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ABSTRACT 

In this study, we developed three estimators to optimally combine seismic and gravimetric models of Moho surface. The first 
estimator combines them by their special harmonic coefficients; the second one uses the spherical harmonic coefficients of the 
seismic model and use integral formula for the gravimetric one. The kernel of the integral terms of this estimator shows that a cap 
size of 20◦ is required for the integration, but since this integral is presented to combine the low frequencies of the gravimetric 
model, a low resolution model is enough for the integration. The third estimator uses the gravity anomaly and converts its low 
frequencies to those of the gravimetric Moho model, meanwhile combining them with those of seismic one. This integral requires 
an integration domain of 30◦ for the gravity anomalies but since the maximum degree of this kernel is limited to a specific degree, 
the use of its spectral form is recommended. The kernel of the integral involving the gravity anomalies, developed for recovering 
high frequencies of Moho, is written in a closed-from formula and its singularity is investigated. This kernel is well-behaving and 
decreases fast, meaning that it is suitable for recovering the high frequencies of the Moho surface. 

Keywords: Seismic and Gravimetric Model, Spectral Combination, Optimal Estimation, Integral Estimators. 

1. INTRODUCTION 

The Mohorovičić discontinuity (Moho) is the 
boundary between the Earth’s crust and mantle. This 
boundary can be determined by isostatic/gravimetric 
and seismic methods. The masses above Moho are 
called the Earth’s crust. In 1909, Andrija 
Mohorovičič, a seismologist, used the seismic waves 
to discover the crust-mantle boundary. Moho 
separates the oceanic as well as the continental crusts 
from the underlying mantle. By accurate definition, it 
is a physical/chemical boundary between the crust 
and mantle defined by their material properties. The 
value of physical quantities of seismic wave velocity, 
density, pressure and temperature will change from 
one environment to another (Mooney et al. 1998; 
Martinec 1994) and Moho is the boundary at which 
these quantities change. 

Several isostatic hypotheses exist for the shape of 
Moho and the density of the Earth’s crust. In most of 
them, the crust is assumed as columns with a specific 
density floating on the viscous mantle located in a 
certain depth inside of it, which is called 
compensation depth. Pratt (1855) and Airy (1855) 
models are well-known in isostatic theories. In the 
former, the mass of crustal column is assumed to be 

variable and the columns have the same 
compensation depth. The latter assumes that the 
columns have the same density, but with different 
compensation depths. Both hypotheses are highly-
idealised due to assuming that the compensation is 
strictly local. Vening Meinesz (1931) modified 
Airy’s hypothesis by defining a regional instead of 
the local compensation. Parker (1972) presented a 
practical iterative gravimetric method based on a 
constant density contrast and a varying Moho depth, 
similar to Vening Meinesz’s hypothesis, in the 
Fourier domain and planar approximation. Due to the 
instability of this method, Oldenburg (1974) added a 
filter in the frequency domain to stabilise the 
solution. The combination of these two methods was 
generalised to three dimensions by Gomes-Ortiz and 
Agarwal (2005) and Shin et al. (2007). Kiamehr and 
Gomes-Ortiz (2009) applied this three-dimensional 
method and estimated the Moho depth in Iran, based 
on the terrestrial gravimetric data and the Earth 
gravity model EGM08 (Pavlis et al. 2008). Čadak 
and Martinec (1991) presented the first global model 
of Moho in terms of the spherical harmonics to 
degree and order 30, based on different sources of 
seismic data. Martinec (1993 and 1994) studied the 
determination of the density contrast between the 
mantle and crust by minimising the sum of the 
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squares of the gravitational potentials induced by the 
Earth’s topographic masses and Moho. Sünkel (1985) 
converted the Airy-Heiskanen Moho depth to the 
Vening Meinesz by smoothing it further, so that the 
global mean squared error of the difference between 
disturbing and topographic-isostatic potentials is 
minimised. Moritz (1990, Sect. 8) generalised the 
Vening Meinesz method to a global compensation. 
Sjöberg (2009) formulated this problem as a 
nonlinear Fredholm integral of equation of the first 
kind, and he presented some approximate and 
practical solutions for crustal thickness by 
gravimetric data. Sjöberg and Bagherbandi (2011) 
presented a method for the estimation of the density 
contrast using EGM08 and CRUST2.0 (Bassin et al. 
2000). Similarly, Tenzer et al. (2012) studied this 
issue by including the ice model, ICE-5G. Eshagh 
(2009, 2010) studied the effect of lateral density 
variation of the crustal and topographic masses on 
the satellite gradiometry data (SGD). 

