
 Ș. Dragoș et al. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 61-66 61
__

ISSN 1844 – 9689

Using Binary Trees to Synchronize Events in
Heterogeneous Datastreams

Ștefan-Szalai Dragoș* and Mircea-Florin Vaida*
* Faculty of Electronics, Telecommunications and Information Technology/Communications Department, Cluj-Napoca,

Romania

Abstract— In the context of growing ubiquity of sensors,
surveillance equipment and other mobile devices, a shift in
the data processing paradigm was necessary. New systems
are required to be capable of processing data streams of
infinite length, having a high throughput, that cannot be
stored and processed using classical Database Management
Systems (DBMSs). These are called Data Stream
Management Systems (DSMSs) within the scientific
community. A first step performed by them is time
synchronization between events arriving on different
timestamped data streams. Within this paper an event
synchronization method that makes use of binary trees to
achieve its task is introduced and compared with other
approaches in order to emphasize its strengths.
Furthermore the integration with DSCPE (our Data Stream
Continuous Processing Engine) is proposed.

I. INTRODUCTION
The latest advances in science coupled with the ability

to build very small devices have led us into a world where
monitoring equipment is ubiquitous. It is not uncommon
to see such equipment in the list of assets belonging to
small companies that could not have afforded such
devices a couple of years ago.

On the market several types of sensors and monitoring
equipment can be found, the most common being the ones
needed for building surveillance, for detecting various
changes related to the surrounding climate, monitoring
patients in hospitals and others. All these are appliances
that generate data under the form of data streams.
Financial data is exposed by stock exchanges over low
latency and high throughput network links as data streams,
and network traffic is subject to collection for further
analysis in some nodes. According to mobithinking.com,
in the entire world there are 5981 million mobile cellular
subscriptions, a huge number when taking into account the
entire world population, all of which are sources of data.

To our understanding, data streams represent infinite
sequences of events that are accompanied by a timestamp
and are ordered in time.

Considering the amount of data coming from these
systems it does not take long to realize that the classical
store and query approach cannot be applied. DBMSs
(DataBase Management Systems) cannot work on infinite
streams because in order to query they need to have access
to the entire set of data. A list of problems researchers are
facing can be found in L. Golab and M.T. Özsu, [1].

In response to the challenge imposed by infinite data
streams, researchers developed continuous query systems
[2] [3] [4], defined dataspaces [5] [6], and gave birth to a
new class of systems, called DataStream Management

Systems (DSMSs) [7] [8] [9], that are capable of querying
received information on the fly and of providing the user
with an approximate result of the query execution.

DSMSs are not the only ones that work on infinite
streams. Datastream mining tools are under development
that are capable of extracting information related to
analyzed datastreams without requiring access to the
entire history of data. Some of the directions aimed when
building these tools are:
- Data stream mining utilities for classification, like the

one found in P. Domingos and G. Hulten, [10].
- Dependency detection applications like the ones in T.

Oates et al. [11], H. Kargupta et al. [12].
- Different tools for anomaly and fraud detection like

the ones in A. Metwally et al. [13] and A. Pawling et
al. [14].

We call the entire set of applications that work on
datastreams continuous processing applications.

Time synchronization is an important issue in these
systems as most of time they base their results partly on
the temporal information conveyed through the data
streams, and the information travelling between the
monitoring equipment and the processing system is sent
over links that can be subject to different amounts of
delay. Even though it is important, the time
synchronization subject is either avoided or not
thoroughly explained in the work analyzed. When taking a
look at NiagaraCQ, presented in [2], we observe that time
synchronization is not addressed. TelegraphCQ, [4],
allows loosely synchronized sources of data, meaning that
a synchronization is not performed prior to applying query
operators. Aurora and Medusa, [7], perform reordering
within the query operators and a deadlock prevention
mechanism is said to be implemented but is not presented
in the paper. The in-query operator implementation is of
no use in our dependency detection project. STREAM,
[8], performs synchronization when a join operator is
applied to data streams. The process is not presented in
detail. Borealis, [9], is based on Aurora and Medusa but
uses a different approach for synchronization. It uses a
revision based system within which any messages that
exceed imposed delay bounds are dropped. The
description of this system is not detailed.

