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A B S T R A C T 

A computer program for progressive collapse analysis of planar frames is under de-

velopment. The software has a capability to analyze structures after failures of mem-

bers in which failure can occur at one or both ends of a member. When an end of a 

member fails, the failed end separates from the main structure and becomes discon-

tinuous. In this paper, a modified member stiffness procedure with releases of end 

forces to track the response of a failed end is discussed. The procedure utilizes a con-

densation process of the element stiffness matrix of the failed member. An example 

in applying the modified member stiffness procedure is given to show that the as-

sembly process for the stiffness matrix and the applied force vector of the main struc-

ture does not change. In addition, the Equation solver still determines the same num-

ber of unknown degrees of freedom. Accordingly, this approach provides a conven-

ient, simple, yet efficient means of keeping track of all failed members for progressive 

collapse analysis of frame structures. 
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1. Introduction 

Progressive collapse is a type of collapse that can be 
defined as a chain reaction of failures initiated by a loss 
of one or more supporting elements. Thus far, an analy-
sis technique known as the “Alternate Load Path” 
method has been employed for investigating the poten-
tial of progressive collapse in buildings. The method has 
been adopted by many current design codes and stand-
ards in USA (GSA 2000; IBC 2000; DOD 2001). Although 
the importance of considering dynamic effects has been 
shown (Pretlove et al., 1991; Kaewkulchai and William-
son, 2002) and some design provisions have suggested 
the use of dynamic analysis in conjunction with the alter-
nate load path method (GSA 2000; DOD 2001), how to 
perform such analysis still at large relies on engineering 
judgment. 

For the current research study being conducted, a 
computer program for dynamic progressive collapse 
analysis of planar frames is under development. The 
software has a capability to analyze structures after fail-
ures of members in which failure can occur at one or 

both ends of a member. When an end of a member fails, 
the failed end separates from the main structure and be-
comes discontinuous. In this paper, a modified member 
stiffness procedure with releases of end forces to track 
the response of a failed end is discussed. The procedure 
utilizes a condensation process of the element stiffness 
matrix of the failed member. An example in applying the 
modified member stiffness procedure is given to show 
that using the modified member stiffness approach can 
result in a simple, yet efficient analysis routine for anal-
yses of frame structures after member failure. 

 

2. A Computer Program 

Two General description of the developed software is 
given in this section. A more detailed explanation of 
these subjects has been given elsewhere (Kaewkulchai 
and Williamson, 2004). The software utilizes the conven-
tional direct stiffness method for the main analysis rou-
tine. An implicit direct integration scheme, the New-
mark-beta method is employed to solve the governing 

mailto:griengsak.k@oup.ubu.ac.th
http://www.challengejournal.com/


 Kaewkulchai and Bhokha / Challenge Journal of Structural Mechanics 1 (1) (2015) 18–21 19 

 

equations of dynamic equilibrium coupled with Newton- 
Raphson iterations for carrying out the nonlinear anal-
yses. The program assumes the use of a classical or pro-
portional (Rayleigh) damping matrix along with the use 
of a lumped mass matrix. Geometric nonlinearity (P-Δ ef-
fect) is taken into account by using a simplified geomet-
ric stiffness matrix. For material nonlinearity, a lumped 
plasticity model for beam-column elements is applied in 
which inelasticity is assumed to occur only at element 
ends or hinges (Fig. 1). Effects of strength and stiffness 
degradation of members are modeled by means of a 
damage model. The damage model utilizing a damage in-
dex at each member end is used to determine the onset 
of member end failure. 

  

Fig. 1. Inelastic beam-column element. 

The software has a capability to analyze frame struc-
tures after failures of members. When an end of a mem-
ber fails, the failed end separates from the main struc-
ture and becomes discontinuous. To continue the analy-
sis, an additional node at the failed end may be intro-
duced. Because three new degrees of freedom associated 
with the new node are added to the structure, the system 
of equations becomes larger. Hence, the analysis re-
quires more computational effort, particularly when 
there are many failed ends. In addition, changing the di-
mensions of all system matrices during the course of 
analysis is required, resulting in expensive computer 
time for transferring data between matrices. Also, new 
definitions for element connectivity must be established. 
As a result of the drawbacks associated with adding a 
new node to the definition of the structural model, in the 
current computer program the analysis continues in an 
efficient manner through the use of a modified member 
stiffness procedure with releases of end forces. System-
atically, this approach provides a convenient means of 
keeping track of all failed members, and the main analy-
sis routine is not greatly altered. The modified member 
stiffness procedure is described in the following section. 

