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Abstract—Generic purpose multi-core PC architectures 
are facing performance challenges of high rate packet 
reception on gigabit per second and higher speed network 
interfaces. In order to assign a CPU core to a networking 
softIRQ, the single input queue design of the low-level 
packet processing subsystem relies on the kernel's 
Symmetric Multiprocessing (SMP) scheduler, which does 
not perform load balancing of the softIRQ instances 
between the CPU cores. In practice, when single receive 
queue is used all of the softIRQs are assigned to a single 
CPU core. This typical arrangement could easily drive to 
CPU resource exhaustion and high packet loss ratio on 
high bandwidth interfaces. The non-steady state of the 
system is triggered by the high arrival rate of the packets. 
This work presents a proposal for improving the packet 
processing efficiency in single input queue multi-core 
systems. 

I. INTRODUCTION 

Both the CPU architectures and the networking 
technologies passed through a dramatic development in 
the last decade. By the advent of x86-based multi-core 
CPU architectures, the processing power of the generic 
purpose desktop and server PCs was significantly 
increased. The multi-core design replaced the frequency 
rush previously generated between the CPU vendors in 
the single core era. Concurrently, the Local Area 
Network (LAN) technologies have been enhanced up to 
gigabit per second and higher bandwidths. The fast 
evolution of the transmission technologies pushed the 
PCI bus to legacy state to give place to the novel PCI 
Express technology. The heaviest network load easily 
generates an excessive CPU load on a single core 
system due to the high number of interrupts per second 
[1][2][3]. New packet processing techniques were 
developed focusing on adaptive processing 
mechanisms, which provide low latency for real-time 
traffic and high processing capacity with more efficient 
CPU utilization for bulk type traffic [4]. In contrast, any 
execution of the packet processing bottom-half handler 
(softIRQ) in a multi-core design can be scheduled to 
and performed on an arbitrary CPU core, theoretically 
[4]. Since the softIRQ design is reentrant, several 
instances of a single softIRQ (NET_RX_SOFTIRQ, 
notably) can be concurrently executed even on different 
cores [1]. Modern operating systems also require 
significant optimization in this field. In practice, most 
of the high speed NIC hardware and driver 
implementations do not support multiple input queues, 
which is the most important prerequisite of parallel 
processing of the incoming traffic (Fig. 1). In a single 

input queue system, the packet processing softIRQ 
could not be executed concurrently on different cores 
due to locking problems. The execution of the 
NET_RX_SOFTIRQ is therefore serialized to one CPU 
core [5]. By default, the scheduler of the operating 
system assigns core0 to all of the implemented softIRQ 
types. Accordingly, all of the softIRQ types and all of 
their instances are sharing the same core. In an optimal 
case, the NIC design implements multiple input queues 
to achieve the dedicated queue to each CPU core layout. 
Multiple input queues enable to efficiently process 
incoming packets on per-flow basis. However, when 
one large data flow is present in the networking 
subsystem only, the same limitation appears that 
previously described on the single core design.  

 

 
 

Figure 1.  Bottlenecks of packet processing performance at high 
traffic intensity. 

Using a single input queue softIRQ instances are not 
distributable between CPU cores (Table 1). 

TABLE I.  
SOFTIRQ PARALLELIZATION 

Single input queue Multiple input queue

one CPU core per NIC one CPU core per process

 

II. RELATED WORK 

Yunchun et al. proposed a packet processing model 
to analyze processing characteristics in multi-core 
systems [6]. They also studied how the load-balancing 
of the computing resources affect the performance. 
Chun-Ying et al. investigated the performance 
bottleneck of the in-line packet processing and proposed 
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new software architecture called Fast Queue to improve 
the overall system throughput [7]. An extensive 
investigation was executed by Hyun-Wook et al. to 
show the impact of system configurations on the 
network performance [8]. The series of experiments 
was performed with multi-port 1 Gbps and single port 
10 Gbps comparisons. They revealed that processing 
the packets on multiple cores can result in higher 
resource consumption without any important benefit. 
The root cause of the performance degradation is the 
lower efficiency of L1 and L2 caching. To answer this 
problem Hye-Churn et al. proposed a new scheduling 
scheme called MiAMI, which provides multi-core 
aware process scheduling over multiple network 
interfaces [9]. MiAMI determines the optimal core 
affinity based on the processor cache layout, traffic 
intensity, and CPU core loads. Nevertheless, none of the 
mentioned proposals give solution to improve 
performance in multi-core systems with single input 
queue. 

III. THE PROPOSED METHOD 

A. Overview of the packet processing method 
The primary goal of proposed method is to optimize 

the packet processing performance and improve 
application QoS on generic purpose x64-based multi-
core Linux systems with high performance NIC and a 
single input queue, when large, intensive traffic is 
present.  