Other papers that have been studied in the search for a
time synchronization solutions are Sun et al., [15], which
describes a burst detection algorithm on data streams, Das
et al., [16], where a way of predicting the future actions of
the inhabitants in a smart home can be found,
Dechouniotis et al., [17], where a method to detect
dependencies between network components using a fuzzy

 Ș. Dragoș et al. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 61-66 62
__

ISSN 1844 – 9689

algorithm is presented. None of these presents a usable
way of synchronizing events within our solution.

In this paper we propose two methods for
synchronizing events that use binary trees as data
structures for performing the task. The algorithms
employed are explained, the results of the two methods
are compared and the integration with our continuous
processing engine is described.

The remainder of this paper is organized as follows:
section II presents the definitions of the main concepts
that are going to be used, section III depicts the problem,
section IV describes the proposed methods and tests
performed on them and section V presents future
directions and concludes this paper.

II. DEFINITIONS

Definition. A data event 𝐸(𝑡, 𝑎1, … , 𝑎𝑘) is a tuple
containing a timestamp 𝑡 and a list of attributes 𝑎1, … , 𝑎𝑘
that describe the state of the event source.

Observation. Attributes are not required for the work
presented in this paper, so they will be omitted from now
on when mentioning events.

Definition. A data stream 𝐷𝑆 is a sequence of
timestamped data events produced by a data source 𝑑𝑠.

It is assumed that a data source cannot be in more than
one state at a time (unique timestamp) and timestamps are
considered as a monotone sequence of positive integers
(discrete-time).

 𝐷𝑆 = {𝐸𝑖(𝑡𝑖)|𝑡𝑖 ∈ ℕ, 𝑡𝑖 < 𝑡𝑖+1} (1)

Within 1, 𝑡𝑖 represents the timestamp of the event 𝐸𝑖.
Let 𝐷𝑆1,𝐷𝑆2, … ,𝐷𝑆𝑛 be the data streams being

analysed in a continuous event processing system, where
𝑛 represents the number of streams.

Observation. For events that correspond to a data stream
𝐷𝑆𝑘 the notation 𝐸𝑖

𝐷𝑆𝑘 is used in order to avoid confusion
between events from different data streams.

For the remainder of the paper it is assumed that the
source clocks being used to timestamp the events are
synchronized and that the only source of time variation is
the transportation of events between the data source and
the processing system. Moreover it is considered that
events produced by the same data source will arrive in
order at the processing system.

An event 𝐸𝑖
𝐷𝑆𝑘 that arrives at the processing system

receives an arrival timestamp 𝑡𝑎𝑖.

Definition. The tuple formed by associating an arrival
timestamp 𝑡𝑎𝑖 to an event 𝐸𝑖

𝐷𝑆𝑘 is called an arrived event
and is denoted by 𝐴𝐸𝑖

𝐷𝑆𝑘.

 𝐴𝐸𝑖
𝐷𝑆𝑘 = (𝑡𝑎𝑖 ,𝐸𝑖

𝐷𝑆𝑘) = (𝑡𝑎𝑖 , 𝑡𝑖) (2)

Let 𝑆𝐴𝐸 be the set of all arrived events within the
processing system:

 𝑆𝐴𝐸 = � 𝐴𝐸𝑖
𝐷𝑆𝑘

𝑘=(1,𝑛)

 (3)

Definition. An arrived event AEj
(DSk)�taj, tj� that has the

properties described in 4.1 and 4.2 is called a delayed
event.

