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Abstract: This paper proposes a novel paradigm for network congestion control. 
Instead of perpetual conflict as in TCP, a proof-of-concept first-ever protocol 
enabling inter-flow communication without infrastructure support thru a side 
channel constructed on generic FIFO queue behaviour is presented. This enables 
independent flows passing thru the same bottleneck queue to communicate and 
achieve fair capacity sharing and a stable equilibrium state in a rapid fashion. 
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1 INTRODUCTION 

Recent advances in rateless erasure codes [16, 22] enable to separate reliability from rate/congestion 
control for general purpose unicast transport protocols [15]. Currently for purposes where reliability is 
not necessary, for example multimedia applications, or when other layers take care of reliability for 
example through Application Layer Forward Error Correction (AL-FEC) [3]. but congestion control 
has to be guaranteed - TCP-Friendly Rate Control (TFRC) provides an option [8]. But it does so by 
modelling the Transmission Control Protocol (TCP) [5] performance as a function of packet loss and 
Round-Trip Delay Time (RTT) under the same conditions and limiting its rate accordingly. We argue 
that this approach is sub-optimal because it inherits the TCP performance which is not always 
satisfactory (For example on Wireless Wide Area Network (WAN) links, or Long Fat Networks 
(LFN), resp. the issue of Bufferbloat [18] etc. ).  

TCP flow synchronization occurs when congestion caused packet drop reaches levels that it affects all 
the flows on the overflowing bottleneck, as TCP understands packet drop as an indication of 
congestion it reduces its data rate. Because all the affected flows react the same way, the effect is flow 
synchronization [28] [23]. More generally speaking this behaviour is not TCP-specific, congestion can 
be utilized for synchronizing into a stable equilibrium state, where instead of aggressively reducing the 
rate as TCP does, flows stop increasing their rate and only reduce it so that packet loss or queuing 
doesn’t occur, thus stabilize the overflowing buffer, reaching and holding the full capacity of the 
bottleneck. Protocol that utilizes this behaviour can be designed [14], the problem with this state is that 
the capacity is not distributed fairly amongst flows it is just stabilized at whatever utilization the flows 
reached in the moment bottleneck capacity was reached. While experimenting with this stable state we 
noticed an interesting phenomena, we were able to on demand break the stable state and increase or 
decrease jitter levels on all flows passing thru the bottleneck with the change of the data rate of one of 
the competing flows even if it represented a fraction of the total bottleneck data rate. Thus effectively 
creating a broadcast communication medium between independent flows from the bottleneck queue. 
We present a proof of concept and explore the possibility of using this mechanism for congestion 
control. 
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Fig. 1. Example of two TCP flows synchronizing. X-axis = time [ms], Y-axis = no. of packets/s 

2 JITTER AS CONTROL SIGNAL 

Several variants of TCP already proposed using RTT as an additional control signal on top of packet 
drop.  

TCP Vegas [4] aims to improve the end-to-end congestion avoidance mechanism of TCP. The main 
objective is to estimate the expected bandwidth for the connection in order to control the transmission 
rate that can avoid network congestion. To achieve this goal, the scheme defines BaseRTT value 
which represents the minimal round trip time during the transmission to calculate the expected 
transmission rate of the link. After receiving an acknowledgement, sender continues to update 
ActualRTT value which represents the current RTT and is necessary to be able to calculate the real 
transmission rate. If the difference between BaseRTT and ActualRTT is higher than upper bound 
threshold, congestion may occur since sending rate is too high. Thus, sender decreases one congestion 
window size. If the difference is smaller than lower bound, sender should increase one congestion 
window size to utilize the available bandwidth. Else, sender should keep the sending rate stable. TCP 
Vegas suffers fairness problems when the connections start transmitting at different times. Also, TCP 
Vegas is not suitable for wireless network since it cannot distinct loss events. 

TCP Veno [10] is a loss differentiation scheme for the wireless environment and it is derived from 
TCP Vegas. This method provides another threshold to differentiate between wireless and congestion 
losses. Although the performance is improved in wireless environment, the loss differentiation scheme 
cannot work well when the random loss rate is high. And it still does not solve the fairness issues of 
Vegas.  
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TCP Jersey [26] is another enhancement which improves network performance in wireless network. 
But because it needs router support (ECN) we will not describe it further. 