By continuously monitoring the core level CPU load, 
the statistical analysis of the measured data assists to 
determine the lowest loaded core, which will be 
dedicated to NET_RX_SOFTIRQ execution, 
exclusively. This step affects the core affinity of 
NET_RX_SOFTIRQ, which is set to 0x00FF for all 
softIRQ types by default. In the default configuration, 
the SMP scheduler of the kernel will not distribute the 
execution of the different softIRQ types between the 
cores. Since the execution of a softIRQ is interruptible 
and multiple softIRQ types share the same core, the 
execution time may provide a large variance, which 
results on poor jitter performance with real-time 
applications. The purpose of the load analysis is to set 
optimal CPU affinity to the NIC’s softIRQ and to 
minimize the variance of the execution time of the 
NET_RX_SOFTIRQ. Further degradation of this 
variance can be reached by introducing another 
optimization step: by disabling hardware interrupts on 
the dedicated core, the execution of the softIRQ will not 
be suspended (Fig. 2).  

B. Optimization steps 

a) Optimization of the buffers within the packet 
processing subsystem   

This step involves a series of calculation for optimal 
buffer sizes in order to avoid buffering interference and 
packet loss within the processing path. NIC’s ring 
buffer length has been recalculated based on the arrival 
rate of the incoming packets. Kernel’s 
net.core.wmem_* parameters have been determined 
according to (1). 

                   )(2 oneway
k BxDx                           (1) 

where 1k and B  denotes the physical bandwidth of 
the link and D  is the one-way delay between the 
communication endpoints. 

b) CPU core affinity for the NET_RX_SOFTIRQ 
Determining and setting the optimal affinity of the 

NET_RX_SOFTIRQ packet processing softIRQ is the 
second phase of the initial setup, which has been 
performed by monitoring the CPU usage for a 
predefined time on per-core basis. A zero loaded core 
will be selected and assigned to the softIRQ. The 
monitoring is implemented via a shell script that 
retrieves the per-core load parameters in every second. 
The affinity of the NET_RX_SOFTIRQ is set by 

 
 

 

c) Dynamically disabling interrupts on the 
selected core 

The purpose of this step is to eliminate large 
overhead and its large variance of the softIRQ 
execution. By disabling interrupts on the selected core, 
the execution of the softIRQ will be not suspended, 
which enables the CPU to load the instructions directly 
from its own L1 cache.  Since the softIRQ is serialized 
to one core, this method results on lower execution 
overhead and variance as shown in Section IV. The 
logical diagram of the dynamic interrupt disabling is 
presented on Figure 2. 

 
Figure 2.  Interrupts are disabled on the dedicated CPU core while it 

executes the packet processing bottom-half handler. 

# echo {8-bit core mask} > 
/proc/irq/XX/smp_affinity  
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IV. EVALUATION OF THE METHOD 

A. Measurement setup 
Synthesized traffic flows were generated with very 

high precision by a custom device based on a Xilinx 
Virtex-4 FX12 FPGA and transmitted on a Gigabit 
Ethernet link directly towards the measurement 
workstation (see Fig. 3). The proposed optimization 
method, as described in Section III, was implemented 
within preemptive as well as non-preemptive Linux 
kernels (v2.6.39.2).  The hardware architecture of the 
measurement PC was based on an Intel Core i7 870 
processor with four hyper-threaded cores. Each core has 
its own L1 and L2 caches, while the processor cores 
share the same L3 cache. This layout is a key factor 
when the softIRQ execution times are analyzed on 
different logical configurations [8]. An Intel 1000/PRO 
Gigabit Ethernet NIC was connected to the system via 
the PCI Express subsystem. For kernel-device 
communication the stock Intel e1000e NIC device 
driver was used with default parameters except the size 
of the DMA ring buffer, which has been altered 
according to Section III.B. 

 
Figure 3.  Custom FPGA-based packet generator is directly 

connected to the measurement workstation via a twisted pair Gigabit 
Ethernet link. 

Each measurement scenario involved a series of 
measurements, each of them performed with fixed 
packet size and fixed inter-frame gap (IFG). The packet 
size is increased from 72 bytes up to 1200 bytes, while 
the IFG was constant 12 bytes within one measurement 
scenario. During the transmission, the following 
performance related system parameters were monitored:  

 Aggregated CPU softIRQ load 
 Per core softIRQ load 
 Kernel level packet loss ratio 
 Application level packet loss ratio 

 

B. Statistical analyzis of the measurement data 
The measurement data of each scenario is presented 

in an aggregated format on the following graphs. Figure 
4 represents the softIRQ load of the dedicated core as 
function of the size of the generated packets for both 
preemptive and non-preemptive kernel variants, while 
Figure 5, 6 and 7 introduce the empirical cumulative 
distributions (ECDF) and the empirical complementary 
cumulative distributions (CCDF) for the measurement 
datasets.  

Figure 4 represents the CPU core load that decreased 
to 1/10th of the original one for packet sizes from 500 
to 1200 bytes using the proposed method with both 

preemptive and non-preemptive kernel variants. 
Furthermore, the non-preemptive kernel combined with 
the proposal provides significant improvement in CPU 
load with small packet sizes as well.  

Lower CPU utilization derived from the lower 
softIRQ execution overhead, which improves packet 
loss ratio as presented on Figure 7. The improvements 
have been statistically analyzed.  