 𝑡𝑎𝑗 ≥ 𝑡𝑎𝑝,∀ 𝐴𝐸𝑝 ∈ 𝑆𝐴𝐸 (4.1)

 ∃ 𝐴𝐸𝑞 ∈ 𝑆𝐴𝐸, 𝑠. 𝑡. 𝑡𝑗 < 𝑡𝑞 (4.2)

Using the definitions and observations specified above
the problem can be defined and our solution approach
explained.

III. PROBLEM STATEMENT

A. Time synchronization
Given a set of datastreams to be processed by DSCPE

(Data Stream Continuous Processing Engine), see [18], on
which events can be subject to delays on their path from
the source to the system, we are interested in creating a
solution that would synchronize the arrived events in
order to ensure that processing is done in proper order.

Figure 1 illustrates DSCPE and the place where time
synchronization is needed. It is important to note that the
information received on different streams is represented as
events that have the same structure. More explanations
related to DSCPE will be given later within this paper.

Figure 1. Where time sync is needed in DSCPE

Figure 2 illustrates an example of delayed event
arrivals. In order for a proper synchronization to take
place, assuming that the synchronization begins at time 0,
the processing of events can only begin after event
number 9 arrives at the processing system.

Figure 2. Delayed event arrivals

B. System evolutivity
The number of processed datastreams could change

significantly with time in a continuous processing system.
In order to cope with this the proposed synchronization
method should be able to support changes in the number
of synchronized data streams while running.

 Ș. Dragoș et al. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 61-66 63
__

ISSN 1844 – 9689

C. Datastream Failures
Given the fact that a stream may fail or stop generating

events we are interested in adjusting the time
synchronization solution so that such streams would not
block the processing system.

IV. SOLUTION APPROACH

A. Why binary trees?
Binary trees have been chosen over other methods

because they provided a simple and straight forward
manipulation with low time complexity. The insertion,
removal and search operations have a worst case
complexity of O(n), while the average is O(log(n)). This
can mean a synchronization that’s sometimes close but
always better than the studied alternatives.

Table 1 presents a small comparison based on the
number of comparison and update operations performed
by possible alternative methods when synchronizing the
events in figure 2.

TABLE I

COMPARISON BETWEEN POSSIBLE SYNCHRONIZATION METHODS

Indexed list Linked list Binary tree
Comparisons 25 37 30
Updates 39 37 17

B. Method 1
The method described in this section is based on the

work presented by us in the paper “SYNCY: A Software
Engine for Data Stream Event Synchronization”, see [19].

In order to address the first requirement presented in
section III, subsection A, a binary tree structure was
chosen having the following characteristics:

• The arrived events are stored as nodes that can
have a maximum of 2 descendants (one left
descendant and one right descendant).

• The insertion position of each node is determined
by the original timestamp of the arrived event. If
it’s smaller than the one in the current node we’ll
continue the insertion on the left branch,
otherwise on the right.

• Besides the 2 descendants, each node contains a
link to its parent in order to allow non-recursive
implementations for insertion and removal
operations within the binary tree.

• Each node contains a bitwise table where 1 bit is
allocated for each datastream that the system
processes at the time of insertion. When an event
newer than the one represented by the node
arrives on a datastream the bit corresponding to
this datastream will be set to 1. When all bits are
set to 1 the node can be processed. We call this
bitwise table the readiness table.

Within figure 3 we can observe how the events in figure
2 are added to the tree and how readiness tables should be
updated.

The second requirement, presented in section III,
subsection B, is addressed through proper usage of the
readiness tables.

Figure 3. Example of binary tree

Each time a new stream is added to the system the
readiness table increases in size for the newly created
nodes. When comparing readiness tables of different sizes
only the common part is taken into account during
calculations.

When a stream is removed from the system its position
will be masked in the readiness tables in order not to
affect processing.

Addressing the third requirement (section III,
subsection C) implies the definition of two important
parameters, the maximum allowed processing delay for an
event, or MD, and the maximum allowed failures per
stream, or MS.

