
 P. Orosz. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 44-48 44

__

ISSN 1844 – 9689

Improving Packet Processing Efficiency on
Multi-core Architectures with Single Input Queue

Péter Orosz
University of Debrecen/Dept. of Informatics Systems and Networks, Debrecen, Hungary

orosz.peter@inf.unideb.hu

Abstract—Generic purpose multi-core PC architectures
are facing performance challenges of high rate packet
reception on gigabit per second and higher speed network
interfaces. In order to assign a CPU core to a networking
softIRQ, the single input queue design of the low-level
packet processing subsystem relies on the kernel's
Symmetric Multiprocessing (SMP) scheduler, which does
not perform load balancing of the softIRQ instances
between the CPU cores. In practice, when single receive
queue is used all of the softIRQs are assigned to a single
CPU core. This typical arrangement could easily drive to
CPU resource exhaustion and high packet loss ratio on
high bandwidth interfaces. The non-steady state of the
system is triggered by the high arrival rate of the packets.
This work presents a proposal for improving the packet
processing efficiency in single input queue multi-core
systems.

I. INTRODUCTION

Both the CPU architectures and the networking
technologies passed through a dramatic development in
the last decade. By the advent of x86-based multi-core
CPU architectures, the processing power of the generic
purpose desktop and server PCs was significantly
increased. The multi-core design replaced the frequency
rush previously generated between the CPU vendors in
the single core era. Concurrently, the Local Area
Network (LAN) technologies have been enhanced up to
gigabit per second and higher bandwidths. The fast
evolution of the transmission technologies pushed the
PCI bus to legacy state to give place to the novel PCI
Express technology. The heaviest network load easily
generates an excessive CPU load on a single core
system due to the high number of interrupts per second
[1][2][3]. New packet processing techniques were
developed focusing on adaptive processing
mechanisms, which provide low latency for real-time
traffic and high processing capacity with more efficient
CPU utilization for bulk type traffic [4]. In contrast, any
execution of the packet processing bottom-half handler
(softIRQ) in a multi-core design can be scheduled to
and performed on an arbitrary CPU core, theoretically
[4]. Since the softIRQ design is reentrant, several
instances of a single softIRQ (NET_RX_SOFTIRQ,
notably) can be concurrently executed even on different
cores [1]. Modern operating systems also require
significant optimization in this field. In practice, most
of the high speed NIC hardware and driver
implementations do not support multiple input queues,
which is the most important prerequisite of parallel
processing of the incoming traffic (Fig. 1). In a single

input queue system, the packet processing softIRQ
could not be executed concurrently on different cores
due to locking problems. The execution of the
NET_RX_SOFTIRQ is therefore serialized to one CPU
core [5]. By default, the scheduler of the operating
system assigns core0 to all of the implemented softIRQ
types. Accordingly, all of the softIRQ types and all of
their instances are sharing the same core. In an optimal
case, the NIC design implements multiple input queues
to achieve the dedicated queue to each CPU core layout.
Multiple input queues enable to efficiently process
incoming packets on per-flow basis. However, when
one large data flow is present in the networking
subsystem only, the same limitation appears that
previously described on the single core design.

Figure 1. Bottlenecks of packet processing performance at high
traffic intensity.

Using a single input queue softIRQ instances are not
distributable between CPU cores (Table 1).

TABLE I.
SOFTIRQ PARALLELIZATION

Single input queue Multiple input queue

one CPU core per NIC one CPU core per process

II. RELATED WORK

Yunchun et al. proposed a packet processing model
to analyze processing characteristics in multi-core
systems [6]. They also studied how the load-balancing
of the computing resources affect the performance.
Chun-Ying et al. investigated the performance
bottleneck of the in-line packet processing and proposed

 P. Orosz. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 44-48 45

__

ISSN 1844 – 9689

new software architecture called Fast Queue to improve
the overall system throughput [7]. An extensive
investigation was executed by Hyun-Wook et al. to
show the impact of system configurations on the
network performance [8]. The series of experiments
was performed with multi-port 1 Gbps and single port
10 Gbps comparisons. They revealed that processing
the packets on multiple cores can result in higher
resource consumption without any important benefit.
The root cause of the performance degradation is the
lower efficiency of L1 and L2 caching. To answer this
problem Hye-Churn et al. proposed a new scheduling
scheme called MiAMI, which provides multi-core
aware process scheduling over multiple network
interfaces [9]. MiAMI determines the optimal core
affinity based on the processor cache layout, traffic
intensity, and CPU core loads. Nevertheless, none of the
mentioned proposals give solution to improve
performance in multi-core systems with single input
queue.