Let’s consider the lower end of the x-axis (core load) 
with the non-preemptive kernel version on Fig. 5. In 
case of the original non-modified variant (continuous 
blue line), CPU load is under 10 percent with approx. 
0.12 of probability. In contrast, the application of the 
new method within the kernel (purple line) results on a 
significantly lower CPU utilization: CPU load is less 
than 10 percent with approx. 0.75 of probability. 

 
Figure 4.  The CPU load of the softIRQ at various packet sizes from 

72 to 1200 bytes. Measurements were done using both preemptive 
and non-preemptive kernels with and without the optimization 

method. 

 
Figure 5.  Empirical CDFs for the measurements presented on Fig. 4 

and their datasets fitted to the exponential distribution. 

The complementary CDF helps us to better observe 
the shape of the upper tail that describes the probability 
of large value [10]. Beyond the calculation of the 
empirical distributions, the datasets have been fitted to 
the exponential distribution in order to determine the 
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behavior of their upper tail (Fig. 6 and 7). Applying 
CCDF to CPU load datasets of these measurements, the 
large values dominates packet processing performance.  
The empirical complementary cumulative distributions 
of the core load datasets have been calculated 
according (2).  

(2) 
 
All of the datasets have been fitted to the exponential 
distribution using Maximum Likelihood Estimation 
(MLE). In the next step, I determined the 
characteristics of the upper tail (Fig. 6). Since the 
probability of large values (near 100) is non-zero for all 
measurement scenarios and the tails decline slower 
than exponentially, all of the distributions has long-tail 
property, which is defined as (3). For a long-tail 
distribution, the shape of its upper tail looks like a 
straight line in log-log scale (Fig. 7).  

 
Figure 6.  Empirical complementary CDFs for the measurements 

presented on Fig. 4 and their datasets fitted to the exponential 
distribution. 

 

Figure 7.  Empirical complementary CDFs with log-log axis 

The long-tailed distribution has a polynomial tail 
behavior that is 

                            cxxXP ~)( as x        (3)  

 
where X  is a random variable, c  is a location 
parameter, and  is a shape parameter [11]. 
Additionally, by disabling hardware interrupts on the 
core during the execution of NET_RX_SOFTIRQ, the 
mean of the execution overhead decreased from 28.65 
% to 17.39 % of CPU load. 
 

 
Figure 8.  The CPU load of the softIRQ and the packet loss ratio in 

percentage at various packet sizes from 72 to 1200 bytes. 
Measurement was performed using preemptive kernel with and 

without the optimization method. 

The incoming data is buffered at several layers within 
the system as presented in Section I. The logical data 
path is: NIC’s ring buffer, sk_buffers, socket buffer and 
internal application buffer. Each layer implements its 
own buffer handling mechanism, which therefore could 
trigger buffering interference within the data processing 
path (Fig. 9). Application level buffer overflow was 
occurred from packet size of 380 bytes and the loss 
increases down to approx. 140 bytes. Then the trend 
was turning back due to the kernel level buffer 
overflow. Since the kernel buffers logically precede the 
application buffer in the data path, this low level loss 
decreases the amount of data the kernel has to pass up 
to the application and therefore the latter’s processing 
load is decreasing, which results on lower loss ratio at 
the application level that turns down near to zero 
percent at very small packet sizes. 

 

 
Figure 9.  Packet loss ratio in percentage at various packet sizes 

from 72 to 1200 bytes at kernel and application levels. Measurement 
was performed with preemptive kernel with and without the 

optimization method. 

F(x)x)P(XF  1
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Applying the proposed buffer adjustment, the kernel 
level loss ratio became zero for packet sizes from 200 to 
1200 bytes. In contrast, without optimal buffers, packet 
loss can occur within the kernel at packet sizes up to 
approx. 500 bytes. 

 

Figure 10.  Aggregated CPU load in percentage at various packet 
sizes from 72 to 1200 bytes. Measurements were performed using 
both preemptive and non-preemptive kernels with and without the 

optimization method. 

A further benefit of the method is that the aggregated 
CPU load is also decreased as presented on Figure 10. 
The proposed method has decreased the mean and 
variance of the total CPU load as function of the packet 
size.  

V. CONCLUSION 

An optimization method has been developed and 
implemented in order to improve packet processing 
efficiency of intensive ingress traffic in multi-core 
Linux systems with single input queue. A proposal of 
the method has been presented and its effectiveness was 
evaluated using its Linux based implementation in a 
real laboratory network environment and performing 
statistical analysis of the measurement data. According 
to the results of the analysis, the CPU load decreased to 
approx. 1/10th of the original one for packet sizes from 
500 to 1200 bytes using both preemptive and non-
preemptive kernels. However, the non-preemptive 
kernel combined with the proposed method provided 
further improvement in CPU load with small packet 
sizes as well. With the proposed method, the execution 
overhead of the softIRQ decreased and CPU load is 
therefore less than 10 percent with approx. 0.75 of 
probability. Disabling interrupts on the core and thus 
not suspending the softIRQ execution produced very 
small amount of variance and therefore does not bring 
down packet jitter within a real-time data flow. 
Considering the large values, the empirical distributions 
of the CPU load, as showed in the paper, have long-tail 
property. 
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