The current lack of knowledge about the density 
structure within the Earth’s crust is a major limiting 
factor of estimating the Moho density interface 
accurately. The crustal density contrast stripping 
corrections were applied systematically to the 
topographically-corrected gravity field using 
CRUST2.0 in Tenzer et al. (2009). Moritz (1990) 
improved the Vening Meinesz hypothesis by 
developing it to a spherical Earth model with some 
approximations which were not suitable for inverting 
the gravity data. Sjöberg (2009) reformulated this 
problem in a more proper way and presented a new 
solution for the theory of Moritz, naming it the 
Vening Meinesz-Moritz (VMM) inverse problem in 
isostasy. He presented some iterative as well as 
approximate spherical harmonic solutions. 
Bagherbandi and Sjöberg (2011) compared the 
gravimetric local Airy-Heiskanen and the VMM 
models with the seismic CRUST2.0 global model  for 
estimating the Moho depth. They found that the 
VMM model is consistent with the Moho model of 
CRUST2.0 with a global uncertainty of 7 km. 
Braitenberg et al. (2000) presented an iterative 
inversion method to obtain the variation of Moho in 
the Tibet plateau. Their investigation shows that the 
results of the gravity inversion for the Moho recovery 
and the seismic Moho model have an uncertainty of 
about ±5 km. This tolerance is because of 
disregarding dynamic effects involved in Tibet such 
as uplift is underlying of Tibet by the Indian plate. In 
another study, Braitenberg et al. (2006) formulated a 
crustal model of South China Sea by constrained 
forward and inverse gravity modelling from the 
combined analysis of models of satellite gravity field, 
bathymetric, sediment and crustal thicknesses and the 
isostatic flexure. In Shin et al. (2007) a recovery of 
the Moho depth from satellite data was performed. 
They presented an updated model of the Moho 

undulations in an extended area using an improved 
gravity data set, which at long wavelengths relies 
entirely on the new results of the gravity recovery 
and climate experiment (GRACE) (Tapley et al. 
2005) mission. They tried to invert the gravity 
anomalies using the Parker-Oldenburg method 
(Oldenburg 1974). Sampietro (2009) studied the 
problem of recovering the Moho depth from the SGD 
data in a simulation study and found that the Moho 
model can be recovered from SGD with an accuracy 
of about 2 km. 

Braitenberg and Ebbing (2009) used the GRACE 
data and terrestrial gravity data to study the structure 
of the crust. They presented a three-dimensional 
method based on forward modelling which uses a 
priori known crystal structure. The gravity data of the 
study area are estimated using this method and are 
compared to the observed ones. Their residuals were 
used for identification of density anomalies not 
previously recognised. Sampietro (2011) considered 
the local inversion of the SGD by simulating a Moho 
surface and generating the SGD from them. 
However, some planar approximations were used in 
his formulation and the problems of spatial truncation 
error of the integral formulae and the behaviour of 
their kernels were not considered. Sampietro and 
Reguzzoni (2011) implemented a method based on 
collocation and fast Fourier transform to evaluate the 
gravity field and steady-state ocean circulation 
explorer (GOCE) (ESA 1999) data in the Moho 
estimation. They considered the spatial truncation 
error by applying a region larger than the study area. 
Reguzzoni and Sampietro (2012) presented a global 
crustal model based on the GOCE data. Bagherbandi 
and Eshagh (2011 and 2012) investigated this issue 
by reformulating the VMM theory according to the 
second-order derivative of the disturbing potential 
instead of the gravity anomaly and Earth gravity 
models. They obtained a nonlinear integral equation 
and solved it iteratively, using Tikhonov 
Regularisation (Tikhonov 1963). Barzaghi et al. 
(2013) presented a collocation-based method for 
combining the global Moho model derived from 
GOCE data and the local one by terrestrial data. 
Eshagh (2014a) presented a linear approach for 
estimating, the Moho discontinuity in Iran from the 
SGD.  