 

3. A Modified Member Stiffness Procedure 

As mentioned in the previous section, the modified 
member stiffness procedure is employed to track the re-
sponse of a failed end. The modified member stiffness 
approach utilizes a condensation process of the element 
stiffness matrix. Static condensation for a beam element 
is well established in the literature (e.g, Felton and Nel-
son, 1997). For the 2-D beam-column element under 
consideration (Fig. 2), all three degrees of freedom at 
one end of an element are released (u1-u3 or u4-u6) be-
cause of the failure of an end. When releasing one end, 

the element forces at that location become zero. Because 
these force values are known, the corresponding dis-
placement quantities can be expressed in terms of the 
displacements at the other end of the element using ma-
trix condensation. 

  

Fig. 2. Element end displacements and forces. 

Considering the response of a beam-column element 
in which one of the ends has failed, the incremental equi-
librium equations of the failed element can be written as 
follows:  

∆𝑅 = 𝐾∆𝑢 + ∆𝑅𝐹  . (1) 

For expressive reason, assume that failure takes place 
at the right end of the beam-column element in Fig. 2. 
Thus, two sets of matrix equations result and Eq. (1) can 
be rewritten as  

{
∆𝑅𝑐

∆𝑅𝑟
} = [

𝐾𝑐𝑐 |𝐾𝑐𝑟

𝐾𝑟𝑐|𝐾𝑟𝑟
] {

∆𝑢𝑐

∆𝑢𝑟
} + {

∆𝑅𝐹𝑐

∆𝑅𝐹𝑟
} , (2) 

where subscripts c and r refer to ‘contracted’ and ‘re-
leased’, respectively. 

From Eq. (2), the contracted set consists of incremen-
tal force and displacement vectors corresponding to the 
element degrees of freedom 1 through 3 at the intact 
end. Similarly, the released set contains those for the el-
ement degrees of freedom 4 through 6 at the released 
end. Because the released element force vector ∆𝑅𝑟  is 
zero, the released displacement vector ∆𝑢𝑟 can be writ-
ten in terms of ∆𝑢𝑐 as  

∆𝑢𝑟 = −[𝐾𝑟𝑟]−1 [𝐾𝑟𝑐∆𝑢𝑐 + ∆𝑅𝐹𝑟] , (3) 

Accordingly, the incremental equilibrium equations 
for the contracted set can be expressed by  

∆𝑅𝑐 = 𝐾𝑐𝑐∆𝑢𝑐 + ∆𝑅̅𝐹𝑐 , (4) 

where 𝐾𝑐𝑐 = [𝐾𝑐𝑐 − 𝐾𝑐𝑟  𝐾𝑟𝑟
−1 𝐾𝑟𝑐]  is the modified mem-

ber stiffness matrix and ∆𝑅̅𝐹𝑐 = [∆𝑅𝐹𝑐 − 𝐾𝑐𝑟  𝐾𝑟𝑟
−1 ∆𝑅𝐹𝑟] 

is the incremental modified fixed-end force vector. 
It can be seen from Eq. (4) that the use of 𝐾𝑐𝑐  and ∆𝑅̅𝐹𝑐 

requires no special process in accounting for the new de-
grees of freedom associated with the failed end during 
the assembly process for the stiffness matrix and the ap-
plied force vector of the main structure in which the de-
grees of freedom associated with the failed end can be 
calculated using Eq. (3). 

The relationships derived in Eqs. (3) and (4), how-
ever, are based on an assumption of static equilibrium of 
the element, and therefore cannot apply for dynamic 
analyses of frame structures. Nonetheless, because the 
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Newmark-beta method for solving the governing equa-
tions of dynamic equilibrium is employed, similar equa-
tions, which are valid for dynamic analyses, can be de-
veloped. In the Newmark-beta method, the governing 
equations of dynamic equilibrium can be cast in terms of 
unknown displacements. Accordingly, dynamic effects in 
the response are accounted for, and the procedure out-
lined previously can be used with only slight modifica-
tion. 

Let us consider the governing equations of motion for 
a dynamic system which can be described by  

𝑀𝑠𝑈′′ + 𝐶𝑠𝑈′ + 𝐾𝑠𝑈 = 𝑃 , (5) 

where 𝑈 , 𝑈′ and 𝑈′′ are the displacement, velocity and 
acceleration vectors; 𝑀𝑠, 𝐶𝑠 and 𝐾𝑠 are the system mass, 
damping and stiffness matrices; 𝑃 is the external applied 
force vector. 

