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ABSTRACT 

The satellite gradiometry data (SGD) can be used for studying the crustal structure in addition to the Earth’s gravity field. This 
paper will show how this type of data is related to the Moho discontinuity or the boundary between the Earth’s crust and mantle. 
Here, the Vening Meinesz-Moritz (VMM) theory of isostasy is used and its mathematical formulae are modified to use the SGD 
instead of the Earth gravity models. A linear integral equation with a well-behaving kernel is presented by approximating the 
Moho depth formula derived based on the VMM theory. The error of this approximation is less than 300 m in Iran as the study 
area. Furthermore, this paper shows that the contribution of the higher degree harmonics than 215 is less than 1% with respect to 
the total signal of Moho undulations. This means that the use of SGD is meaningful as they sense the harmonics of the Earth’s 
gravity field to this degree. Two methods of one-step and two-step are proposed for Moho determination and applied in Iran.  It is 
shown that to reduce the effect of spatial truncation error of the integral formulae of both methods the central area should be 
smaller by 6◦ than the inversion area. Numerical studies show that the two-step approach is superior to the other one and the root 
mean squared error of differences between the Moho model recovered by an Earth gravity model and SGD is about 1.5 km in 
Iran. 

Keywords: Inversion, Satellite Gradiometer, Topographic Masses, Iran, Regularisation. 

1. INTRODUCTION 

The gravity field and steady-state ocean circulation 
explorer (GOCE) is dedicated to recover a precise 
high resolution gravity field for the Earth. In this 
satellite mission the differential accelerometry 
technique is used to measure the gravity gradients in 
a gradiometer mounted in the spacecraft. This 
technique is called satellite gravity gradiometry. This 
mission is expected to deliver gravity models to 
degree and order 250. The satellite gradiometry data 
(SGD) can be used to recover regional gravity field 
directly (see e.g. Reed 1973, Xu 1992, 1998, 2009, 
Janak et al. 2009 and Eshagh 2009a, Eshagh and 
Sjöberg 2011). Studying the interior structure of the 
Earth is also possible using the SGD data but the 
main issue is to find the proper mathematical 
relations between the data and the interior quantities. 
The Moho surface is the boundary between the 
Earth’s crust and mantle and either the seismic or 
gravimetric data can be used for determining this 
surface. The seismic Moho surface is the interface at 
which a seismic wave velocity jump occurs and the 
gravimetric one is the surface obtained from 
inversion of gravimetric data by assuming a density 
contrast at the crust-mantle transition according to 
isostatsy. The isostatic hypothesis comes from the 

fact that the crust is floating on the viscose mantle 
and its principle states that the crust is thicker under 
mountainous areas than in flat areas due to the lack 
of mass beneath the mountains chain. Airy (1855) 
stated that the isostatic compensation is locally 
achieved by variation in the thickness of the crust and 
Vening Meinesz (1931) modified it to regional 
compensation. Heiskanen (1931) presented a method 
to estimate the crustal thickness by considering a 
regional instead of local compensation of 
topographic masses. Parker (1972) presented a 
practical iterative gravimetric method based on a 
constant density contrast and a varying Moho depth, 
similar to Vening Meinesz’s hypothesis, in the 
Fourier domain and planar approximation. Due to the 
instability of this method Oldenburg (1974) added a 
filter in the frequency domain to stabilise the 
solution. Combination of these two methods was 
generalised to three dimensions by Gomes-Ortiz and 
Agarwal (2005) and Shin et al. (2007). Kiamehr and 
Gomes-Ortiz (2009) applied this three dimensional 
method and estimated the Moho depth in Iran based 
on the terrestrial gravimetric data and the Earth 
gravity model EGM08 (Pavlis et al. 2008). Čadak 
and Martinec (1991) presented the first global model 
of Moho in terms of the spherical harmonics to 
degree and order 30 based on different sources of 
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seismic data. Martinec (1993 and 1994) studied the 
determination of the density contrast between the 
mantle and crust by minimising the sum of the 
squares of the gravitational potentials induced by the 
Earth’s topographic masses and Moho. Sünkel (1985) 
converted the Airy-Heiskanen Moho depth to the 
Vening Meinesz by smoothing it further so that the 
global mean squared error of difference between 
disturbing and topographic-isostatic potentials is 
minimised. Sjöberg and Bagherbandi (2011) 
presented a method for the estimation of the density 
contrast using EGM08 and CRUST2.0 and Tenzer et 
al. (2012) similarly studied this issue by including the 
ice model, ICE-5G. Eshagh (2009b, 2010) studied 
the effect of lateral density variation in the crustal 
and topographic masses on the SGD.  