The main assumption in the gravimetric-isostatic way 
of determining the Moho model is the compensation 
of the topographic potential by the potential of the 
masses beneath it. A shortcoming of the gravimetric 
method is the unrealistic assumption of a constant 
density contrast between the crust and mantle. 
Moreover, a proper selection of the mean depth of 
Moho is another critical issue as the Moho 
undulations are generated around it from the 
variation of the gravity. Obviously, such simple 
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assumptions are not enough for determining such a 
surface. Some geophysical phenomenae, such as 
tectonic motion, post-glacial rebound, and mantle 
convection/thermal compensation and so on are 
influential as well. Such dynamic isostatic effects 
should be considered (Bagherbandi 2011) as 
additional corrections to Moho for its quality 
improvement. Nevertheless, formulating these effects 
is not usually straightforward. Seismic data 
measurements are costly with a limited coverage and 
most of them are located on lands. The CRUST2.0 
model (Mooney et al. 1998) has a resolution of 2◦×2◦, 
but if we look at the coverage of the seismic 
measurements used by Mooney et al. (1998), we will 
see even some land areas which are not covered well 
and the Moho model of these areas are mainly 
computed just by interpolation/extrapolation. Missing 
the aforementioned geophysical phenomenae for 
gravimetric Moho modelling and the sparseness of 
the seismic data motivated Eshagh et al. (2011) to 
combine the gravimetric and seismic models in an 
optimal way globally. Later, Eshagh and 
Bagherbandi (2012) combined these models locally 
and described quality measures for them. Reguzzoni 
et al. (2013) combined the seismic model of 
CRUST2.0 and the one derived from GOCE and 
presented a new combined Moho model. 

Here, our idea is to combine these two surfaces in 
another way using the Butterworth filter. Since the 
signal spectra of the gravimetric and seismic models 
of Moho do not completely coincide, we can 
determine which model should be used to which 
degree by using this filter. Cutting the seismic spectra 
to a certain degree and replacing the higher degrees 
from gravimetric spectra is not reasonable as a jump 
will occur in the signal spectra of Moho. The 
Butterworth filter will somehow smooth the signal so 
that the spectra migrate gradually from seismic to the 
gravimetric signal. This idea has been applied by 
Haagmans (2000) and Bagherbandi (2011) for the 
generation of synthetic Earth models. 

Amongst different methods for data assimilation and 
combination, there is a method called spectral 
combination (Sjöberg 1980, Wenzel, 1982) and 
widely used for geoid determination. This method 
has also been used for data combination and gravity 
data refinement by Kern et al. (2003), Eshagh (2013, 
2014b) and for mixing the boundary-value problems 
(Eshagh 2011, 2012). In this study, we will use this 
idea to combine the signal spectra of the Moho 
models and after that we use their error spectra for 
their optimal weighting using the spectral 
combination theory. Moreover, a combining integral 
estimator is presented to assimilate the gravity 
anomaly and a global model of seismic Moho. 

2. RESULTS AND DISCUSSION 

2. 1. COMBINATION OF TWO EXISTING 

GRAVIMETRIC AND SEISMIC MOHO 

MODELS 

In this section, we present two types of combined 
Moho estimator. The first one uses the spherical 
harmonic coefficients of the Moho models, meaning 
that the spherical harmonic coefficients and their 
corresponding errors should be primarily available. 
We call this method combination in the spectral 
domain. The second type of the estimator uses the 
spherical harmonic coefficients of the seismic model, 
but uses the gravimetric Moho model instead of its 
harmonic coefficients. In the following section, we 
will present the theoretical issues of these methods. 

