
Acta Informatica Pragensia 
2(2), 2013, 59–67, DOI: 10.18267/j.aip.24  Section: 
Online: aip.vse.cz  Peer-reviewed papers 

Framework for utilizing computational  
devices within simulation 

Miroslav Mintál1 

1 Department of Transportation Networks, Faculty of Management Science and Informatics,  
University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic 

Miroslav.Mintal@fri.uniza.sk 

Abstract: Nowadays there exist several frameworks to utilize a computation power 
of graphics cards and other computational devices such as FPGA, ARM and multi-
core processors. The best known are either low-level and need a lot of controlling 
code or are bounded only to special graphic cards. Furthermore there exist more 
specialized frameworks, mainly aimed to the mathematic field. Described 
framework is adjusted to use in a multi-agent simulations. Here it provides an 
option to accelerate computations when preparing simulation and mainly to 
accelerate a computation of simulation itself. 

Keywords: GPGPU, GPU framework, OpenCL, Simulation 

 

 

  



60  Mintál 

1 INTRODUCTION 

Different simulation studies are being developed worldwide every day. These simulations often 
contains complicated models, which computation often last for a long time. In several cases is the 
computation slower than the modeled system. It happens especially if we want to model larger 
systems. 

A solution may be to buy a new more powerful hardware or to rent a computation power. However 
these restrictions can be conquered also with utilization of current hardware. A majority of programs is 
serial and that is why they cannot fully utilize current multi-core processors. After adjustment, these 
programs could fully utilize the processor. In a computer occurs more powerful computational device 
when used properly. This device is a graphic card. 

To fully use this hardware there exist several frameworks and libraries. Some of them will be 
described in chapter two. This paper will deal with a designed framework that is able to utilize 
mentioned hardware with focus placed on the utilization in simulation. Designed framework is 

integrated into multi-agent simulation architecture ABAsim [1]. This is utilized both on education 

purposes as well as commercially in the traffic simulations. Designed framework will be described in 
third chapter. Chapter four defines a practical use of the framework. Last chapter will contain 
summary and conclusion. 

2 EXISTING FRAMEWORKS 

Recently there did not exist any frameworks for simple use of computational power of graphic cards. 
The only option was to convert data into textures and work with them in a complicated way. To utilize 
a computation power of graphic cards and other computation devices there exist nowadays several 
frameworks. There is a small amount of basic frameworks. These will be described in subsection 2.1. 
Then there exist frameworks based on basic frameworks that simplify utilizing of this performance 
such as automation of some steps, simplifying function calls or implementation of some algorithms. In 
subsection 2.2 will be some of these frameworks presented. 

2.1 LOW-LEVEL FRAMEWORKS 

Among basic frameworks that enable to utilize computational devices belong these: 

CUDA [2] – is mostly used, especially for good publicity and amount of provided libraries. The 

disadvantage is that it only works with NVidia graphic cards. 

OpenCL [3] – its main advantage is that it can use computational power of almost every recent 

graphics card, processors and FPGA. Because of the wide spectrum of supported devices, it has a 
disadvantage in more complicated host code. 

DirectCompute – is part of DirectX. It is used in engines built on DirectX. It is rarely used for general 
computations. 



Acta Informatica Pragensia  61 

2.2 HIGHER FRAMEWORKS 

Then there exist frameworks and libraries based on mentioned low-level frameworks. These utilizes in 
most cases OpenCL and CUDA. They simplify the work with computation on graphic cards in the 
way that they make some steps automatically and provides simpler calls of functions. The best 
example is a graphic card initialization automation before the computation. In the OpenCL an 
initialization of single graphic card can take more than fifty lines of code. 

Now will be described frameworks that are focused on the mathematical computations on the graphic 
cards: 

VexCL [4] – for initializing of computational devices it is necessary to call initializing call. However 

it has an advantage that the code is executed over all requested devices. To copy data between graphic 

card and processor it uses simple call of copy command. Data can be also set by direct value 

assignment, but this is computationally slow. Furthermore it supports simple execution of simple 
mathematic operations. Operation is written with the graphics card variables and is automatically 
executed over all element of variables. An example of such a simple operation may look as follows: 

gpu_vec_C = gpu_vec_A + gpu_vec_B; 
gpu_vec_D = gpu_vec_C * 2.0; 

It also supports more complicated operations however the whole code with parameters and all key 
words from OpenCL must be written. 

ViennaCL [5] – automatically initializes graphic card during the first call of any function from this 

library. As well as VexCL it supports simple entries in simple mathematical operations. It also 

supports data copying in the simple function copy, or by directly values assignment, but it is slow. 