The current lack of knowledge about the density 
structure within the Earth’s crust is a major limiting 
factor of estimating the Moho density interface 
accurately. The crustal density contrast stripping 
corrections were applied systematically to the 
topographically-corrected gravity field using 
CRUST2.0 in Tenzer et al. (2009). Moritz (1990) 
improved the Vening Meinesz hypothesis by 
developing it to a spherical Earth model with some 
approximations which were not suitable for inverting 
the gravity data. Sjöberg (2009) reformulated this 
problem in a more proper way and presented a new 
solution for the theory of Moritz, named it the 
Vening Meinesz-Moritz (VMM) inverse problem in 
isostasy. He presented some iterative as well as 
approximate spherical harmonic solutions. 
Bagherbandi and Sjöberg (2011) compared the 
gravimetric local Airy-Heiskanen and the VMM 
models with the seismic CRUST2.0 global model 
(Bassin et al. 2000) for estimating the Moho depth. 
They found that the VMM model is consistent with 
the Moho model of CRUST2.0 with a global 
uncertainty of 7 km. Braitenberg et al. (2000) 
presented an iterative inversion method to obtain the 
variation of Moho in the Tibet plateau. Their 
investigation shows that the results of the gravity 
inversion for the Moho recovery and the seismic 
Moho model have an uncertainty of about ±5 km. 
This tolerance is because of disregarding dynamic 
effects involved in Tibet such as uplift is underlying 
of Tibet by the Indian plate. In another study, 
Braitenberg et al. (2006) formulated a crustal model 
of South China Sea by constrained forward and 
inverse gravity modelling from the combined 
analysis of models of satellite gravity field, 
bathymetric, sediment and crustal thicknesses and the 
isostatic flexure. They considered the effect of the 
sediment layer using the global sediment thickness 
model of NOAA (National Oceanic and Atmospheric 
Administration) and fitted the sediment compaction 
model to observed crustal density values. Sampietro 
(2009) studied the problem of recovering the Moho 
depth from the GOCE data in a simulation study and 

found that the Moho model can be recovered from 
SGD with an accuracy of about 2 km. Braitenberg 
and Ebbing (2009) used GRACE (Gravity Recovery 
and Climate Experiment) satellite data (Tapley et al. 
2005) and terrestrial gravity data to study the 
structure of the crust. They presented a three-
dimensional method based on forward modelling 
which uses a priori known crustal structures. The 
gravity data of the study area is estimated using this 
method and compared to the observed ones. Their 
residuals were used for identification of density 
anomalies not previously recognised. The idea of 
combining the seismic and gravimetric models of 
Moho presented by Eshagh et al. (2011) using their 
spherical harmonics and later on Eshagh and 
Bagherbandi (2012) combined these two models 
locally in Fennoscandia and estimated the qualities of 
the models.  

In Shin et al. (2007) a recovery of the Moho depth 
from satellite data was performed. They presented an 
updated model of the Moho undulations on an 
extended area using an improved gravity data set, 
which at long wavelengths relies entirely on the new 
results of the GRACE mission. They tried to invert 
the gravity anomalies using the Parker-Oldenburg 
method (Oldenburg 1974). Sampietro (2011) 
considered the local inversion of the SGD by 
simulating a Moho surface and generating the SGD 
from them. However, some planar approximations 
were used in his formulation and the problem of 
spatial truncation error (STE) of the integral formulae 
and the behaviour of their kernels was not 
considered. Sampietro and Reguzzoni (2011) 
implemented a method based on collocation and fast 
Fourier transform to evaluate the GOCE data in the 
Moho estimation. They considered the STE by 
applying a larger region than the study area. 
Reguzzoni and Sampietro (2012) presented a global 
crustal model based on the GOCE data and 
Reguzzoni et al. (2013) combined the seismic model 
of CRUST2.0 and the one derived from GOCE and 
presented a new combined Moho model. Barzaghi et 
al. (2013) presented a collocation-based method for 
combining the global Moho model derived from 
GOCE and the local one by terrestrial data.  

Bagherbandi and Eshagh (2011 and 2012) 
investigated this issue by reformulating the VMM 
theory according to the second-order derivative of the 
disturbing potential instead of the gravity anomaly 
and Earth gravity models. They obtained a nonlinear 
integral equation and solved it iteratively using 
Tikhonov Regularisation (Tikhonov 1963). The main 
idea of this paper is to perform a similar study but 
with a simpler linear method to avoid any iteration in 
the solution. Sjöberg (2009) presented a 
mathematical formula for Moho model which has 
three terms which are functions of an approximate 
Moho model. Therefore, if we can estimate this 
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approximate model from other type of data, 
therefore, the generation of the second and third 
terms will not be difficult. Recovering this 
approximate Moho model from the SGD is a novel 
idea and we further investigate the approximation 
error of our method and the highest meaningful 
degree of the spherical harmonic expansion of the 
Moho model. Two methods for Moho recovery are 
presented and both of them are applied in Iran.   