III. THE PROPOSED METHOD

A. Overview of the packet processing method
The primary goal of proposed method is to optimize

the packet processing performance and improve
application QoS on generic purpose x64-based multi-
core Linux systems with high performance NIC and a
single input queue, when large, intensive traffic is
present.

By continuously monitoring the core level CPU load,
the statistical analysis of the measured data assists to
determine the lowest loaded core, which will be
dedicated to NET_RX_SOFTIRQ execution,
exclusively. This step affects the core affinity of
NET_RX_SOFTIRQ, which is set to 0x00FF for all
softIRQ types by default. In the default configuration,
the SMP scheduler of the kernel will not distribute the
execution of the different softIRQ types between the
cores. Since the execution of a softIRQ is interruptible
and multiple softIRQ types share the same core, the
execution time may provide a large variance, which
results on poor jitter performance with real-time
applications. The purpose of the load analysis is to set
optimal CPU affinity to the NIC’s softIRQ and to
minimize the variance of the execution time of the
NET_RX_SOFTIRQ. Further degradation of this
variance can be reached by introducing another
optimization step: by disabling hardware interrupts on
the dedicated core, the execution of the softIRQ will not
be suspended (Fig. 2).

B. Optimization steps

a) Optimization of the buffers within the packet
processing subsystem

This step involves a series of calculation for optimal
buffer sizes in order to avoid buffering interference and
packet loss within the processing path. NIC’s ring
buffer length has been recalculated based on the arrival
rate of the incoming packets. Kernel’s
net.core.wmem_* parameters have been determined
according to (1).

)(2 oneway
k BxDx (1)

where 1k and B denotes the physical bandwidth of
the link and D is the one-way delay between the
communication endpoints.

b) CPU core affinity for the NET_RX_SOFTIRQ
Determining and setting the optimal affinity of the

NET_RX_SOFTIRQ packet processing softIRQ is the
second phase of the initial setup, which has been
performed by monitoring the CPU usage for a
predefined time on per-core basis. A zero loaded core
will be selected and assigned to the softIRQ. The
monitoring is implemented via a shell script that
retrieves the per-core load parameters in every second.
The affinity of the NET_RX_SOFTIRQ is set by

c) Dynamically disabling interrupts on the
selected core

The purpose of this step is to eliminate large
overhead and its large variance of the softIRQ
execution. By disabling interrupts on the selected core,
the execution of the softIRQ will be not suspended,
which enables the CPU to load the instructions directly
from its own L1 cache. Since the softIRQ is serialized
to one core, this method results on lower execution
overhead and variance as shown in Section IV. The
logical diagram of the dynamic interrupt disabling is
presented on Figure 2.

Figure 2. Interrupts are disabled on the dedicated CPU core while it

executes the packet processing bottom-half handler.

echo {8-bit core mask} >
/proc/irq/XX/smp_affinity

 P. Orosz. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 44-48 46

__

ISSN 1844 – 9689

IV. EVALUATION OF THE METHOD

A. Measurement setup
Synthesized traffic flows were generated with very

high precision by a custom device based on a Xilinx
Virtex-4 FX12 FPGA and transmitted on a Gigabit
Ethernet link directly towards the measurement
workstation (see Fig. 3). The proposed optimization
method, as described in Section III, was implemented
within preemptive as well as non-preemptive Linux
kernels (v2.6.39.2). The hardware architecture of the
measurement PC was based on an Intel Core i7 870
processor with four hyper-threaded cores. Each core has
its own L1 and L2 caches, while the processor cores
share the same L3 cache. This layout is a key factor
when the softIRQ execution times are analyzed on
different logical configurations [8]. An Intel 1000/PRO
Gigabit Ethernet NIC was connected to the system via
the PCI Express subsystem. For kernel-device
communication the stock Intel e1000e NIC device
driver was used with default parameters except the size
of the DMA ring buffer, which has been altered
according to Section III.B.

Figure 3. Custom FPGA-based packet generator is directly

connected to the measurement workstation via a twisted pair Gigabit
Ethernet link.