All the mentioned schemes so far used RTT, such congestion estimator cannot perform well when the 
traffic load gets heavy over reverse links or asymmetric links.  

On the other hand, JTCP [24, 25, 7] applies the jitter ratio to differentiate wireless losses from 
congestion losses and revise the Reno’s congestion control scheme to adapt to wireless environments. 
Jitter ratio [6] is derived from the inter-arrival jitter, which is defined in Real-time Transport Protocol 
(RTP) [21]. Inter-arrival jitter is the variance of packet spacing at the receiver side and packet spacing 
at the sender side. In other words, it presents current path’s status by the packet-by-packet delay. On 
packet loss JTCP compares the average jitter ratio with a threshold, which is defined as the inverse of 
congestion window size. If average jitter ratio is greater than this threshold, JTCP regards the loss 
event as congestion loss and reduces its congestion window size to one half. Otherwise, the loss event 
will be viewed as wireless loss. Sender will not reduce the congestion window and will do fast 
retransmission immediately. The problem with such approach is the setting of the threshold, inverse of 
congestion window size is a local parameter and does not represent the state of the network. Also, it 
means that on higher transmission speeds and thus bigger congestion windows the system will be 
much more sensitive to jitter variance.  

Jitter seems to be better suited as an additional control signal than RTT as it describes only the one 
way delay changes triggered by changed path load, thus it is more stable as it cannot be affected by the 
load of the reverse path. 

3 CHANGING THE PERSPECTIVE 

State of the art transport protocols still use the TCP "point of view" - looking at data on packet level 
[27] [12], even if Forward Error Correction (FEC) protocols slowly gain traction [17] they are no 
different. The presented design is based on FEC codes and uses their error correcting properties to 
change the perspective from a packet level to flow level. This abstraction can be compared to the 
difference in the physics of a particle and a wave. We no longer have to deal with individual packets, 
retransmit them etc. they are all just pieces of a flow. Where the flow can be modulated as a waveform 
to create a secondary channel without affecting the primary channel – the information it transmits.  
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Fig. 2. In digital fountain codes, the encoder produces a potentially infinite number of encoded symbols and the 
decoder is able to recover the original information from any set of at least K=k(1+e) encoded symbols. [13] 

Inter-flow communication is a crucial milestone, it enables fast convergence to a stable network state 
where resources are allocated with absolute fairness. This is in contrast with currently used TCP-based 
logic, where flows compete for capacity in a never ending fight for resources without ever reaching a 
stable state or full resource utilization. All designs that tried to improve this situation did so by 
utilizing feedback from the network requiring the network to change – routers to add functionality 
[19],[1]. The presented system is the first as far as authors are aware of that provides the capability for 
network flows to cooperate in achieving optimal network utilization without the need for any support 
from the network – thus usable on the currently deployed infrastructure. 

Most queues still use the most basic queuing algorithm – First in First out (FIFO) aka DropTail [20]. 
This fact that FIFO queues are "everywhere" in Internet is considered an issue causing problems such 
as Bufferbloat [11]. In fact their omnipresence is a crucial enabler for our mechanism to function. 
Other queuing mechanisms such as Active Queue Management (AQM) (Random Early Detection 
(RED)[9]/Weighted RED (WRED)[2] etc.) should be also theoretically to some extent supported but 
we did not so far look deeper into them. 

The presented design primarily targets last mile routers as they are where most congestion occurs [11]. 
This scope limitation enables us to design a simple proof of concept communication system as not too 
many concurrent flows occur at a last mile bottleneck when compared to a core router bottleneck 
situation. Figure 3 illustrates the core concept behind our design, independent flows interact at the 
bottleneck queue. When the ingress packet rate is higher than egress packet rate – buffering occurs. 
Packets are ordered inside of the queue by their ingress time, if one flow increases its rate, the gap 
between packets of other flows will be altered creating a measurable change. In the previously 
mentioned equilibrium state achieved by congestion synchronization [14] a change of the transmitter 
(TX) inter-packet delta aka packet rate of one flow can on-demand break the queue equilibrium and 
create jitter measurable by all flows in that queue. The flow can also return back to the original rate, 
thus a stable/unstable jitter modulation scheme can be constructed. 
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Fig. 3. FIFO inter-flow interaction 