MTL4 – it is similar mathematical framework as previous two with one difference. This framework is 
based on CUDA, so it can use only NVidia graphic cards for computations. 

Frameworks MTL4, ViennaCL and VexCL were compared in the paper from Demidov et. al. [6]. In 

the paper they are compared on chosen mathematical problems, where they achieve similar results on 
sufficient big problem. In the small problems a time of initialization was the factor. When comparing 
CUDA and OpenCL, were the frameworks based on CUDA a little bit faster. However practically this 
difference was insignificant. In spite of CUDA, OpenCL supports more hardware. 

Flame GPU [7] [8] – is computational framework assigned for simulation. One can see two 

fundamental disadvantages. The first is, that it is based on CUDA. Therefore it can use only the 
NVidia graphic cards. As NVidia form only a part of current graphic cards and do not support other 
computational devices, its utilization is limited. Other possible disadvantage is the use of XML based 
code when programming. This means a longer studying before work with the framework. 



62  Mintál 

3 DEVELOPED FRAMEWORK 

Designed framework is built on the OpenCL. Due to this it can work on different computation 
hardware and not only on the graphic cards NVidia, as it is in the case of CUDA framework. It is 
aimed on the computations during simulations. Because of this it does not support simple 
mathematical operations in the simple calls. During simulation are usually utilized complicated 
computations. These can be created in a simpler way within the framework. Framework supports also 
other benefit properties of mentioned frameworks, such as: automatic initialization, easier copying of 
data between the computational device and computer memory and other, that will be described later. 

Framework is kernel oriented not a data oriented. That means that for every computation there is 
created a kernel object with a code and data can assigned into this. This kernel can then simply be 
called several times with different data. It is also possible to assign data output from one kernel as a 
data input of another kernel. Then simply a computation over the kernels is called and no commands 
to transfer data between kernels have to be entered. 

In the next parts will be the framework described in parts and its advantages will be pointed out. 

3.1 INITIALIZING 

Framework can automatically initialize itself. It is initialized during a first call that will have to work 
with the graphic card. If no graphic cards are found the computations will be parallel executed on the 
processor or other device supporting OpenCL. If necessary it is possible to manually define which 
device should be initialized. For example if it is wanted to execute the computations only on the 
specific graphic card. 

3.2 MEMORY 

When creating a kernel it is necessary to define the types of input and output data (parameters of the 
kernel). This is done by the next procedure: 

procedure addParamArr<TType>(paName: String = ''; 
    paMemoryType: TECMemoryType = mtReadWrite; 
    paLength: Cardinal = 0); 

The only obligatory parameter is TType, TType is converted into appropriate type in OpenCL. If 

TType is a complicated record, then a struct with the same name is created in OpenCL. Then 

every element of the record is converted into an appropriate type in OpenCL and is inserted into the 

created struct under the same name as it has in the record. It is better to set a name that is later 

easy to use when copying data and during the pointing on the data in the kernel. 

Then setParam and getParam methods can be called over the kernel to set data and to obtain data 

from the graphic card. In the calls a parameter name of kernel can be used. Framework than copies 
correct size of data between graphic card and the computer memory. 



Acta Informatica Pragensia  63 

3.3 KERNEL CODE 

Kernel code can be entered directly as a string or as a name of a file where the code is. If the code is in 
file and it would contain a syntax error, framework announces this error and will wait for the error 
repair in the file. If the code would be repaired, framework is able to continue in the computation 
without crash or shutting down the application. 

Another advantage of the framework is, that it is not necessary to write a declaration of kernel 
function. Name of the kernel together with the correct parameter types and surrounding OpenCL code 
is generated automatically. It is needed to write only the computation code for the kernel that will use 
the names of the parameters identified during kernel creation. If the names were not defined, generated 
names will be created according to the type of used memory. 

Sometimes it is more useful not to have a lot of kernels, but call the functions from one kernel. For 
example for the reason of speed or code readability. It is possible to assign these functions into the 
kernel again as a string or a file name. When there is an error in the function code in the file, it is again 
possible to repair it by announced notification and continue in the application run. 

3.4 TEMPLATE FUNCTIONS 

As was mentioned, framework does not support simple notation for simple mathematic operations. 
However it supports template functions for more complicated functions utilizing computational 

device. To these operations belongs for example prefix sum (scan) or sort. 

