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Abstract— In the context of growing ubiquity of sensors, 
surveillance equipment and other mobile devices, a shift in 
the data processing paradigm was necessary. New systems 
are required to be capable of processing data streams of 
infinite length, having a high throughput, that cannot be 
stored and processed using classical Database Management 
Systems (DBMSs). These are called Data Stream 
Management Systems (DSMSs) within the scientific 
community. A first step performed by them is time 
synchronization between events arriving on different 
timestamped data streams. Within this paper an event 
synchronization method that makes use of binary trees to 
achieve its task is introduced and compared with other 
approaches in order to emphasize its strengths. 
Furthermore the integration with DSCPE (our Data Stream 
Continuous Processing Engine) is proposed. 

I. INTRODUCTION 
The latest advances in science coupled with the ability 

to build very small devices have led us into a world where 
monitoring equipment is ubiquitous. It is not uncommon 
to see such equipment in the list of assets belonging to 
small companies that could not have afforded such 
devices a couple of years ago. 

On the market several types of sensors and monitoring 
equipment can be found, the most common being the ones 
needed for building surveillance, for detecting various 
changes related to the surrounding climate, monitoring 
patients in hospitals and others. All these are appliances 
that generate data under the form of data streams. 
Financial data is exposed by stock exchanges over low 
latency and high throughput network links as data streams, 
and network traffic is subject to collection for further 
analysis in some nodes. According to mobithinking.com, 
in the entire world there are 5981 million mobile cellular 
subscriptions, a huge number when taking into account the 
entire world population, all of which are sources of data.  

To our understanding, data streams represent infinite 
sequences of events that are accompanied by a timestamp 
and are ordered in time. 

Considering the amount of data coming from these 
systems it does not take long to realize that the classical 
store and query approach cannot be applied. DBMSs 
(DataBase Management Systems) cannot work on infinite 
streams because in order to query they need to have access 
to the entire set of data. A list of problems researchers are 
facing can be found in L. Golab and M.T. Özsu, [1]. 

In response to the challenge imposed by infinite data 
streams, researchers developed continuous query systems 
[2] [3] [4], defined dataspaces [5] [6], and gave birth to a 
new class of systems, called DataStream Management 

Systems (DSMSs) [7] [8] [9], that are capable of querying 
received information on the fly and of providing the user 
with an approximate result of the query execution. 

DSMSs are not the only ones that work on infinite 
streams. Datastream mining tools are under development 
that are capable of extracting information related to 
analyzed datastreams without requiring access to the 
entire history of data. Some of the directions aimed when 
building these tools are: 
- Data stream mining utilities for classification, like the 

one found in P. Domingos and G. Hulten, [10]. 
- Dependency detection applications like the ones in T. 

Oates et al. [11], H. Kargupta et al. [12]. 
- Different tools for anomaly and fraud detection like 

the ones in A. Metwally et al. [13] and A. Pawling et 
al. [14]. 

We call the entire set of applications that work on 
datastreams continuous processing applications. 

Time synchronization is an important issue in these 
systems as most of time they base their results partly on 
the temporal information conveyed through the data 
streams, and the information travelling between the 
monitoring equipment and the processing system is sent 
over links that can be subject to different amounts of 
delay. Even though it is important, the time 
synchronization subject is either avoided or not 
thoroughly explained in the work analyzed. When taking a 
look at NiagaraCQ, presented in [2], we observe that time 
synchronization is not addressed. TelegraphCQ, [4], 
allows loosely synchronized sources of data, meaning that 
a synchronization is not performed prior to applying query 
operators. Aurora and Medusa, [7], perform reordering 
within the query operators and a deadlock prevention 
mechanism is said to be implemented but is not presented 
in the paper. The in-query operator implementation is of 
no use in our dependency detection project. STREAM, 
[8], performs synchronization when a join operator is 
applied to data streams. The process is not presented in 
detail. Borealis, [9], is based on Aurora and Medusa but 
uses a different approach for synchronization. It uses a 
revision based system within which any messages that 
exceed imposed delay bounds are dropped. The 
description of this system is not detailed. 

Other papers that have been studied in the search for a 
time synchronization solutions are Sun et al., [15], which 
describes a burst detection algorithm on data streams, Das 
et al., [16], where a way of predicting the future actions of 
the inhabitants in a smart home can be found, 
Dechouniotis et al., [17], where a method to detect 
dependencies between network components using a fuzzy 
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algorithm is presented. None of these presents a usable 
way of synchronizing events within our solution. 