2. MATERIALS AND METHODS 

2. 1. MATHAMATICAL MODELS OF 

OBSERVABLES AND MOHO DEPTHS 

The disturbing potential outside the Earth’s surface is 
expressed by the following spherical harmonic 
expansion (Heiskanen and Moritz 1967, p. 35): 

(1) ( )
1

2

,
n n

nm nm

n m n

R
V v Y

r
θ λ

+∞

= =−

 =  
 

∑ ∑ ,  r > R 

where R is the semi-major axis of the reference 
ellipsoid, r the geocentric distance of the 
computation point, 

nmv  is the spherical harmonic 

coefficient of degree n and order m of the disturbing 
potential and ( ),

nm
Y θ λ  stands for the fully-normalised 

spherical harmonics at the co-latitude θ and 

longitude λ. Since we assume that the normal gravity 
field has the same mass as that of the Earth and the 
coordinate system is geocentric we do not consider 
the zero- and first-degree harmonics in the series (1).  
The second-order radial derivative of the disturbing 
potential is derived by taking the derivative of Eq. (1) 
twice with respect to r (cf. Martinec 2003): 

(2) ( ) ( ) ( )
3

2
2

1
1 2 ,

n n

rr nm nm

n m n

R
V n n v Y

rR
θ λ

+∞

= =−

 = + +  
 

∑ ∑ . 

Equation (2) is the mathematical formula of our 
observables and our goal is to find its relation to its 
Moho depths formula. Now, we present the 
mathematical formula of the Moho depth presented 
by Sjöberg (2009) according to the VMM theory:  

(3) ( )

2 2 2

Moho 3

1

8 sin 2

T T T
T T d

R R σ

σ
ψ

′ −
= + − ∫∫  

where σ is  the unit sphere and dσ  the surface 
integration element and ψ  stands for the geocentric 

angle between the computation point and integration 
points. Note that in Eq. (3) the integration point is 
shown by prime. Furthermore, the approximate 
Moho depth has the following spectral form:  

(4) 
0

n

n

T T
∞

=

=∑  

where 

(5) ( )0
0 2

4
C

n n n n nn

A
T H g

k
δ πν µ ν

π
= − + − ∆  

and δ stands for Kronecker’s delta, k G ρ= ∆ and G is  

the Newtonian gravitational constant and ρ∆  the 

density contrast between the crust and mantle, H the 
topographic information of the solid Earth surface 
and µ  the density of crust. 

0CA  is  named the normal 

compensation attraction with the following formula 
(Sjöberg 2009): 
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and finally  
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where 
wµ  is  density of water.  

By looking at Eq. (3), which is the formula for 
computing the Moho depth, we observe that T should 
be computed first and after that two correcting terms 
are added to improve T. This equation does not 
involve any other information and T plays the main 
role for computing the Moho depth. On the other 
hand, the contribution of the integral term of Eq. (3) 
is not very significant and in order of metres which is 
negligible and once T is  computed, the computation 
of the second term of Eq. (3) is very straightforward. 
Here, we name the second term in the right hand side 
(r.h.s) of Eq. (5) the Bouguer contribution to the 
Moho depth.  

2.2. ONE-STEP APPROACH  

The Moho depth, which is presented by Eq. (3), 
requires the Laplace harmonics of the gravity 
anomaly at sea level. Such an anomaly has the 
following relation with the spherical harmonic 
coefficients of the disturbing potential (Heiskanen 
and Moritz 1967, p. 97): 
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(10) ( )1
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By comparing Eq. (10) and Eq. (2) the following 
relation between the Laplace harmonic of the gravity 
anomaly and that of the SGD is derived:  

(11)
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Substitution of Eq. (11) into Eq. (5) and further 
simplification of the result reads: 
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rrTC  is , in fact, the Bouguer correction to the SGD.  

The Laplace harmonics of any function like the 
Moho depth is (Heiskanen and Moritz 1967, p. 30): 

(14) ( )2 1
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By substituting Eq. (14) into Eq. (12) and 
considering Eq. (7) we obtain the following integral 
equations:  
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where the kernel of this integral is: 
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The kernel (16) is in the spectral form and its 
generation to infinity is not possible even truncating 
it to high degree is not economical due to the time 
consuming generation of the Legendre polynomials. 
Note that the derived kernel is absolutely convergent 
as long as s < 1, therefore, a closed form formula can 
be derived for it. To do so, let us write the kernel in 
the following form: 

(17) ( ) ( )2 1

2

12
, 5 10 cos

1
n

n

n

K s n n s P
n

ψ ψ
∞

+

=

 
= + + + − 
∑ . 

Based on the well-known formula of the Legendre 

expansion of a reciprocal distance 
�

�
 between two 

points (Heiskanen and Moritz 1967, p. 35):  
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it is  not difficult to show that: 
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On the other hand, from Martinec (2003) we already 
have: 
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Substitution of Eqs. (19)-(22) into Eq. (17) and 
simplification of the result yields: 

(23)

( ) ( )232

3 7

2

2

15 cos
( , ) 6 cos 7

2

10
28 cos 2 12

1 cos
12 cos ln

2

s ss
K s s

l l

s s s l
l

l s
s

ψ
ψ ψ

ψ

ψ
ψ

−
= − − −

 
− + + − − 

 

+ − 
−  

 

   