Each measurement scenario involved a series of
measurements, each of them performed with fixed
packet size and fixed inter-frame gap (IFG). The packet
size is increased from 72 bytes up to 1200 bytes, while
the IFG was constant 12 bytes within one measurement
scenario. During the transmission, the following
performance related system parameters were monitored:

 Aggregated CPU softIRQ load
 Per core softIRQ load
 Kernel level packet loss ratio
 Application level packet loss ratio

B. Statistical analyzis of the measurement data
The measurement data of each scenario is presented

in an aggregated format on the following graphs. Figure
4 represents the softIRQ load of the dedicated core as
function of the size of the generated packets for both
preemptive and non-preemptive kernel variants, while
Figure 5, 6 and 7 introduce the empirical cumulative
distributions (ECDF) and the empirical complementary
cumulative distributions (CCDF) for the measurement
datasets.

Figure 4 represents the CPU core load that decreased
to 1/10th of the original one for packet sizes from 500
to 1200 bytes using the proposed method with both

preemptive and non-preemptive kernel variants.
Furthermore, the non-preemptive kernel combined with
the proposal provides significant improvement in CPU
load with small packet sizes as well.

Lower CPU utilization derived from the lower
softIRQ execution overhead, which improves packet
loss ratio as presented on Figure 7. The improvements
have been statistically analyzed.

Let’s consider the lower end of the x-axis (core load)
with the non-preemptive kernel version on Fig. 5. In
case of the original non-modified variant (continuous
blue line), CPU load is under 10 percent with approx.
0.12 of probability. In contrast, the application of the
new method within the kernel (purple line) results on a
significantly lower CPU utilization: CPU load is less
than 10 percent with approx. 0.75 of probability.

Figure 4. The CPU load of the softIRQ at various packet sizes from

72 to 1200 bytes. Measurements were done using both preemptive
and non-preemptive kernels with and without the optimization

method.

Figure 5. Empirical CDFs for the measurements presented on Fig. 4

and their datasets fitted to the exponential distribution.

The complementary CDF helps us to better observe
the shape of the upper tail that describes the probability
of large value [10]. Beyond the calculation of the
empirical distributions, the datasets have been fitted to
the exponential distribution in order to determine the

 P. Orosz. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 44-48 47

__

ISSN 1844 – 9689

behavior of their upper tail (Fig. 6 and 7). Applying
CCDF to CPU load datasets of these measurements, the
large values dominates packet processing performance.
The empirical complementary cumulative distributions
of the core load datasets have been calculated
according (2).

(2)

All of the datasets have been fitted to the exponential
distribution using Maximum Likelihood Estimation
(MLE). In the next step, I determined the
characteristics of the upper tail (Fig. 6). Since the
probability of large values (near 100) is non-zero for all
measurement scenarios and the tails decline slower
than exponentially, all of the distributions has long-tail
property, which is defined as (3). For a long-tail
distribution, the shape of its upper tail looks like a
straight line in log-log scale (Fig. 7).

Figure 6. Empirical complementary CDFs for the measurements

presented on Fig. 4 and their datasets fitted to the exponential
distribution.

Figure 7. Empirical complementary CDFs with log-log axis

The long-tailed distribution has a polynomial tail
behavior that is

 cxxXP ~)(as x (3)

where X is a random variable, c is a location
parameter, and is a shape parameter [11].
Additionally, by disabling hardware interrupts on the
core during the execution of NET_RX_SOFTIRQ, the
mean of the execution overhead decreased from 28.65
% to 17.39 % of CPU load.

Figure 8. The CPU load of the softIRQ and the packet loss ratio in

percentage at various packet sizes from 72 to 1200 bytes.
Measurement was performed using preemptive kernel with and

without the optimization method.

The incoming data is buffered at several layers within
the system as presented in Section I. The logical data
path is: NIC’s ring buffer, sk_buffers, socket buffer and
internal application buffer. Each layer implements its
own buffer handling mechanism, which therefore could
trigger buffering interference within the data processing
path (Fig. 9). Application level buffer overflow was
occurred from packet size of 380 bytes and the loss
increases down to approx. 140 bytes. Then the trend
was turning back due to the kernel level buffer
overflow. Since the kernel buffers logically precede the
application buffer in the data path, this low level loss
decreases the amount of data the kernel has to pass up
to the application and therefore the latter’s processing
load is decreasing, which results on lower loss ratio at
the application level that turns down near to zero
percent at very small packet sizes.

Figure 9. Packet loss ratio in percentage at various packet sizes

from 72 to 1200 bytes at kernel and application levels. Measurement
was performed with preemptive kernel with and without the

optimization method.

F(x)x)P(XF 1

 P. Orosz. / Carpathian Journal of Electronic and Computer Engineering 5 (2012) 44-48 48

__

ISSN 1844 – 9689

Applying the proposed buffer adjustment, the kernel
level loss ratio became zero for packet sizes from 200 to
1200 bytes. In contrast, without optimal buffers, packet
loss can occur within the kernel at packet sizes up to
approx. 500 bytes.