In this paper we propose two methods for 
synchronizing events that use binary trees as data 
structures for performing the task. The algorithms 
employed are explained, the results of the two methods 
are compared and the integration with our continuous 
processing engine is described. 

The remainder of this paper is organized as follows: 
section II presents the definitions of the main concepts 
that are going to be used, section III depicts the problem, 
section IV describes the proposed methods and tests 
performed on them and section V presents future 
directions and concludes this paper. 

II. DEFINITIONS 

Definition. A data event 𝐸(𝑡, 𝑎1, … , 𝑎𝑘) is a tuple 
containing a timestamp 𝑡 and a list of attributes 𝑎1, … , 𝑎𝑘 
that describe the state of the event source. 

Observation. Attributes are not required for the work 
presented in this paper, so they will be omitted from now 
on when mentioning events. 

Definition. A data stream 𝐷𝑆 is a sequence of 
timestamped data events produced by a data source 𝑑𝑠. 

It is assumed that a data source cannot be in more than 
one state at a time (unique timestamp) and timestamps are 
considered as a monotone sequence of positive integers 
(discrete-time). 

 𝐷𝑆 = {𝐸𝑖(𝑡𝑖)|𝑡𝑖 ∈ ℕ, 𝑡𝑖 < 𝑡𝑖+1} (1) 

Within 1, 𝑡𝑖 represents the timestamp of the event 𝐸𝑖.  
Let 𝐷𝑆1,𝐷𝑆2, … ,𝐷𝑆𝑛 be the data streams being 

analysed in a continuous event processing system, where 
𝑛 represents the number of streams. 

Observation. For events that correspond to a data stream 
𝐷𝑆𝑘 the notation 𝐸𝑖

𝐷𝑆𝑘 is used in order to avoid confusion 
between events from different data streams.  

For the remainder of the paper it is assumed that the 
source clocks being used to timestamp the events are 
synchronized and that the only source of time variation is 
the transportation of events between the data source and 
the processing system. Moreover it is considered that 
events produced by the same data source will arrive in 
order at the processing system. 

An event 𝐸𝑖
𝐷𝑆𝑘 that arrives at the processing system 

receives an arrival timestamp 𝑡𝑎𝑖. 

Definition. The tuple formed by associating an arrival 
timestamp 𝑡𝑎𝑖 to an event 𝐸𝑖

𝐷𝑆𝑘  is called an arrived event 
and is denoted by 𝐴𝐸𝑖

𝐷𝑆𝑘. 

 𝐴𝐸𝑖
𝐷𝑆𝑘  =  (𝑡𝑎𝑖  ,𝐸𝑖

𝐷𝑆𝑘) = (𝑡𝑎𝑖 , 𝑡𝑖) (2) 

Let 𝑆𝐴𝐸 be the set of all arrived events within the 
processing system: 

 𝑆𝐴𝐸 = � 𝐴𝐸𝑖
𝐷𝑆𝑘

𝑘=(1,𝑛)

   (3) 

Definition. An arrived event AEj
(DSk)�taj, tj� that has the 

properties described in 4.1 and 4.2 is called a delayed 
event. 

 𝑡𝑎𝑗 ≥ 𝑡𝑎𝑝,∀ 𝐴𝐸𝑝 ∈  𝑆𝐴𝐸 (4.1) 

 ∃ 𝐴𝐸𝑞 ∈  𝑆𝐴𝐸, 𝑠. 𝑡.  𝑡𝑗 < 𝑡𝑞 (4.2) 

Using the definitions and observations specified above 
the problem can be defined and our solution approach 
explained. 

III. PROBLEM STATEMENT 

A. Time synchronization 
Given a set of datastreams to be processed by DSCPE 

(Data Stream Continuous Processing Engine), see [18], on 
which events can be subject to delays on their path from 
the source to the system, we are interested in creating a 
solution that would synchronize the arrived events in 
order to ensure that processing is done in proper order. 

Figure 1 illustrates DSCPE and the place where time 
synchronization is needed. It is important to note that the 
information received on different streams is represented as 
events that have the same structure. More explanations 
related to DSCPE will be given later within this paper. 

Figure 1. Where time sync is needed in DSCPE 

Figure 2 illustrates an example of delayed event 
arrivals. In order for a proper synchronization to take 
place, assuming that the synchronization begins at time 0, 
the processing of events can only begin after event 
number 9 arrives at the processing system. 