2. 3. TWO-STEP APPROACH  

The process of upward- and downward continuation 
of the Bouguer correction can be avoided because the 
topographic information is already available at the 
Earth’s surface. Only 

rrV  is  measured at satellite 

level and needs to be continued downward to Moho, 
here and after, we call this residual Moho depth and 
show it by W. In other words, the Bouguer 
contribution is computed separately and added to W 
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for obtaining the Moho depth. According to Eqs. (5) 
and (11) we can write:  

(24) ( )
2

,2
n n n n n rr nn

r
T v H W v w V

R
π µ− = =  

Now, we solve this equation for 
,r r nV  and take the 

summation from degree 0 to ∞ from both sides: 
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From Eqs. (7) and (11) we have:  
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According Eq. (14) it is  straightforward to rewrite 
Eq. (26) in the following integral form: 

(27)   
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which is an integral equation with a similar kernel 
function as the one obtained in the one-step approach 
but it includes the zero- and first-degree terms. 
Exclusion of these terms does not influence the 
obtained W as 

rrV  does not include them and due to 

the orthogonally of the spherical harmonics the 
derived W is  the same whether or not the kernel 
include the zero- and first-degree terms. 
Consequently, the closed form formula presented for 
the kernel function, Eq. (23), can be safely be used 
for 

rrV  and we can write: 

(28)                                 ( )
2

, rr

kr
K s W d V

R σ

ψ σ′− =∫∫  . 

Having computed W from inversion of the integral 
equation (28), the Moho depth (T) can be derived by: 

(29) T W BC= +   where ( )
0

2 n n
n

BC Hπ ν µ
∞

=

= ∑ .    

We call this method two-step approach as in the first 
step the integral equation (28) should be solved for W 
and in the second one the Moho is derived by adding 
BC to W.   

2. 4. SOLUTION OF INTEGRAL EQUATIONS 

Here, we shortly explain how to solve the integral 
equations by the Tikhonov regularisation (Tikhonov 
1963). The integral equations (15) and (28) should be 
descritised according to the resolution of the desired 

Moho depths. This process leads to the following 
system of equations of Gauss-Markov type: 

(30) = −Ax L ε  

where { }T 2
0E σ=εε Q , { }E 0=ε  and A is  the 

coefficient matrix which its number of rows is equal 
to total number of data and its columns to that of 
unknowns, x and L are the vectors of unknowns and 
the data, respectively. E stands for the statistical 
expectation operator; Q is  the cofactor matrix and 

2
0σ  is  the a priori variance factor. Here, we should 

mention that A is  the same in both one- and two-step 
approaches, but x contains T in the one-step method 
and W in the second method. Correspondingly, L will 
be the r.h.s of the integral (15) which is 

r rCT  - 
rrV  in 

the first method and only 
rrV in the second one. In 

this study, number of 
rrV and T is  equal, therefore A 

is  a squared matrix and there is no redundancy in the 
system to estimate variance and error of the solution 
i.e. we assume that Q = I and 2

0σ = 1.  

Equation (30) is ill-conditioned which means that the 
determinant of A is  very close to zero, not exactly 
zero, and when it is  placed in the denominator for 
computing the inverse of A it amplifies the 
contribution of the high frequencies, which are 
contaminated with noise of the data, in the solution. 
This causes that the solution becomes sensitive to the 
noise of the data. The Tikhonov regularisation is one 
of the well-known methods for stabilising such a 
system and it is  derived based on minimising the 
following objective function:  

(31) { }2

2 2
min α− +Ax L x  

where 2α  is  a positive value which is so-called the 
regularisation parameter and finally 

2
•  stands for 

the L2-norm. Solution of Eq. (24) for x leads to:  

(32) ( ) 1T 2 T
reg α

−
= +x A A I A L  

where 
regx  is  the regularised solution excluding the 

erroneous high frequencies. The main issue is to 

estimate a proper value for 2α . There are different 
methods to do so, for more details see Hansen 
(1998). For a short overview on the regularisation 
methods and their application in inversion of the 
SGD data see Eshagh (2011a). 

2. 5. NUMERICAL STUDIES 

In the first part of our numerical studies, the 
behaviour of the kernel function (23) is presented, 
after that the meaningfulness of the use of the SGD is 
investigated. Finally, Iran is selected as the test area 
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for the determination of Moho depth from the SGD 
data and testing the feasibility and successfulness of 
the presented one- and two-step approaches. The last 
part of the numerical study is dedicated to the 
practical comparison of these two methods.  