2. 1. 1. COMBINATION IN SPECTRAL 

DOMAIN 

Consider the following combined Moho estimator: 

(1) S G G

0 0 1

M M

n n n n n n n
n n n M

T a B T b B T T
∞

= = = +

′= + +∑ ∑ ∑ɶ  

where S

n
T  and G

n
T  are the Laplace harmonics of the 

seismic and gravimetric Moho models, M is the 
maximum degree of them, 

n
a  and 

n
b  are the spectral 

coefficients to be estimated, 
n

B  is the Butterworth 

filter and 21 nn BB −=′  (cf. Haagmans 2000). If we 

consider S
nε  and G

nε  as the errors of S

n
T  and G

n
T , 

respectively, the error of the estimator (1) will be: 
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where 
n

T  is Laplace harmonic of the true value of 

the Moho depth. 

Note that we consider 
n

B ′  and 
n

B  as the coefficients 

of S
nε  and G

nε , respectively, for the Butterworth filter 

n
B

 
acts on the decreasing signal of Moho, while the 

error of Moho is an increasing function. If 
n

B  is 

applied to the Moho signal, it reduces the errors after 
the degree of the filter and higher frequencies of the 
signal will get higher weights than the lower ones. 
This makes the high frequencies of the seismic Moho 
become stronger in the combination which is not a 
desired property for our estimator. In the case of 
using 

n
B ′  instead of 

n
B , the lower frequencies will 

have smaller errors and stronger contribution to the 
estimator. A similar argument can be made for the 
gravimetric Moho model. According to the properties 
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of { } { } { }S G S SE E 0   and   E 0n n n nε ε ε ε ′= = = for n ≠ n′, 

E{} stands for the statistical expectation, and by 
squaring Eq. (2), taking the statistical expectation and 
the global average operator M, we have: 

(3) 

{ }( ) { }

( ) ( )

2 2

2 2 S 2 2 G
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1
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where { }( )S S SM  E   n n ndc ε ε= , { }( )G G GM  E   n n ndc ε ε=  and 

( ) { }( )M  E   n n nc T T T=  are the error degree variances  

of the seismic and gravimetric models  and ( )nc T , 

the s ignal degree variance of the Moho. Equation (3) 
is  the global mean squared error of the es timator (1), 
in which the firs t three terms are related to the 
random errors  and the las t one is  the bias  of the 
es timator due to its  deviation from the true value of 

Moho. In order to es timate na and nb  under the 

condition that the bias  term has  no effect on the 
es timator (1), we use the following cons traint: 

(4) 1 0n na b+ − = ⋅  

If we solve Eq. (4) for na  and insert na  back into 

Eq. (3), we obtain: 
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Taking the derivative of Eq. (5) with respect to nb , 

equating the result to zero and solving it for nb ,we 

have: 

(6) 
2 S

2 S 2 G
n n

n

n n n n

B dc
b

B dc B dc

′
=

′ +
. 

According to Eqs. (6) and (4), it is straightforward to 
obtain: 

(7) 
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. 

2. 1. 2. COMBINED MOHO INTEGRAL 

ESTIMATOR 

The estimator (1) can be written in terms of an 
integral formula in the spatial domain when the 
gravimetric Moho model is locally available. To do 
so, let us write the estimator (1) in the following form: 
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by considering (Heiskanen and Moritz 1967, P. 34) 
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we can rewrite the estimator (8) as: 

(10) 

( ) ( )

S

0

G

0

1
   + 2 1 cos

4

M

n n n

n

n n

n

T a B T

n u P T d

σ

ψ σ
π

=

∞

=

= +

′+ ⋅

∑

∑∫∫

ɶ

 

The kernel of the integral term in the r.h.s  of Eq. (10) 
does not have any closed-form formula and one has 
to use its  spectral form and generate it to very high 
degrees. Instead, we use the following practical 
technique to avoid such a burden: 
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The kernel of the third term in the r.h.s  of Eq. (11) is  
nothing but the spherical Dirac function, therefore; 
we can simply write: 

(12) 
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On the other hand, the value of the kernel of the 
estimator (12) will be zero for the degrees higher 
than M and consequently, we do not have to compute 
it to high degrees. 
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If the seismic and gravimetric Moho models are 
locally available, we can use the following integral 
estimator to combine them: 

(13) 
( ) ( )

( ) ( ) ( )

G S
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One issue that should be mentioned here is  that the 
error spectra of the gravimetric Moho can simply be 
generated by the Sjöberg’s (1986) method. However, 
this  method is  very simple and may not be realistic. 