 
Figure 2. Delayed event arrivals 

B. System evolutivity 
The number of processed datastreams could change 

significantly with time in a continuous processing system. 
In order to cope with this the proposed synchronization 
method should be able to support changes in the number 
of synchronized data streams while running. 
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C. Datastream Failures 
Given the fact that a stream may fail or stop generating 

events we are interested in adjusting the time 
synchronization solution so that such streams would not 
block the processing system. 

IV. SOLUTION APPROACH 

A. Why binary trees? 
Binary trees have been chosen over other methods 

because they provided a simple and straight forward 
manipulation with low time complexity. The insertion, 
removal and search operations have a worst case 
complexity of O(n), while the average is O(log(n)). This 
can mean a synchronization that’s sometimes close but 
always better than the studied alternatives. 

Table 1 presents a small comparison based on the 
number of comparison and update operations performed 
by possible alternative methods when synchronizing the 
events in figure 2. 

TABLE I  

 

COMPARISON BETWEEN POSSIBLE SYNCHRONIZATION METHODS 

Indexed list Linked list Binary tree 
Comparisons 25 37 30 
Updates 39 37 17 
 

B. Method 1 
The method described in this section is based on the 

work presented by us in the paper “SYNCY: A Software 
Engine for Data Stream Event Synchronization”, see [19]. 

In order to address the first requirement presented in 
section III, subsection A, a binary tree structure was 
chosen having the following characteristics: 

• The arrived events are stored as nodes that can 
have a maximum of 2 descendants (one left 
descendant and one right descendant). 

• The insertion position of each node is determined 
by the original timestamp of the arrived event. If 
it’s smaller than the one in the current node we’ll 
continue the insertion on the left branch, 
otherwise on the right. 

• Besides the 2 descendants, each node contains a 
link to its parent in order to allow non-recursive 
implementations for insertion and removal 
operations within the binary tree. 

• Each node contains a bitwise table where 1 bit is 
allocated for each datastream that the system 
processes at the time of insertion. When an event 
newer than the one represented by the node 
arrives on a datastream the bit corresponding to 
this datastream will be set to 1. When all bits are 
set to 1 the node can be processed. We call this 
bitwise table the readiness table. 

Within figure 3 we can observe how the events in figure 
2 are added to the tree and how readiness tables should be 
updated. 

The second requirement, presented in section III, 
subsection B, is addressed through proper usage of the 
readiness tables.  

 

 
Figure 3. Example of binary tree 

Each time a new stream is added to the system the 
readiness table increases in size for the newly created 
nodes. When comparing readiness tables of different sizes 
only the common part is taken into account during 
calculations.  

When a stream is removed from the system its position 
will be masked in the readiness tables in order not to 
affect processing. 

Addressing the third requirement (section III, 
subsection C) implies the definition of two important 
parameters, the maximum allowed processing delay for an 
event, or MD, and the maximum allowed failures per 
stream, or MS. 

Each event to be processed receives an arrival time 
stamp. If the current system time minus the arrival 
timestamp of an event that is still in the tree is greater than 
MD, the event is processed at the next event processing 
step and the failure marker is incremented for the stream 
that produced that event. When the failure marker for a 
stream reaches MS, the stream is disabled until an event 

Algorithm 1. AddNodeToTree(currentNode, nodeToAdd) 
if nodeToAdd.Event.t < currentNode.Event.t then 

if currentNode.Left != NULL then 
AddNodeToTree (currentNode.Left, nodeToAdd) 

else 
currentNode.Left = nodeToAdd 
nodeToAdd.Parent = currentNode 

end if 
else 

currentNode. 
SetFlagForDataStream(nodeToAdd.Event.DS) 

if currentNode.Right != NULL then 
AddNodeToTree(currentNode.Right, nodeToAdd) 

else 
currentNode.Right = nodeToAdd 
nodeToAdd.Parent = currentNode 

end if 
end if 
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with an original timestamp newer than the latest one being 
processed arrives on it. 

Events that have an older timestamp than the latest 
event being sent to processing should be dropped. 

The following operations are performed for node 
addition and synchronization: 

Node addition – Algorithm 1 presents the recursive 
steps performed while adding a node to the tree. The 
search for the insertion point starts from the root node and 
continues with its descendants until a descendant in the 
chosen direction no longer exists and the insertion can 
take place. While searching for the insertion point we 
update the readiness tables of the inspected nodes if the 
process continues on their right branch. 