Each event to be processed receives an arrival time
stamp. If the current system time minus the arrival
timestamp of an event that is still in the tree is greater than
MD, the event is processed at the next event processing
step and the failure marker is incremented for the stream
that produced that event. When the failure marker for a
stream reaches MS, the stream is disabled until an event

Algorithm 1. AddNodeToTree(currentNode, nodeToAdd)
if nodeToAdd.Event.t < currentNode.Event.t then

if currentNode.Left != NULL then
AddNodeToTree (currentNode.Left, nodeToAdd)

else
currentNode.Left = nodeToAdd
nodeToAdd.Parent = currentNode

end if
else

currentNode.
SetFlagForDataStream(nodeToAdd.Event.DS)

if currentNode.Right != NULL then
AddNodeToTree(currentNode.Right, nodeToAdd)

else
currentNode.Right = nodeToAdd
nodeToAdd.Parent = currentNode

end if
end if

 Ș. Dragoș et al. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 61-66 64
__

ISSN 1844 – 9689

with an original timestamp newer than the latest one being
processed arrives on it.

Events that have an older timestamp than the latest
event being sent to processing should be dropped.

The following operations are performed for node
addition and synchronization:

Node addition – Algorithm 1 presents the recursive
steps performed while adding a node to the tree. The
search for the insertion point starts from the root node and
continues with its descendants until a descendant in the
chosen direction no longer exists and the insertion can
take place. While searching for the insertion point we
update the readiness tables of the inspected nodes if the
process continues on their right branch.

Tree processing – Takes place after the node addition
and is presented in algorithm 2. The first step is to check
the root node if it has all the bits in the readiness table set
to 1 or if the node synchronization has timed out. This
means that the node is ready to process. The next step is to
find the closest right descendant of the root node that
cannot be processed and to set it as the root node. Once
this step is done we can proceed with sending the events
tot the event processor. The events will be extracted from
the partial tree in an in order fashion until none remains.

Algorithm 3 presents the recursive variant of the
algorithm employed for node extraction and processing.

The details related to how the maximum allowed
processing delay and maximum stream failure are handled
have been partially omitted from the code snippets
provided. The mechanism behind them is simple and it
does not require additional explanation.

C. Method 2
The second method, presented in this section, uses the

same tree structure as the first and ads some important
changes to the way nodes are added and extracted from
the tree.

In an attempt to reduce the system delay of the first
method, defined as the time required to extract a node
that has reached the state ready to process, we joined the
tree processing algorithm and the node addition
algorithm. The resulting method exploits some of the
previously exposed properties of the binary tree, namely:

1. The left descendants of one node inherit the values

from the readiness table of this node.
2. If the current node is not ready, neither are its

right descendants.

Within figure 3 we can observe these properties,
together with how nodes are added to the tree and how
readiness tables are built.

The first property represents a burden as it requires the
creation and maintenance of a readiness mask which must
be updated every time the left descendant of one node is
chosen for inspection.

The second property helps limit the impact of the first
by allowing us to skip all extra computations after
choosing the right descendant for inspection if the current
node is not ready for processing.

Algorithm 4 describes the recursive version of the
merged add and process operations. The end if
instructions were omitted as their positions can be
implied by taking into account the indentation.

Algorithm 3. SendToProcessingRecursive(currentNode)
if currentNode != NULL
then

SendToProcessingRecursive(currentNode.Left)
Enqueue(currentNode)
SendToProcessingRecursive(currentNode.Right)

end if

Algorithm 4. AddNodeToTreeAndProcess
(currentNode, nodeToAdd, canCheck, mask)

if (currentNode == nodeToAdd) then
if canCheck and IsReadyToProcess(currentNode,

mask) then
SendToProcessingRecursive(currentNode)

return

if nodeToAdd.Event.t < currentNode.Event.t then

if canCheck then
UpdateMask (mask, currentNode)