Then, the incremental equations of motion combined 
with the Newmark-beta method can be written as  

∆𝑃𝑒𝑓𝑓 = 𝐾𝑠 𝑒𝑓𝑓 ∆𝑈 , (6) 

𝐾𝑠 𝑒𝑓𝑓 = 𝐴1𝑀𝑠 + 𝐴4𝐶𝑠 + 𝐾𝑠  , (7) 

∆𝑃𝑒𝑓𝑓 = ∆𝑃 + 𝑀𝑠{𝐴2𝑈′ + 𝐴3𝑈′′} + 𝐶𝑠{𝐴5𝑈′ + 𝐴6𝑈′′}, (8) 

where 𝐴1 through 𝐴6 are the Newmark constants. 
Because the effective system stiffness matrix, 𝐾𝑠 𝑒𝑓𝑓 

and the effective incremental applied force vector, ∆𝑃𝑒𝑓𝑓  
is a result from the assembly process of each beam-col-
umn element, one can express the incremental equilib-
rium equations of an element, similar to Eq. (1) as fol-
lows:  

∆𝑅𝑒𝑓𝑓 = 𝐾𝑒𝑓𝑓∆𝑢 + ∆𝑅𝑒𝑓𝑓 𝐹  , (9) 

𝐾𝑒𝑓𝑓 = 𝐴1𝑀 + 𝐴4𝐶 + 𝐾 . (10) 

Because the fixed-end forces are the negative values 
of the applied forces, the effective incremental fixed-end 
force vector, ∆𝑅𝑒𝑓𝑓 𝐹 , similarly to ∆𝑃𝑒𝑓𝑓  (see Eq. (8)), is 
given as  

∆𝑅𝑒𝑓𝑓 𝐹 = ∆𝑅𝐹 − 𝑀[𝐴2𝜈 + 𝐴3𝑎] − 𝐶[𝐴5𝜈 + 𝐴6𝑎] , (11) 

where ν and a are the velocity and acceleration vectors 
of the element, while M and C are the element mass and 
element damping matrices. 

By assuming the right end of the element failed, two 
sets of matrix equations result in Eq. (9) and the released 
displacement vector ∆𝑢𝑟 from Eq. (3) can be rewritten as  

∆𝑢𝑟 = −[𝐾𝑒𝑓𝑓 𝑟𝑟]
−1

 [𝐾𝑒𝑓𝑓 𝑟𝑐 ∆𝑢𝑐 + ∆𝑅𝑒𝑓𝑓 𝐹𝑟] . (12) 

The derived equation for ∆𝑢𝑟 is now based on dy-
namic equilibrium, and therefore, inertial effects are ac-
counted for by using Keff and ∆𝑅𝑒𝑓𝑓 𝐹 . Furthermore, sim-
ilar to Eq. (4), the incremental equilibrium equations for 
the contracted set can be given by 

 
∆𝑅𝑒𝑓𝑓 𝑐 = 𝐾𝑒𝑓𝑓 𝑐𝑐  ∆𝑢𝑐 + ∆𝑅̅𝑒𝑓𝑓 𝐹𝑐  , (13) 

where 𝐾𝑒𝑓𝑓 𝑐𝑐  is the modified member stiffness matrix 
and ∆𝑅̅𝑒𝑓𝑓 𝐹𝑐  is the incremental modified fixed-end force 
vector for dynamic equilibrium.   

𝐾𝑒𝑓𝑓 𝑐𝑐 = [𝐾𝑒𝑓𝑓 𝑐𝑐 − 𝐾𝑒𝑓𝑓 𝑐𝑟  𝐾𝑒𝑓𝑓 𝑟𝑟
−1  𝐾𝑒𝑓𝑓 𝑟𝑐] , (14) 

∆𝑅̅𝑒𝑓𝑓 𝐹𝑐 = [∆𝑅𝑒𝑓𝑓 𝐹𝑐 − 𝐾𝑒𝑓𝑓 𝑐𝑟  𝐾𝑒𝑓𝑓 𝑟𝑟
−1  ∆𝑅𝑒𝑓𝑓 𝐹𝑟] . (15) 

Based on the discussion above, together with Eqs. 
(10) to (15), the procedure for dynamic progressive col-
lapse analysis with the modified member stiffness ap-
proach only involves modification of the stiffness matrix 
and fixed-end forces of a failed member. Thus, Eq. (13) 
can be employed with the modified member stiffness 
matrix, 𝐾𝑒𝑓𝑓 𝑐𝑐  and the modified fixed-end force vector, 
∆𝑅̅𝑒𝑓𝑓 𝐹𝑐 . These matrices correspond to the contracted 
degrees of freedom at the intact end. 