2. 5. 1. KERNEL BEHAVIOUR 

Equation (23) is the closed form expression of the 
kernel function (16) and now, we plot it in different 
geocentric angles ψ  to find out if it is  a well-

behaving kernel and suitable for integral inversion or 
not. Eshagh (2011b) defined a well-behaving kernel 
as the one having its highest value at computation 
point and decays fast to zero. Figure 1 shows the 

kernel (23) to a geocentric angle of 10 � . According 
to Eshagh’s (2011b) definition it is  a well-behaving 
kernel and the inversion of the integral formulae (15) 
and (29) should be successful. However, the 
unwanted and unavoidable issue for the integral 
inversion is the effect of spatial truncation error 
(STE) which is reducible if the results in the marginal 
areas are ignored. Eshagh (2011b) stated that the 
same coverage area for the SGD and unknowns 
should be considered to reduce the STE. By selecting 
the results located in the central part this area the 
distorted unknowns by the STE in the marginal areas 
are disregarded. The questions is how smaller the 
central area should be than the whole area? This can 
be found by plotting the kernel function at different 
geocentric angles. As Figure 1 shows the kernel 
value is close to zero after the geocentric angles 

larger than 6 �  meaning that the central area should 

be smaller by 6 �  than the inversion area.  

 
Fig. 1. Behaviour of kernel function (4g) 

2. 5. 2. USE OF SATELLITE GRADIOMETRIC 

DATA: MEANINGFUL OR MEANINGLESS? 

Theoretically, we could connect the SGD to the 
Moho depths by the two presented methods. 
However, the Moho surface is rather smooth and one 
cannot expect many fluctuations for it. Is it 
meaningful to compute the Moho surface by its 

spherical harmonic expansion to very high degrees? 
The answer is definitely negative, but what should be 
the truncation degree? In order to answer this 
question considers the ratio of the Moho signal after 
a specific degree of p to total signal.  

(33) 
0
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where 
nmT , ( )

nm
Hµ and 

nmg∆  are the spherical 

harmonic coefficients of Moho depths, product of 
topographic masses and heights and free-air gravity 
anomaly, respectively.  

The plot of the ratio (7) should be decreasing with 
the increase of p towards N which is highest 
truncation degree but not the optimum one. Here, 
EGM08 (Pavlis et al. 2008) to degree and order 360 
is considered to generate 

nc  as the Moho model 

does not include higher degrees at least the one 
derived from the SGD. The ratio (7) is plotted in 
Figure 2 when p ranges from 0 to 360. Depending on 
the value of c different truncation degrees can be 
found. Assuming c = 1% means that the percentage 
of the Moho signal after degree 215 is less than 1% 
and similarly for c = 0.1% it will be 357. 
Consequently, the use of SGD is useful and 
meaningful as they are sensitive to frequencies 
corresponding to degree and order 250 in the 
equivalent spherical harmonic expansion and at least 
there is no loss of frequency of the Moho model.  

 
Fig. 2. Ratio of Moho signal at high degrees to total signal 

2. 5. 3. NUMERICAL STUDIES IN IRAN 

We select an area which is limited between latitudes 

of 15 �N and 50 �N and longitudes of 35 � E and 

75 � E so that Iran is placed in its central part to 
reduce the STE of the integral formulae. Here, we 
use EGM08 (Pavlis et al. 2008) and the Moho model 
of CRUST1.0 (Laske et al. 2013) and DTM2006 
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topographic height model (Pavlis et al. 2006) and all 
to degree and order 180. Figure 3 shows the maps of 
the SGD over the study area in unit of E (Eötvös) and 
illustrates the largest and negative value at Caspian 
Sea and the positive one over the Zagros Mountains 
and in the north-east part of Iran around its border to 
Azerbaijan and Turkey and in the south part in Bam. 
The SGD have extreme values over these areas 
compared to those mountains which are continuation 
of Himalaya Mountains in Afghanistan. Figure 3b is 
the map of 

r rCT  and its general pattern is very 

similar to the map of 
rrV  presented in Figure 3a but 

the largest positive magnitudes is seen in Afghanistan 
and the negative ones over the Oman Sea and Indian 
Ocean. Its magnitude is about 10 times larger than 
the SGD meaning that they have more contribution to 
the Moho than the SGD.  

Figures 3c and 3d are the maps of gravimetric and 
seismic Moho models in units of km. Two important 
parameters should be selected prior to computing the 
gravimetric Moho model:  

a) the density contrast between the mantle and crust. 
b) the mean Moho depth.  

Here, we selected a density contrast of 600 gr/cm3 

and found the mean value of Moho by comparing the 

generated gravimetric Moho model to the seismic 
model of CRUST1.0. The best match found when a 
mean Moho depth of 35 km is considered for 
generating the gravimetric Moho model so that the 
root mean squared error (RMS) between the models 
became 8.7 km. The RMS 8.7 km seems to be very 
large but if we look at Figures 3c and 3d we can see 
that these two models are very different.  

Table 1 shows the statistics of 
rrV , 

r rCT , gravimetric 

and seismic Moho models. 
rrV ranges from -1.1 E to 

0.9 E over the area and 
r rCT is  rather large and reach 

to a maximum value of 5.0 E. The maxima of both 
Moho models are close but their minima differ 
considerably by about 18 km. The standard deviation 
(STD) of the gravimetric model is smaller than the 
seismic one which can be somehow interpreted as its 
smoothness. The mean value of the seismic model is 
very close to 35 km but that of the gravimetric model 
is larger by 2.5 km. This is due to the fact that 35 km 
is a global mean value and it does not warrant being 
the same in a local area like Iran. 