if currentNode.Left != NULL then
AddNodeToTreeAndProcess (currentNode.Left,

nodeToAdd, canCheck, mask)
else

currentNode.Left = nodeToAdd
nodeToAdd.Parent = currentNode
AddNodeToTreeAndProcess (currentNode.Left,

 nodeToAdd, canCheck, mask)
else

currentNode.
SetFlagForDataStream(nodeToAdd.Event.DS)

if canCheck then
if (IsReadyToProcess(rootNode, mask) or

IsSyncTimedOut(rootNode)) then
SendToProcessingRecursive(currentNode)

else
canCheck = false

if currentNode.Right != NULL then
AddNodeToTreeAndProcess (currentNode.Right,

 nodeToAdd, canCheck, mask)
else

currentNode.Right = nodeToAdd
nodeToAdd.Parent = currentNode
AddNodeToTreeAndProcess (currentNode.Right,

 nodeToAdd, canCheck, mask)

Algorithm 2. ProcessTree(rootNode)
if rootNode != NULL and

(IsReadyToProcess(rootNode) or
IsSyncTimedOut(rootNode))

then
oldRootNode = rootNode
rootNode = GetBestNewRootMatch(rootNode)
SendToProcessingRecursive(oldRootNode)

end if

 Ș. Dragoș et al. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 61-66 65
__

ISSN 1844 – 9689

D. Integration with DSCPE
This chapter describes how the synchronization

methods should be packaged in order to operate within
DSCPE.

In DSCPE the stream adapters produce event objects
within which the arrival timestamp and the original
timestamp are stored for represented events. Event
objects are fed to an occurrence engine which is used to
extract the temporal properties from a chain of events and
to package the details under the form of occurrence of
states.

When packaging the synchronization solution we must
take events as input and output events. This can easily be
done by keeping the correspondent events within the tree
nodes and manipulating them as necessary.

But if we want to handle bursts we need to implement
an output queue or use an existing one (the STL queue for
example). The events stored in an output queue must be
dequeued by an autonomous routine that takes them from
the queue and sends them to processing.

This is why it is important to mention that a time
synchronization module would be comprised of:

1. A time synchronization part
2. An output queue
3. An event feeder that takes events from the queue

and sends them to the occurrence engine.
A block schema of DSCPE with time synchronization

is presented in figure 1.

E. Testing time sync methods
In order to test and compare our proposed time

synchronization methods we used the same generator as
the one used to produce the results in [19].

The following adjustments can be made within the
event generator:

- the number of data streams
- the delay and throughput can be changed for the

desired streams
- the number of events to generate at each run
The first test performed demonstrates the impact of the

number of data streams on the processing time.
The number of data streams was varied from 1 to 1500

with all streams having the same throughput and 0 delay.
For each case 10000 events where generated and the
number of CPU clocks required to complete it was
measured together with the number of visited nodes. The
result can be seen in figures 4 and 5.

In figure 4 we can see that both method 1 and method
2 require about the same amount of CPU clocks to
perform synchronization on streams that are implicitly
synchronized. The second method required slightly more
than the first, but this is not yet obvious.

The number of visited nodes is smaller for the second
method than the first, as we can see in figure 5, but if we
look at the values corresponding to a high number of data
streams we can conclude that the advantage is negligible.
The axes were represented using a logarithmic scale in
order to emphasize the difference in the number of visited
nodes for small numbers of data streams. On the same
figure we can deduce that the increase in number of
visited nodes is linear and in a direct relation with the
increase in the number of processed datastreams.

Figure 4. Processing time vs. Number of data streams

Figure 5. Nr. of visited nodes vs. Nr. of datastreams

Due to the way readiness tables are implemented we
can observe a high increase in number of CPU cycles
required at each multiple of 64 data streams. The
readiness tables are implemented in a bitwise manner
having as storage unit the default platform word, which is
64 bits for 64 bit platforms.