With 𝐾𝑒𝑓𝑓 𝑐𝑐  and ∆𝑅̅𝑒𝑓𝑓 𝐹𝑐 , analysis after member fail-
ure can continue with little modification to the main 
analysis routine because no new degrees of freedom are 
added to the system. At the end of a converged time step, 
the released displacement vector ∆𝑢𝑟 at the failed end of 
the member can be obtained from the contracted dis-
placement vector ∆𝑢𝑐  using Eq. (12). Thus, using the ap-
proach just outlined, the assembly process for the stiff-
ness matrix and the applied force vector of the main 
structure does not change. In addition, the equation 
solver still determines the same number of unknown de-
grees of freedom. Accordingly, applying the modified 
member stiffness approach results in a simple, yet effi-
cient analysis routine for analyses of frame structures af-
ter member failure. 

 

4. Analysis Example 

An example in applying the modified member stiff-
ness procedure is given in this section. Results obtained 
from a dynamic analysis using this approach are com-
pared with those obtained from a conventional dynamic 
analysis. For illustrative purpose, a fixed-fixed beam 
shown in Fig. 3 is used. Note that the beam is assumed to 
have elastic-perfectly plastic behavior.  

   

Fig. 3. A fixed-fixed beam modeled using two elements. 

The fixed-fixed beam consists of two elements and 
two degrees of freedom as shown in Fig. 3. A point load, 
P of 5 kips acts at Node 3. Apparently, the system will not 
react because the point load is acting at a support. To il-
lustrate the modified member stiffness method, the right 
end of member 2 is assumed to abruptly fail so that the 
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support is no longer available to resist loads. For a con-
ventional dynamic analysis, a new node (Node 3) would 
need to be introduced; therefore two new degrees of 
freedom are introduced into the system. Hence, after 
failure at Node 3, the system can be analyzed by using an 
equivalent system having four degrees of freedom with 
a suddenly applied force, P at Node 3 as shown in Fig. 4.  

  

Fig. 4. An equivalent system with a suddenly applied 
force. 

For a dynamic analysis using the modified member 
stiffness approach, however, only two degrees of free-
dom are required so that no new degrees of freedom are 
introduced to the system. The response, however, at the 
failed end can be obtained through Eq. (12). For the dy-
namic analyses performed, Δt = 0.01 sec and mass = 0.05 
kips-s2/in at each member end are used. In addition, ro-
tational mass and damping are ignored. The results, ob-
tained from a conventional dynamic analysis and a dy-
namic analysis using the modified member stiffness ap-
proach, are compared in Fig. 5. 

Figs. 5(a-b) show the response of four degrees of free-
dom, 1 to 4. As seen in the graphs, the difference between 
the results obtained from the conventional dynamic 
analysis and the modified member stiffness approach is 
negligible. Similarly, bending moments and shear forces 
of members 1 and 2 obtained from the two approaches 
are nearly identical. Hence, applying the modified mem-
ber stiffness approach results in a simple, yet efficient 
analysis routine for dynamic analyses of frame struc-
tures after member failure. 
 

5. Conclusions 

In recent years, progressive collapse has gained much 
interest due to severe building collapse. An analysis 
technique known as the “Alternate Load Path” method 
generally based on a static approach, has been employed 
for investigating the potential of progressive collapse in 
buildings by many current design standards. Although 
considering dynamic effects has been shown to be signif-
icant for the analysis of progressive collapse, how to per-
form such analysis is simply based on engineering judg-
ment. For the current study, a computer program for dy-
namic progressive collapse analysis of planar frames is 
under development. The software has a capability to an-
alyze structures after failures of members. 

In this paper, a modified member stiffness procedure 
with releases of end forces to track the response of a 
failed end of members was discussed. An example in ap-
plying the modified member stiffness procedure was 
also given. The described approach to track the response 
of failed ends was simple, yet efficient to employ for dy-
namic collapse analyses of planar frame structures. 

  

Fig. 5. Comparisons of the obtained results. 
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