 

 

Fig. 3. a) 
rrV at 250 km level [E], b) 

r rCT  at 250 km level [E], c) gravimetric Moho model [km] and d) seismic Moho model of CRUST1.0 

[km]. 
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Table 1. Statistics of 
rrV , 

r rCT and gravimetric and seismic 

Moho models  
 Max Mean Min  STD 

rrV        [E] 0.9 0.0 -1.1 0.4 

r rCT   [E] 5.0 1.1 -2.9 1.4 

Gravimetric Moho [km] 47.7 37.5 26.3 3.4 

Seismic Moho [km] 49.6 35.6 8.5 9.3 

 

2. 5. 3. 1. NUMERICAL STUDY ON ONE-STEP 

APPROACH 

Now, the integral equation (15) is used to recover the 
Moho depths directly from 

r rCT . In this method 

r rCT is  added to 
rrV . Since the organised system of 

equations after discretisation of the integral formula 
is ill-conditioned and sensitive to the error of 

rrV , the 

solution is stabilised to get meaningful results by the 
Tikhonov Regularisation method. Regularisation 
Tools of MATLAB (Hansen 2007) is applied to solve 
this system of equations with combination with L-
curve method for estimating the regularisation 
parameter. The same coverage is considered for both 

of T and 
rrV . Two resolutions of 1 1×� �  and 

0.5 0.5×� �  are considered for recovering T and for 
reducing the effect of the STE, the results in the 

central area which is smaller by 1 � , 2 � , …, 8 � , than 
the inversion area are selected. 

Figure 4a shows the recovered T based on the one-

step approach with a resolution of 1 1×� �  in a central 

area smaller than the whole area by 6 � . Figure 4b is 
a similar map of the Moho model but with a 

resolution of 0.5 0.5×� � . Both of them have similar 
patterns but Figure 4a is smoother than Figure 4b due 
to the lower resolution. One issue that should be 
explained here is observing positive and negative 
values for T. The reason is that recovering all 
frequencies of the Moho signal is not possible by the 
one-step approach as the zero- and first-degree 
harmonics have been already removed from the 
kernel. Recovering a global value for the mean Moho 
depth using local data and a kernel which is 
inherently blind to the first-degree is not possible. 
Therefore, the depths which are recovered from 
inversion of integral (15) do not contain the zero- and 
first-degree harmonics. If we restore these degrees on 
the recovered to T the map presented in Figure 4c is 
derived.  

 

Fig. 4. Recovered Moho depths excluding the contribution of zero- and first-degree harmonics with a resolution of a)  1 1×� �

 and b) 0.5 0.5×� �

 
and c) Moho depths after restoring zero- and first-degree harmonics. Unit: 1 km 
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In order to evaluate the quality of the inversion, the 
Moho model computed by EGM08 and Eq. (4) and 
(5) is compared to the one recovered from 

rrV in 

different resolutions and sizes of the central area. The 
statistics of the differences between these models are 
presented in Table 2. One could see in the table that 
the extreme values are reduced by reducing the size 
of central area, but in the opposite, the mean value of 
the differences increases. The reason is that the 
system of equations is solved for whole area based on 
Tikhonov regularisation and the Moho undulations 
are obtained around the estimated mean value of the 
whole area and not the central one. Therefore, by 
reducing the size of this area the mean value changes 
from that of the whole area. The reduction of the 
extreme values leads to decrease of the STDs. 
However, judging about the quality by STD is not 
fully correct as when the solution is smooth the STD 
becomes small as well. The RMS value decreases but 
remains constant by reducing the size of central area 
because when STD reduces the mean value increases 

therefore it remains with the same value, but after 6 �  

it starts growing up which is not desired. One can 

conclude that the central area should be 6 �  smaller 
than the whole area. In the last column of the table 
the correlation between both models is presented in 
the selected central areas and it shows that when the 

resolution of the unknowns is 0.5 0.5×� �  the 
correlation is higher. 

A correlation of higher than 90% is seen when the 

central area is 6 �  smaller than the inversion area. 
Moreover, the table shows that the resolution of the 
unknowns does not play an important role in the 
results, also as Figure 4c shows, more detailed 
information can be achieved but the magnitudes of 
the depths do not change. Figure 4c is the map of the 
Moho depths after restoring the zero- and first-degree 
harmonics to the recovered Moho depths. The 
maximum, mean, minimum and STD of this model 
are 36.7, 35.3, 34.0 and 0.3 in unit of km, 
respectively.  