The second test performed tries to emphasize the link
between the delays occurring on multiple datastreams and
the amount of processing required for fulfilling the tasks.

The number of datastreams was varied from 1 to 256
and delays were applied to the first two streams.

The results presented in [19] show that for the first
method the synchronization time is only affected by the
stream having the highest delay. These results are also
valid for the second method since we are dealing with a
technique similar to the first one. However, we are
interested in comparing the two methods in order to see
how they perform in the same conditions.

Figure 6 shows the number of CPU cycles required by
each method for different sets of parameters. It is easy to
observe that the second method requires more cycles to
perform the same task, with a lower latency though, and
that the increase in required computation power is not
linear with the growth of the number of datastreams to be
processed.

Due to the fact that the second method requires more
processing power its usage is recommended only in
systems where having a very low delay is critical.
Otherwise the first presented method will perform well.

Using a balanced tree could improve the second
method by lowering the time required to add a node to the

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

0 150 300 450 600 750 900 1050 1200 1350 1500

Pr
oc

es
si

ng
 ti

m
e

in
 C

PU
 c

yc
le

s

Number of data streams

Processing time vs. Nr. of data streams

M.1

M.2

10000

50000

250000

1250000

6250000

31250000

1 10 100 1000

N
um

be
r

of
 v

is
ite

d
no

de
s

Number of data streams

Nr. of visited nodes vs. Nr. of data streams

M.1
M.2

 Ș. Dragoș et al. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 61-66 66
__

ISSN 1844 – 9689

tree and thus the number of required calculations. Red-
Black trees are a good candidate and further tests will be
made in this direction. On the contrary, the first method
cannot be improved using a balanced tree as it will break
the node extraction mechanism.

Figure 6 Impact of delays on the nr. of CPU cycles required

V. CONCLUSIONS AND FUTURE WORK
This paper is related to our dependency detection in

large surveillance networks project, currently under
research. As you have seen within the paper, the current
methods are already implemented and used by DSCPE to
perform dependency detection.

Improvements to the synchronization methods are
planned and the main directions are:
1. Improvement of memory handling – synchronizing

events implies a fast creation and disposal of objects.
These types of operations have an important impact
on system performance and thus they are subject to
optimization where possible. Pooling and arena
allocation are two concepts that can help improving
performance and they will be analyzed and possibly
used in the near future.

2. Multi-threading – the current implementation is not
multi-threading friendly. As systems that work on
data streams require multi-threaded operation this is
one of our future research and development direction
related to data stream synchronization.

We consider that the two methods presented in this
paper are a good fit for appliances where the data sources
are reliable and synchronized with a common source.
Depending on latency and CPU requirements one can
choose to use the first method if a small added latency is
not an issue or the second if latency is critical and enough
processing power can be provided to perform the task.

The integration with DSCPE will motivate us to keep
the time synchronization methods up to date and to
improve them as previously discussed.

ACKNOWLEDGMENT
This paper was supported by the project “Doctoral

studies in engineering sciences for developing the
knowledge based society - SIDOC”, contract no.
POSDRU/88/1.5/S/60078, project co-funded from the

European Social Fund through Sectorial Operational
Program Human Resources 2007-2013.

REFERENCES

[1] L. Golab and M. T. Özsu, "Issues in data stream management,"

SIGMOD Rec., vol. 32, no. 2, pp. 5-14, 2003.
[2] J. Chen, D. J. Dewitt, F. Tian and Y. Wang, "NiagaraCQ: A

scalable continuous query system for Internet databases,"
SIGMOD, pp. 379-390, 2000.

[3] R. Avnur and J. M. Hellerstein, "Eddies: continuously adaptive
query processing," ACM SIGMOD Record, vol. 29, no. 2, pp. 261 -
272, 2000.

[4] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin and
J. M. Hellerstein, "TelegraphCQ: continuous dataflow processing,"
in Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, New York, 2003.

