposium on
Field Programmable Gate Arrays, FPGA ’04, pages 190–199, New
York, NY, USA. ACM.

[17] Anand, A., et al.: Resource usage monitoring for kvm based virtual
machines. 2012 18th Internat. Conference on Advanced Computing and
Communications (ADCOM), 2012, pp. 66–70.

[18] Altera Corporation, NIOS II Processor Reference Handbook, 2014.
http://www.altera.com/

[19] Micrium Inc., C/OS-II, 2014, http://www.micrium.com/

[20] V.M. Weaver, D. Terpstra, D. and S. Moore, Non-determinism and
overcount on modern hardware performance counter implementations.
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS) 2013, pp 215-224
http://dx.doi.org/10.1109/ISPASS.2013.65571

http://www.micrium.com/