 

Table 2. Statistics of differences between Moho models computed from EGM08 and one-step approach from 
rrV . Unit: 1 km 

Resolution Central area smaller by Max Mean Min STD RMS corr 

1 1×� �

 

1
�

 9.5 -2.2 -11.7 3.0 3.7 64.2% 

2
�

 8.1 -2.3 -11.3 2.8 3.6 78.5% 

3
�

 7.6 -2.5 -11.1 2.6 3.6 82.0% 

4
�

 7.1 -2.6 -9.6 2.5 3.6 85.3% 

5
�

 6.9 -2.7 -9.1 2.3 3.6 86.0% 

6
�

 6.9 -2.9 -8.3 2.2 3.6 88.6% 

7
�

 6.3 -3.0 -8.3 2.1 3.7 90.1% 

8
�

 5.7 -3.2 -8.3 2.0 3.8 91.9% 

0.5 0.5×� �

 

1
�

 9.5 -2.2 -11.5 3.0 3.7 76.5% 

2
�

 8.2 -2.3 -11.5 2.8 3.6 87.8% 

3
�

 8.2 -2.5 -11.5 2.6 3.6 88.7% 

4
�

 7.6 -2.6 -10.0 2.5 3.6 90.2% 

5
�

 6.9 -2.7 -9.7 2.3 3.6 90.7% 

6
�

 6.9 -2.9 -8.4 2.2 3.6 92.1% 

7
�

 6.5 -3.0 -8.4 2.1 3.7 93.3% 

8
�

 5.8 -3.2 -8.4 2.0 3.8 94.1% 

 

2. 5. 3. 2. NUMERICAL STUDY ON TWO-STEP 

APPROACH 

The Moho model delivered by the one-step method is 
very smooth and has STD and RMS values of 2.2 km 
and 3.7 km, respectively. Nevertheless, as already 

mentioned BC is computed at sea level and does not 
need to be continued upward and downward, 
otherwise extra errors due to solving the ill-
conditioned integral equations occurs for the BC too. 
However, the two-step approach avoids such a 
process and only inverts the SGD to W instead of T.  
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Fig. 5. a) BC, b) W, c) Moho depths by two-step approach, d) Moho depths derived from EGM08. Unit: 1 km 
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Figure 5a is the map of BC. In comparison with 
Figure 2c which is the gravimetric Moho model of 
the area, one can see that BC is about 10 times larger 
than W. Figure 2d shows that W contributes about 2 
km to T. When W is added to BC, T is derived and 
presented in Figure 5c. Figure 5d is the Moho model 
which directly computed by Eq. (1) and EGM08. 
Figures 5c and 5d are theoretically the same Moho 
model but derived from different data. Figure 5c 
shows more detailed model than Figure 5d. The 

derived model from the SGD is deeper in Bam and 
Damavand. Also Urmia Lack is more visible in 
Figure 5c than Figure 5d. Figure 5d shows that there 
is a deep Moho in the western part of Caspian Sea 
which does not seem to be true whilst Figure 5c does 
not show such a depth in that area.  

In order to do a better comparison, the statistics of the 
Moho models and their differences are presented in 
Table 3. 

Table 3. Statistics of W, BC and Moho depths recovered from SGD and EGM08 and their differences. Unit: 1 km. 
 Max Mean Min STD RMS 
W 1.6 0.0 -2.0 0.3 - 

BC 48.1 38.2 26.8 3.5 - 

SGD Moho  47.1 38.2 26.8 3.3 - 
EGM08 Moho 44.3 38.0 27.1 2.5 - 
BC – EGM08 Moho 6.3 0.2 -5.4 1.7 1.7 
SGD Moho – EGM08 Moho  5.3 0.2 -4.8 1.5 1.5 

 

It represents that W ranges from -2 km to 1.6 km with 
a zero mean value and STD of 300 m. The term 
related to BC is quite large and reaches to 48.1 km 
and the mean value of 38.2 km. By adding W to this 
term the mean value and the minimum value of Moho 
depths do not change but the maximum value reduces 
to 47.1 km. The reason of this reduction is that W has 
the opposite sign to BC. The Moho model recovered 
from EGM08 ranges from 27.1 km to 44.3 km with 
mean value and STD of 38 km and 2.5 km. The small 
STD can be, somehow, interpreted as the smoothness 
of this Moho model with respect to the one recovered 
from 

rrV .  

Also this can be due to the fact that W is smaller in 
magnitude than the gravity anomalies obtained from 
EGM08. The last two rows of the table represent the 
statistics of the differences between BC and EGM08 
Moho model as well as T and EGM08 Moho. The 
RMS of these differences is 1.7 km and the RMS of 
the differences between the Moho of 

rrV  and EGM08 

is 1.5 km showing that W is in order of the difference 
between BC and EGM08 Moho can very well present 
them. It should be stated that EGM08 has been used 
to degree and order 360 and we already know that 

rrV do not sense the gravity field to these degree. 

However, they could cover majority of the signal.  

2. 5. 4. ONE-STEP OR TWO-STEP 

APPROACH? 

According to the presented numerical studies in the 
last two sections, it is straightforward to conclude 
that the two-step approach performs better. The 
reason is that only 

rrV is inverted whilst the one-step 

approach inverts both of 
rrV  and 

r rCT . Although the 

kernel function of both methods is the same but since 
the system of equations is ill-conditioned the solution 
will be very sensitive to that r.h.s. the system. When 
it is a smoother quantity the inversion process is more 
successful. Another issue is the smoothing property 

of the used regularisation technique, i.e. Tikhonov 
Regularisation. In fact, any regularisation method 
delivers a smooth solution by cutting the higher 
frequencies. Now, if the r.h.s of the system of 
equations is large in magnitude the contribution of its 
high frequencies is also large and vice versa.  