Tree processing – Takes place after the node addition 
and is presented in algorithm 2. The first step is to check 
the root node if it has all the bits in the readiness table set 
to 1 or if the node synchronization has timed out. This 
means that the node is ready to process. The next step is to 
find the closest right descendant of the root node that 
cannot be processed and to set it as the root node. Once 
this step is done we can proceed with sending the events 
tot the event processor. The events will be extracted from 
the partial tree in an in order fashion until none remains. 

Algorithm 3 presents the recursive variant of the 
algorithm employed for node extraction and processing. 

The details related to how the maximum allowed 
processing delay and maximum stream failure are handled 
have been partially omitted from the code snippets 
provided. The mechanism behind them is simple and it 
does not require additional explanation. 

C. Method 2 
The second method, presented in this section, uses the 

same tree structure as the first and ads some important 
changes to the way nodes are added and extracted from 
the tree. 

In an attempt to reduce the system delay of the first 
method, defined as the time required to extract a node 
that has reached the state ready to process, we joined the 
tree processing algorithm and the node addition 
algorithm. The resulting method exploits some of the 
previously exposed properties of the binary tree, namely: 

 
 
1. The left descendants of one node inherit the values 

from the readiness table of this node. 
2. If the current node is not ready, neither are its 

right descendants. 
 

Within figure 3 we can observe these properties, 
together with how nodes are added to the tree and how 
readiness tables are built. 

The first property represents a burden as it requires the 
creation and maintenance of a readiness mask which must 
be updated every time the left descendant of one node is 
chosen for inspection. 

The second property helps limit the impact of the first 
by allowing us to skip all extra computations after 
choosing the right descendant for inspection if the current 
node is not ready for processing. 

Algorithm 4 describes the recursive version of the 
merged add and process operations. The end if 
instructions were omitted as their positions can be 
implied by taking into account the indentation. 

Algorithm 3. SendToProcessingRecursive(currentNode) 
if currentNode != NULL  
then 

SendToProcessingRecursive(currentNode.Left) 
Enqueue(currentNode) 
SendToProcessingRecursive(currentNode.Right) 

end if 

Algorithm 4. AddNodeToTreeAndProcess 
(currentNode, nodeToAdd, canCheck, mask) 

if (currentNode == nodeToAdd) then 
if canCheck and IsReadyToProcess(currentNode, 

mask) then  
SendToProcessingRecursive(currentNode) 

return 
 
if nodeToAdd.Event.t < currentNode.Event.t then 

if canCheck then 
UpdateMask (mask, currentNode) 

if currentNode.Left != NULL then 
AddNodeToTreeAndProcess (currentNode.Left,  

nodeToAdd, canCheck, mask) 
else 

currentNode.Left = nodeToAdd 
nodeToAdd.Parent = currentNode 
AddNodeToTreeAndProcess (currentNode.Left, 

 nodeToAdd, canCheck, mask) 
else 

currentNode. 
SetFlagForDataStream(nodeToAdd.Event.DS) 

if canCheck then 
if (IsReadyToProcess(rootNode, mask) or  

IsSyncTimedOut(rootNode)) then 
SendToProcessingRecursive(currentNode) 

else 
canCheck = false 

if currentNode.Right != NULL then 
AddNodeToTreeAndProcess (currentNode.Right, 

 nodeToAdd, canCheck, mask) 
else 

currentNode.Right = nodeToAdd 
nodeToAdd.Parent = currentNode 
AddNodeToTreeAndProcess (currentNode.Right, 

 nodeToAdd, canCheck, mask) 
 

Algorithm 2. ProcessTree(rootNode) 
if rootNode != NULL and  

(IsReadyToProcess(rootNode) or  
IsSyncTimedOut(rootNode))  

then 
oldRootNode = rootNode 
rootNode = GetBestNewRootMatch(rootNode) 
SendToProcessingRecursive(oldRootNode) 

end if 
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D. Integration with DSCPE 
This chapter describes how the synchronization 

methods should be packaged in order to operate within 
DSCPE. 

In DSCPE the stream adapters produce event objects 
within which the arrival timestamp and the original 
timestamp are stored for represented events. Event 
objects are fed to an occurrence engine which is used to 
extract the temporal properties from a chain of events and 
to package the details under the form of occurrence of 
states. 

When packaging the synchronization solution we must 
take events as input and output events. This can easily be 
done by keeping the correspondent events within the tree 
nodes and manipulating them as necessary.  

But if we want to handle bursts we need to implement 
an output queue or use an existing one (the STL queue for 
example). The events stored in an output queue must be 
dequeued by an autonomous routine that takes them from 
the queue and sends them to processing. 