2. 2. COMBINED INTEGRAL ESTIMATORS 

WITH GRAVITY ANOMALY AND SEISMIC 

MODEL 

Now the idea is  to use the spherical harmonic 
expansion of the gravimetric Moho model presented 
by Sjöberg (2009). We should state that this  
expression delivers an approximate Moho model and 
two more corrections are required to increase its  high 
frequencies. However, s ince the Moho surface is  
smooth, we can consider that the contribution of high 
frequencies is  small. Also, Eshagh (2014a) showed 
that the effect of neglecting these two terms causes 
an error of less than 2 km which is  small compared to 
the magnitude of the Moho depth. Sjöberg’s (2009) 
spherical harmonic expansion of the Moho model is: 
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Since the zero- and first-degree harmonics of Moho 
come from the topographic information, we try to 
separate them from the formula. If we assume that 
the topographic information is  errorless, we can write 
the combined estimator as: 
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In order to transfer Eq. (17) from the spectral domain 
to the spatial domain, we use Eq. (9) for ng∆ . If we 

merge the last two terms in the r.h.s  of Eq. (17), we 
obtain: 
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where 
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There is  no closed-form formula for the kernel of the 
integral term of Eq. (18) and the kernel should be 
generated by its  spectral form. 

Now, the issue is  the proper weighting of the seismic 
Moho model and gravity anomalies for the degrees 
higher than two. The error of the estimator (18) is: 
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and after further simplifications: 
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The spectral coefficients  are defined for the degrees 
between 2 and M+1. Therefore, the errors  spectra of 
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the data amongst these degrees should be considered 
and the error of the firs t- and second-degree terms of 
the seismic model will be added to the error model 
but they do not have any role in the computation of 
the spectral coefficients . In fact, they just contribute 
to the total error of the estimate and have no 
influence on the estimated spectral coefficients . It 
should be s tated that the last term in Eq. (21) is  
nothing but the bias  of the estimator (18). 

The mean squared error of Eq. (21) becomes: 

(22) 
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In order to estimate na  and nb  in such a way that 

the estimator (18) becomes unbiased, we consider the 
following constraint: 

(23) 01 =−+
nn
ba . 

This  constraint removes the dependency of the 
estimated na  and nb to the true degree variance of 

Moho which is  never available. If we solve Eq. (23) 
for na , insert the result back into Eq. (22), take the 

derivative with respect to nb and solve the final 

result for it, we obtain: 

(24) 
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and according to Eq. (23) we have: 
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The integral in the r.h.s  of the estimator (18) has a 
kernel in the spectral form and is  time-consuming to 
generate it to high degrees. However, the kernel of 
this  integral formula can be written as: 

(26)
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The firs t series  in the r.h.s  is  shown by ( )K ψ  and 

can be written as: 

(27) 
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According to Martinec (2003): 

(28) 
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It should be noted that these closed-form formulae 
contain the zero- and firs t-degree terms which should 
be removed from the kernels  presented in Eq. (28). 
Substituting Eq. (28) into Eq. (29) considering Eq. 
(26) and removing the zero- and firs t-degree terms 
leads to: 
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Finally, the combined Moho estimator becomes: 

(30)
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( )K ψ  is  s ingular at 0=ψ ; therefore, this 

singularity should be removed from the integral by 
the following technique: 

(31)
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0σ  is the small integration domain around the 

singular point and its size depends in the resolution 
of the data being integrated. 

The advantage of using Eq. (30) instead of Eq. (18) is 
to have the spectral form of a kernel up to the 
maximum degree M and the generation and 
integration using such an integral is more efficient 
that the one presented in Eq. (18). 



Geodynam ics  Research  In terna tional Bulletin (GRIB), Vo l. ( I) - No . 03- W in ter 2014                                                                                            All rights reserved for GRIB  

 

VII 

Geodynam ics  Research  In terna tional Bulletin (GRIB), Vo l. ( I) - No . 03- W in ter 2014                                                                                            All rights reserved for GRIB  

  

2. 3. NUMERICAL INVESTIGATIONS 

Here, we divide our numerical studies into two parts. 
First, the combination of the Moho models in the 
spectral domain is considered and in the second part 
the behaviour of the kernels of the integral estimators 
is presented and interpreted. 