In our numerical studies we showed that BC is much 
larger than W and it is obvious that in the 
regularisation process higher frequencies of this part 
are very large and when they are removed from them 
solution large part of the signal is neglected. But 
when we use only 

rrV at 250 km level, the data is 

smooth and small portion of them is cut during the 
inversion process. Moreover, the contribution of the 
first- and second-degree harmonics of the Moho 
should be removed from the data and restored to the 
results afterwards, but in the case of using the two-
step method is process is done inherently by adding 
BC and since the kernel of the integral does not 
include the zero- and first-degree terms it will filter 
out the corresponding frequencies from 

rrV even if 

rrV includes them. Therefore, the Moho recovery 

process by the two-step method is more successful 
than the one-step one.  

3. RESULTS AND DISCUSSION 

Amongst few studies about Moho recovery from the 
SGD data we can mention the works done by 
Reguzzoni and Sampietro (2012), Reguzzoni et al. 
(2013) and Barzaghi et al. (2013), but the present 
work uses a similar idea to that used by Bagherbandi 
and Eshagh (2011,2012). In both of the studies, the 
VMM theory is used. However, Bagherbandi and 
Eshagh (2011, 2012) used the isostatic equation of 
equilibrium for the second-order derivative of the 
disturbing potential. They derived nonlinear integral 
equations and solved it numerically.  

One problem of that work is the requirement of 
approximate values of the Moho depths for the 
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computation of them they used the spherical 
harmonic series presented in Eq. (1). Consequently, 
the main goal was to obtain higher frequencies of the 
Moho variations from the SGD and add them to the 
approximate model. Their system of equations, 
organised after lineraisation of the integral equation, 
was difficult to solve as they had to invert an integral 
with a specific kernel function but for updating the 
SGD from the recovered Moho model they had to use 
another integral with a different kernel, which was 
quite time consuming. Furthermore, the STEs of both 
forward and inverse problems were not the same.  

On the other hand, their numerical studies showed 
that the Moho model cannot be recovered with higher 

resolution than 2 2×� �  as the system of equations 
became very unstable and difficult to stabilise, whilst 
our method is capable to do the recovery to a 

resolution of 0.5 0.5×� � . One issue that should be 
explained here is whether or not these complicated 
processes are meaningful. If we look at Eq. (3), we 
observe that the Moho depth formula has three terms 
which are all functions of the approximate Moho 
depth (T).  

It is obvious that the second and third terms of this 
formula are just some improvements to T. However, 
in the case of using SGD we cannot expect to reach 
to them due to the satellite elevation and smooth 
nature of the Moho surface. Bagherbandi (personal 
communication) stated that the contribution of the 
third term is smaller than the second term too. It 
could be expected as the numerator of the integrant is 
the difference between the Moho depths at the 
computation and integration points and since Moho is 
smooth this difference cannot be large. Now 
according to the seismic Moho model of CRUST1.0 
presented in Figure 2d we can see that the maximum 
depth of Moho reaches to 46 km in Iran.  

Therefore, it will not be difficult to see how large the 
approximation of Eq. (3) to the first term will be. If 
assume that R = 6400 km the magnitude of the 
second term is at most 462/6400=0.3 km which is 
negligible comparing to the size of Moho depths. 
Therefore, it is reasonable to compute the Moho 
model only by the first term as the mathematical 
models becomes very simple and the integral 
equation for inverting the SGD becomes linear. After 
solving it for the depths the effect of the second and 
third terms are considered.  

4. CONCLUSIONS  

We presented a simple linear integral equation for 
recovering Moho model from satellite gradiometry 
data (SGD). Also, we showed that approximating the 
Moho determination formula based, on the Vening 
Meinesz-Moritz theory presented in Eq. (3), to the 
first term commits only 300 m error in Iran which is 
very small comparing to the magnitude of the Moho 
depth.  

Since the Moho surface is smooth recovering its short 
wavelengths is not very meaningful especially from 
SGD data. In this study, by the use of EGM08 to 
degree and order 360 we found out that the 
contribution of higher degree harmonics than 215 is 
less than 1%, which is high enough to justify the use 
of the SGD and the presented theory because other 
type of satellite data are not as sensitive as the SGD. 
Two methods of one-step and two-step were 
presented for the Moho recovery goal and our 
numerical studies showed that the first method 
delivers an over-smoothed model whilst the second 
method is more successful.  

It can deliver the Moho model with a root mean 
squared error of 1.5 km with respect to the Moho 
model of EGM08 which is quite good and it presents 
more detailed information about the Moho depths 
than the one-step method. Here, we recommend using 
the two-step method for the Moho recovery from 
SGD but emphasise that the Bouguer contribution 
should not be continued upward to the SGD as they 
should be continued downward again.  
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