It is because these operations are mostly specific for parallel computations or more difficult to code 
and optimization. That is why a user can use them with benefit and is not forced to concern in detail of 
how they work on graphic cards or other computational device. 

3.5 SIMULATION 

Framework is integrated into the multi-agent simulation architecture ABAsim. This architecture is 
divided into two layers: controlling agents and dynamic agents. Controlling agents are responsible for 
larger parts and work as a controllers. Dynamic agents represent intelligent entities presented in the 
model. These can be neurons in brain, ants in anthill or cars, trains and pedestrians in the traffic 
simulation. 

Framework is integrated into dynamic agents. It is because there is a large amount of these agents and 
they execute the same activity (the same code). This is preferable for graphic cards. For optimal 
utilization it is requested that the executed code is the same for all threads and is executed in as big as 
possible number of threads. Algorithm executed on big amount of threads is advantageous also from 
the point of future computation acceleration. The trend heads to the computational devices with higher 
number of cores that can faster process more threads. 

This way it is possible to create a kernel for dynamic agent and register it in the framework. This 
kernel is self-executed during simulation for every agent. Of course, this framework is able to utilize 
in other parts of simulation. It is enough to create kernel and then execute it in desired places. 



64  Mintál 

4 USING OF PROPOSED FRAMEWORK 

Described framework can be used during simulation in several ways and also it can be used outside 
the simulation. Framework has been tested in the pedestrian simulation. Before simulation itself it can 

be used to accelerate pre-simulation computations. For example to compute gradient maps [9] used for 

pedestrian navigation. Firstly we will describe a simple example of vectors addition. Secondly we will 
outline computations before and during simulation of pedestrians on graphic cards with their 
advantages. 

4.1 VECTORS ADDITION 

An example of vectors addition (see below) is composed of three blocks. The first block creates 
reusable kernel. The second one copies data from RAM to graphic card and starts the computation. 
The third block deallocates kernel. More comprehensive description of the example is located below. 

// Part 1 
length := 20; 
FArrayAdd := TECKernel.Create; 
FArrayAdd.Code := 'c[id] = a[id] + b[id];'; 
FArrayAdd.addParamArr<Single>('a', mtReadOnly); 
FArrayAdd.addParamArr<Single>('b', mtReadOnly); 
FArrayAdd.addParamArr<Single>('c', mtWriteOnly); 
// Part 2 
FArrayAdd.setParamLength('c', length); 
FArrayAdd.setParam('a', a_cpu); 
FArrayAdd.setParam('b', b_cpu); 
FArrayAdd.Compute(length); 
FArrayAdd.getParam('c', c_cpu); 
// Part 3 
FArrayAdd.Free; 

In the first block, the kernel is created and code for graphic card is assigned. Afterwards the 

parameters with their types are defined. The second block executes the computation using Compute 

method. Result is retrieved by getParam into variable c_cpu. Another values for addition can be set 

using setParam. Call setParamLength is required only for output parameters, which size changes. 

The third block comprises just a single command, which deallocates the whole kernel with all 
parameters (if they are not used in another kernel). 

4.2 COMPUTATION OF GRADIENT MAP 

Computation comprises two phases. Firstly a distance matrix is calculated. Gradient map is then 
created from this distance matrix (see Figure 1). 



Acta Informatica Pragensia  65 

  
 

Fig. 1. Distance matrix (a,) and gradient map (b,) with two obstacles [9] 

Two kernels are needed for distance matrix computation. The first contains code [9] for distance 
matrix calculation in local group. The second one synchronizes groups. Data about obstacles are then 
sent to graphic card. This is accomplished by assignment of attributes to the first kernel. Both kernels 
share the same part of memory on graphic card. Output parameter of the first kernel is assigned to an 
input parameter of the second kernel and vice versa. Kernels are executed alternately until the whole 
distance matrix is calculated. 

Finally, a gradient map is computed from the distance matrix. For this we need another kernel, which 
for each cell finds the smallest value in neighborhood. Input of this kernel is distance matrix and 
output is gradient map. 

This solution has several advantages. Processor can execute another pre-simulation computations 
during computation of gradient maps on graphic card. Thanks to it, we can completely utilize the time 
needed for creation of gradient maps. Moreover, resulting maps are already located on graphic card 
and can be used for computation of pedestrians’ movement. 

4.3 PEDESTRIAN MOVEMENT 

During simulation it is able to use a connection of framework with simulation architecture ABAsim. 