2. 3. 1. NUMERICAL ASPECTS OF 

COMBINATION OF SPECTRAL FORMS OF 

MOHO MODELS 

We suppose that spherical harmonic expansions of 
the seismic and gravimetric models of Moho are 
available with their errors. Our goal is to combine 
these two models in an optimum way, but since the 
signal spectra of them do not coincide, we should 
somehow relate them together. We know that the 
seismic data of CRUST2.0, which have been used for 
computing the spherical harmonic coefficients, are 
very geographically-limited, i.e. there are large gaps 
in the data over oceans and in some continental parts. 
Therefore, considering even the degree and order of 
90 for the seismic Moho model seems to be 
unreasonable, as there are unrealistic frequencies in 
the signal. Consequently, our estimator should take 
the frequencies from the seismic model and low 
higher ones from the gravimetric one. Figure 1a 
presents the error spectra of both models and, as it is 
observed, the error spectra of the gravimetric model 
is smaller than the seismic one and there is no doubt 
that if the spectral combination method is used, as a 
combination strategy, the results will be closer to the 
gravimetric model due to its small errors. This is not 

the property that we are going to have for our 
combined Moho model as we want to take the low 
degrees from the seismic and the high ones from the 
gravimetric model. Therefore, neither of methods of 
spectral combination, and the Butterworth filter, is 
suited for our purpose, for in the former the 
gravimetric Moho will have more contribution to the 
results than the seismic one, even for the low degrees 
and the former keeps the low degrees but cannot add 
more frequencies to the combined signal. The 
combination of the Butterworth and spectral 
combination approaches can be useful to keep both 
properties. Figure 1b shows the signal spectra of 
seismic and gravimetric signals, combined signal 
using the Butterworth filter to degree and order 20 
and the Butterworth spectrally-combined signal. As 
the plot illustrates, the combined signal, more or less, 
coincides with the seismic model to degree and order 
20 and after that reduces its power to degree and 
order 90. The Butterworth spectrally-combined 
signal reduces in degrees lower than 20 due to the 
signal weighting and since the error spectra of the 
gravimetric signal is smaller than those of seismic 
one, it is normal to see that the combined signal gets 
closer to the gravimetric signal in the high degrees. 
This could be the reason for the signal power 
reduction before degree 20. However, we should 
mention that the Butterworth spectrally-combined 
signal is an optimal estimation for the Moho depths 
from a statistical point of view. Furthermore, the 
combined signal is closer to the gravimetric signal at 
high degrees and for degrees higher than 90, one can 
simply use the gravimetric signal without using 
another filtering step. 

 
Fig 1. a) Error spectra of seismic and gravimetric models,  

b) seismic, gravimetric, Butterworth and Butterworth and spectrally-combined model 

T able 1. Statist ics of global Moho models and their combined 
ones. Unit: 1 km. 

 Max Mean Min ST D 

Seismic 73.0 23.0 2.1 12.7 

Gravimetric 51.5 22.2 8.1 8.3 

Butterworth 74.1 23.0 5.2 12.7 

Butterworth+ spectral 
combinstion 

73.9 23.0 6.3 12.4 

 

Table 1 shows the statistics of seismic and 
gravimetric Moho models and their combined ones. 
Large differences between the statistics of the 
seismic and gravimetric models are seen. The mean 
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value of these models differs by about 10 km. Also, 
the maximum value of the gravimetric model is 
smaller than the seismic one by about 20 km and its 
minimum is 6 km larger. The gravimetric model 
seems to be much smoother than the seismic one. In 
the case of combining them using the Butterworth 
filter, we observe that by taking the low frequencies 
of Moho from the seismic data, the mean value of the 
combined model becomes the same as those of 
seismic model and the maximum value becomes 
closer to the maximum value of it. However, the 
minimum of the combined model becomes larger. 
Since the error spectra of the gravimetric model is 
smaller than the seismic one, it is quite normal as by 
considering the errors of both models the combined 
model will be slightly closer to the gravimetric one. 