Figure 10. Aggregated CPU load in percentage at various packet
sizes from 72 to 1200 bytes. Measurements were performed using
both preemptive and non-preemptive kernels with and without the

optimization method.

A further benefit of the method is that the aggregated
CPU load is also decreased as presented on Figure 10.
The proposed method has decreased the mean and
variance of the total CPU load as function of the packet
size.

V. CONCLUSION

An optimization method has been developed and
implemented in order to improve packet processing
efficiency of intensive ingress traffic in multi-core
Linux systems with single input queue. A proposal of
the method has been presented and its effectiveness was
evaluated using its Linux based implementation in a
real laboratory network environment and performing
statistical analysis of the measurement data. According
to the results of the analysis, the CPU load decreased to
approx. 1/10th of the original one for packet sizes from
500 to 1200 bytes using both preemptive and non-
preemptive kernels. However, the non-preemptive
kernel combined with the proposed method provided
further improvement in CPU load with small packet
sizes as well. With the proposed method, the execution
overhead of the softIRQ decreased and CPU load is
therefore less than 10 percent with approx. 0.75 of
probability. Disabling interrupts on the core and thus
not suspending the softIRQ execution produced very
small amount of variance and therefore does not bring
down packet jitter within a real-time data flow.
Considering the large values, the empirical distributions
of the CPU load, as showed in the paper, have long-tail
property.

ACKNOWLEDGMENT

The work was supported by the TÁMOP 4.2.2.C-
11/1/KONV-2012-0001 project. The project was
implemented through the New Széchenyi Plan, co-
financed by the European Social Fund.

REFERENCES
[1] Christian Benvenuti, "Understanding Linux Network Internals,"

O’Reilly, 2006

[2] Peter Orosz; Tamas Skopko; Jozsef Imrek; , "Performance
Evaluation of the Nanosecond Resolution Timestamping
Feature of the Enhanced Libpcap," 6th International
Conference on Systems and Networks Communications, ICSNC
2011, October 23-28, 2011, Barcelona, Spain, ISBN 978-1-
61208-166-3, Proceeding p. 220-225.

[3] Faulkner, M.; Brampton, A.; Pink, S.; , "Evaluating the
Performance of Network Protocol Processing on Multi-core
Systems," Advanced Information Networking and Applications,
2009. AINA '09. International Conference on , vol., no., pp.16-
23, 26-29 May 2009

[4] Interrupt Moderation Using Intel® GbE Controllers, Intel

[5] Matthew Wilcox, "I'll Do It Later: Softirqs, Tasklets, Bottom
Halves, Task Queues, Work Queues and Timers," Hewlett-
Packard Company

[6] Yunchun Li; Xinxin Qiao; , "A Parallel Packet Processing
Method on Multi-core Systems," Distributed Computing and
Applications to Business, Engineering and Science (DCABES),
2011 Tenth International Symposium on , vol., no., pp.78-81,
14-17 Oct. 2011

[7] Chun-Ying Huang; Chi-Ming Chen; Shu-Ping Yu; Sheng-Yao
Hsu; Chih-Hung Lin; , "Accelerate in-line packet processing
using fast queue," TENCON 2010 - 2010 IEEE Region 10
Conference , vol., no., pp.1048-1052, 21-24 Nov. 2010

[8] Hyun-Wook Jin; Yeon-Ji Yun; Hye-Churn Jang; , "TCP/IP
Performance Near I/O Bus Bandwidth on Multi-Core Systems:
10-Gigabit Ethernet vs. Multi-Port Gigabit Ethernet," Parallel
Processing - Workshops, 2008. ICPP-W '08. International
Conference on , vol., no., pp.87-94, 8-12 Sept. 2008

[9] Hye-Churn Jang; Hyun-Wook Jin; , "MiAMI: Multi-core
Aware Processor Affinity for TCP/IP over Multiple Network
Interfaces," High Performance Interconnects, 2009. HOTI
2009. 17th IEEE Symposium on , vol., no., pp.73-82, 25-27
Aug. 2009

[10] Mark Crovella; Balachander Krishnamurty;, "Internet
Measurement, " Wiley, 2006

[11] Allen B. Downey, "Evidence for long-tailed distributions in the
Internet, " IMW '01 Proceedings of the 1st ACM SIGCOMM
Workshop on Internet Measurement, pp. 229 - 241