This solution is described in [10]. Described solution uses all properties of framework to implement a 

pedestrian movement based on social forces [11]. Firstly, a kernel is created.  Computation is similar 

to processor alternative except finding of obstacles and pedestrians in surroundings. Static parameters 
are set to kernel, such as obstacles or gradient maps. This kernel registers itself into ABAsim 
architecture. We have to create a function for actualization of pedestrians attributes, for new pedestrian 
arrival and for pedestrian departure from the simulation. 

Before the computation of movement, the pedestrian asks, if there is available kernel for its type of 
movement. If there is one, ABAsim architecture calls function for actualization of pedestrians 
attributes, starts computation on graphic card and copies results from the card (if they are needed e.g. 
for statistics). 



66  Mintál 

The presented solution was tested on two simulation models. Examined models of the pedestrian 
movement are depicted in figure 2. 

 
 

Fig. 2. Models of tested infrastructures [10] 

The results of accelerating of movement of pedestrians on the graphics cards opposing to the serial 
implementation are depicted in figure 3. The computation for higher amount of pedestrians in 
simulated model was on the graphic card significantly faster than original serial implementation. Only 
for very small amount of pedestrians (up to the ten pedestrians) was the computation on the graphic 
cards slower. However in practical use it is needed to accelerate a computation for large amount of 
pedestrians. That is why results reached by this framework are very good. 

 

 
 

Fig. 3. Results of comparison of framework with original implementation [10] 

5 CONCLUSION 

The paper presented a framework for utilization of computational power of graphic cards, multi-core 
processors and other computational devices supporting OpenCL. This framework simplifies 
initialization and application against basic OpenCL framework. Due to the integration into the multi-
agent simulation architecture ABAsim it is possible to utilize it for accelerating of simulation 
computations. This way it is possible to create larger simulation models which computation will last 
shorten time. 



Acta Informatica Pragensia  67 

The framework was utilized to implement various algorithms. It was used also in the pedestrian 
movement simulation. This implementation significantly accelerated a computation of pedestrians in 
several models. Algorithms implemented in this framework can in future better utilize new hardware. 
This is because algorithms are parallel and are able to use a potential of new multi-core computational 
devices compared to current serial algorithms. 

6 REFERENCES 

[1]  ADAMKO, N. and V. KLIMA. Agent based simulation architeture argumented by actors. In: 
SM'2006 - The 2006 European Simulation and Modeling Conference. Tolouse: 2006, pp. 305-

09. ISBN 90-77381-30-9. 

[2]  KIRK, D. B. and W.M. W. HWU. Programming Massively Parallel Processors. 2010. ISBN: 

978-0123814722. 

[3]  GASTER, B. et al. Heterogenous Computing OpenCL. 2011. ISBN: 978-0123877666. 

[4]  DEMIDOV, D. In: Vector expression template library for OpenCL [online]. 2013 [cit. 2013-

10-15]. Available at: https://speakerdeck.com/ddemidov/vexcl-at-cse13 

[5]  RUPP, K. F. RUDOLF and J. WEINBUB. ViennaCL - A High Level Linear Algebra Library 
for GPUs and Multi-Core CPUs. In: International Workshop on GPUs and Scientific 

Applications. Vienna: 2010, pp. 51-56. 

[6]  DEMIDOV, D. et al. Programming CUDA and OpenCL: A Case Study Using Modern C++ 

Libraries. 2012, p. 21. 

[7]  RIHMOND, P. and D. ROMANO. Template driven agent based modelling and simulation 
with CUDA. In: GPU Computing Gems Emerald Edition. 2011, pp. 313-24. ISBN 978-0-12-

384988-5. 

[8]  KARMAKHARM, T. P. RICHMOND and D. ROMANO. Agent-based Large Scale 
Simulation of Pedestrians With Adaptive Realistic Navigation Vector Fields. In: Theory and 

Practice of Computer Graphics. Sheffield, 2010, pp. 67-74. 

[9]  MINTÁL, M. Accelerating distance matrix calculations utilizing GPU. In Journal of 
Information, Control and Management Systems, Vol. 10, No.1, 2012, pp. 71-79. ISSN 1336-

1716. 

[10]  MINTÁL, M. Social forces pedestrian simulation utilizing graphics card within simulation 
tool PedSim. In IMEA 2013, Pardubice: University of Pardubice, 2013. ISBN 978-80-7395-

696-7. 

[11]  KORMANOVÁ, A. Combining social forces and cellular automata models in pedestrians' 
movement simulation.  In Journal of Information, Control and Management Systems, Vol. 10, 

No.1, 2012, pp. 61-70. ISSN 1336-1716. 