2. 3. 2. BEHAVIOUR OF KERNELS OF 

INTEGRAL MOHO ESTIMATORS 

The behaviour of the kernels of the combined Moho 
integral estimators is very important, as they show 
the significance of the contribution of the data to the 
estimated Moho depth. If the kernel has large values 
around the computation points, or a geocentric angle 
of zero, therefore the contribution of the far-zone 
data at the integration points will not be significant in 
the result. In such a case, a small cap size is required 
for performing the integration. In our study, two 
types of combined Moho estimators were presented. 
In the first one, we assume that two types of seismic 
and gravimetric Moho models are already available 
which are combined. Since the seismic Moho model 
has not a dense distribution of data, its spherical 
harmonic expansion cannot be higher than the data 
resolution. In our case, we use CRUST2.0 which has 
a resolution of 2◦×2◦ , corresponding to the maximum 
degree and order of 90 in its spherical harmonic 
expansion. Unlike the seismic model, the gravimetric 
one is assumed to be dense, but without a global 
coverage. The estimator (12) uses the gravimetric 
Moho model for recovering the high frequencies of 
the combined Moho and the spherical harmonic 
coefficients of the seismic model to the degree and 
order 90 for low frequencies. The behaviour of kernel 

of the integral term of this estimator is presented in 
Figure 2a and it shows that the kernel becomes close 
to zero around a geocentric angle of 20◦  which is 
quite large. However, since the kernel is in the 
spectral form and limited to degree 90, using a denser 
resolution for the gravimetric model is not required 
and the integration of a grid of 2◦×2◦  of them for this 
integral should be enough. In fact, the kernel acts as a 
low pass filter and integration of such a data will not 
be difficult practically, even in large areas. The 
estimator (30) is different from Eq. (12) as it uses 
gravity anomaly directly to estimate combined Moho 
depth. It contains two integral terms and the first one 
has a closed-form formula for integrating the gravity 
anomalies and the second one a kernel in spectral 
form up to degree and order 90 which computes a 
gravimetric Moho model from gravity anomalies, 
meanwhile combining it with a seismic model of 
Moho to this degree. The kernel of the first integral is 
plotted in Figure 2b, and as it shows, the kernel 
decreases, which means that the contribution of far-
zone anomalies is not very significant because this 
part of the estimator is carrying the high frequencies 
of the result. The opposite is true for the kernel of the 
second integral term. The kernel goes to zero after a 
geocentric angle of 30◦  meaning that the coverage of 
gravity anomaly should be 30◦  larger than the desired 
area. Having such large extent terrestrial gravity 
anomalies is not easy and on the other hand the 
kernel acts as a low pass filter of the anomalies to 
degree 90. Therefore, it is easier to write the 
estimator (30) in the following form: 

(32) 
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Therefore, a gravity model can be simply used for 
generating ng∆  to degree and order M = 90. 
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Fig 2. Kernel behaviour of a) integral of Eq. (12), b) Eq. (28) and c) last  integral of Eq. (30) 

3. CONCLUSIONS 

Amongst the three Moho estimators, presented in this 
study, the first one combines two seismic and 
gravimetric models in the spectral domain based on 
the accuracies of their spherical harmonic 
coefficients. Since the gravimetric Moho can have 
high resolution, its related term was transferred into 
the spatial domain or the integral form. The kernel of 
the integral goes to zero around a geocentric angle of 
20◦ , for this integral is responsible for combining 
those frequencies of the gravimetric Moho model 
which are lower than the maximum degree of the 
seismic model. The high frequencies are taken 
directly from the gravimetric model. The estimator 
(30) converts the terrestrial gravity anomalies to 
gravimetric Moho by an integral formula and at the 
same time combines its low frequencies with those of 
the seismic model. The kernel of the integral carrying 
the high frequencies of the Moho model decreases 
fast by the distance from the computation point, 
whilst the one for combining and integrating the low 
frequencies needs the anomalies to a geocentric angle 
of 30◦ , which is not practical. The integral part was 
transferred into the spectral from so that an existing 

global gravity model can be used for expressing the 
low frequencies instead of the gravity anomalies. 
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