This is why it is important to mention that a time 
synchronization module would be comprised of: 

1. A time synchronization part 
2. An output queue 
3. An event feeder that takes events from the queue 

and sends them to the occurrence engine. 
A block schema of DSCPE with time synchronization 

is presented in figure 1. 

E. Testing time sync methods 
In order to test and compare our proposed time 

synchronization methods we used the same generator as 
the one used to produce the results in [19]. 

The following adjustments can be made within the 
event generator: 

- the number of data streams 
- the delay and throughput can be changed for the 

desired streams 
- the number of events to generate at each run 
The first test performed demonstrates the impact of the 

number of data streams on the processing time. 
The number of data streams was varied from 1 to 1500 

with all streams having the same throughput and 0 delay. 
For each case 10000 events where generated and the 
number of CPU clocks required to complete it was 
measured together with the number of visited nodes. The 
result can be seen in figures 4 and 5. 

In figure 4 we can see that both method 1 and method 
2 require about the same amount of CPU clocks to 
perform synchronization on streams that are implicitly 
synchronized. The second method required slightly more 
than the first, but this is not yet obvious. 

The number of visited nodes is smaller for the second 
method than the first, as we can see in figure 5, but if we 
look at the values corresponding to a high number of data 
streams we can conclude that the advantage is negligible. 
The axes were represented using a logarithmic scale in 
order to emphasize the difference in the number of visited 
nodes for small numbers of data streams. On the same 
figure we can deduce that the increase in number of 
visited nodes is linear and in a direct relation with the 
increase in the number of processed datastreams. 

 
Figure 4. Processing time vs. Number of data streams 

 
Figure 5. Nr. of visited nodes vs. Nr. of datastreams 

Due to the way readiness tables are implemented we 
can observe a high increase in number of CPU cycles 
required at each multiple of 64 data streams. The 
readiness tables are implemented in a bitwise manner 
having as storage unit the default platform word, which is 
64 bits for 64 bit platforms. 

The second test performed tries to emphasize the link 
between the delays occurring on multiple datastreams and 
the amount of processing required for fulfilling the tasks.  

The number of datastreams was varied from 1 to 256 
and delays were applied to the first two streams.  

The results presented in [19] show that for the first 
method the synchronization time is only affected by the 
stream having the highest delay. These results are also 
valid for the second method since we are dealing with a 
technique similar to the first one. However, we are 
interested in comparing the two methods in order to see 
how they perform in the same conditions. 

Figure 6 shows the number of CPU cycles required by 
each method for different sets of parameters. It is easy to 
observe that the second method requires more cycles to 
perform the same task, with a lower latency though, and 
that the increase in required computation power is not 
linear with the growth of the number of datastreams to be 
processed. 

Due to the fact that the second method requires more 
processing power its usage is recommended only in 
systems where having a very low delay is critical. 
Otherwise the first presented method will perform well. 

Using a balanced tree could improve the second 
method by lowering the time required to add a node to the 
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tree and thus the number of required calculations. Red-
Black trees are a good candidate and further tests will be 
made in this direction. On the contrary, the first method 
cannot be improved using a balanced tree as it will break 
the node extraction mechanism. 

 
Figure 6 Impact of delays on the nr. of CPU cycles required 

V. CONCLUSIONS AND FUTURE WORK 
This paper is related to our dependency detection in 

large surveillance networks project, currently under 
research. As you have seen within the paper, the current 
methods are already implemented and used by DSCPE to 
perform dependency detection. 

Improvements to the synchronization methods are 
planned and the main directions are: 
1. Improvement of memory handling – synchronizing 

events implies a fast creation and disposal of objects. 
These types of operations have an important impact 
on system performance and thus they are subject to 
optimization where possible. Pooling and arena 
allocation are two concepts that can help improving 
performance and they will be analyzed and possibly 
used in the near future. 

2. Multi-threading – the current implementation is not 
multi-threading friendly. As systems that work on 
data streams require multi-threaded operation this is 
one of our future research and development direction 
related to data stream synchronization. 

We consider that the two methods presented in this 
paper are a good fit for appliances where the data sources 
are reliable and synchronized with a common source. 
Depending on latency and CPU requirements one can 
choose to use the first method if a small added latency is 
not an issue or the second if latency is critical and enough 
processing power can be provided to perform the task.  

The integration with DSCPE will motivate us to keep 
the time synchronization methods up to date and to 
improve them as previously discussed. 
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