[5] M. Franklin, A. Halevy and D. Maier, "From databases to
dataspaces: a new abstraction for information management," ACM
SIGMOD Record, vol. 34, no. 4, pp. 27 - 33, 2005.

[6] M. Franklin, A. Halevy and D. Maier, "A first tutorial on
dataspaces," Proceedings of the VLDB Endowment, vol. 1, no. 2,
pp. 1516-1517, 2008.

[7] S. Z. Sbz, S. Zdonik, M. Stonebraker, M. Cherniak, U. C.
Etintemel, M. Balazinska and H. Balakrishnan, "The aurora and
medusa projects," IEEE Data Engineering Bulletin, vol. 26, 2003.

[8] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, K. Ito, R. Motwani,
U. Srivastava and J. Widom, "STREAM: The stanford data stream
management system," Springer, 2004.

[9] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniak, J. Hyon
Hwang, W. Lindner, A. S. Maskey, E. Rasin, R. Ryvkina, N.
Tatbul, Y. Xing and S. Zdonik, "The design of the borealis stream
processing engine," CIDR, Vols. 277-289, 2005.

[10] P. Domingos and G. Hulten, "Mining high-speed data streams," in
Proceedings of the sixth ACM SIGKDD international conference,
New York, 2000.

[11] T. Oates, M. D. Schmill, D. E. Gregory and P. R. Cohen,
"Detecting complex dependencies in categorical data," 1994.

[12] H. Kargupta, K. Sivakumar and S. Ghosh, "A random matrix-based
approach for dependency detection from data streams," in DMKD,
2002.

[13] A. Metwally, D. Agrawal and A. E. Abbadi, "Using association
rules for fraud detection in web advertising networks," in
Proceedings of the 31st international conference on very large
data bases, 2005.

[14] A. Pawling, P. Yan, J. Candia, T. Schoenharl and G. Madey,
"Anomaly detection in streaming sensor data," in IJCAI, 2008.

[15] A. Sun, D. D. Zeng and H. Chen, "Burst detection from multiple
data streams: a network-based approach," IEEE Transactions on
Systems, Man and Cybernetics, vol. 40, no. 3, pp. 258-267, 2010.

[16] S. K. Das and D. J. Cook, "Designing and modeling smart
environments (invited paper)," in Proceedings of the 2006
international symposium on World of Wireless, Mobile and
Multimedia Networks, Washington D.C., 2006.

[17] D. Dechouniotis, X. Dimitropoulos, A. Kind and S. Denazis,
"Dependency detection unsing a fuzzy engine," in Proceedings of
the Distributed systems: operations and management 18th
international conference on managing virtualization of networks
and services, Berlin, 2007.

[18] S. Ș. Dragoș and M. F. Vaida, "DSCPE - A Data Stream
Continuous Processing Engine," in SICOM, Cluj-Napoca, 2012.

[19] S. Ș. Dragoș, M. F. Vaida, L. A. Șuta, M. C. Ureche and A. Voina,
"SYNCY: A Software Engine for Data Stream Event
Synchronization," in Proceedings of the 16th International
Conference on System Theory, Control and Computing (ICSTCC),
Sinaia, 2012.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 64 128 192 256

N
r.

 o
f C

PU
 c

yc
le

s

Nr. of data streams

Impact of delays occurring on multiple
streams on the time required for

synchronization
d1=1,
d2=2,
M1

d1=1,
d2=2,
M2

d1=3,
d2=5,
M1

d1=3,
d2=5,
M2

	I. Introduction
	II. Definitions
	III. Problem Statement
	A. Time synchronization
	B. System evolutivity
	C. Datastream Failures

	IV. Solution Approach
	A. Why binary trees?
	B. Method 1
	C. Method 2
	D. Integration with DSCPE
	E. Testing time sync methods

	V. Conclusions and Future Work
	Acknowledgment

	References