4 FIFO THE THEORETICAL COMMUNICATION CHANNEL 

FIFO is far from a perfect communication medium, it is not linear as the TX of a frequency or 
amplitude modulation will not necessarily create a linear response on the receiver (RX) of a different 
flow. The sampling rate of the RX flow is not stable and not only a function of its packet rate but a 
function of the current state of the queue that is a superposition of all the different flows passing thru 
it. Classic modulation approaches such as frequency or amplitude modulation are thus unusable, 
transmitting special patterns such as patterns with strong auto-correlation properties also doesn't 
produce stable results as error, erasures and shifts are arbitrary. Even if frequency modulation would 
be possible it would not be ideal as it would require many samples to be precise. We therefore propose 
a modulation requiring only a few samples that provides deterministically achievable results – an 
equilibrium breaking modulation – where flows reach a stable state that is broken and restored in 
protocol defined time windows. 

Because of the mentioned properties a robust coding scheme is required, first of all the true sampling 
rate is not known therefore the code needs to be self-clocking. The start of the sequence needs to be 
clearly recognizable, to achieve this the presented code is self-synchronizing by reversing the 
transmitted sequence every period. 
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ݖݕݔ ∈ ܺ∗ ,ݓݔ⇒ ݕݔ ∈ ܺ∗ 

 

(1) 

Equation 1: Self-synchronization, a code X over an alphabet A has a synchronizing word w in A+ 

Self-clocking is achieved by utilizing Differential Manchester encoding where a transition is 
guaranteed at least once every bit, allowing the receiver to perform clock recovery. Differential 
scheme is preferred as detecting transitions is often less error-prone than comparing against a 
threshold in a noisy environment as a jitter based modulation is, also the polarity of the transition is 
unimportant just the presence of a change is detected. The receiver monitors the variance of jitter, 
where jitter is defined as the inter-packet delta. Variance is derivative of jitter, thus the second 
derivative of packet arrival time. 

 

Fig. 4. Sample delta jitter of a receiver flow. X-axis = jitter [ms], Y-axis = no. of packets 

The variance is measured by taking the zero-crossings of the delta jitter. The number of zero crossing 
directly reflects the state of the queue – stable/not stable. Because the modulation window is protocol 
defined, the number of variance changes per window can be interpreted to bits. 

The presented design uses 2 changes to encode bit 1, one change to encode bit 0 – the reconstructed 
signal in Figure 5 is therefore 11001000. 
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Fig. 5. Sample receiver reconstructed signal - Diff. Manchester encoded. X-axis = jitter [ms], Y-axis = carrier 

signal (logical 0 or 1) 

The simulations were performed in ns2 using a star topology with five TX nodes, one router node and 
one receiver node, each TX node was transmitting one flow. All flows merged at the router node 
which connection with the receiver node represented the bottleneck link. The modulated flow changed 
its inter-packet delta between 4ms for the stable state and 2ms for the excited state. The four receiver 
flows had a constant inter packet delta of 2ms. Protocol defined modulation window was 20ms. 
Bottleneck link speed was set to match the stable state. Receiver code post-processed the ns2 data in 
Matlab. 

Figure 6 illustrates the bandwidth allocation of the bottleneck per flow, the 4 receiver flows are 
superimposed as they have the same rate, so the total rate of the not-modulated flows is packet every 
0.5ms vs. packet every 2 resp 4ms for the modulated flow. Meaning in average there is 6 times more 
not-modulated packets than modulated in the queue at every moment. 
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Fig. 6. Bottleneck bandwidth utilization per-flow - red is the modulated flow, blue are the 4 receiver flows 
superimposed. 

To demonstrate that only a fraction of the total queue capacity needs to be modulated for other flows 
passing thru it be able to receive the signal the following experiment was performed. The not-
modulated flows transmitted a packet every millisecond, the modulated flow every 8ms with 
oscillation of 1ms up/down resulting in 7ms/9ms inter-packet delta for duration of protocol defined 
window 20ms. Thus in average there was 32 times as many not-modulated packets than modulated in 
the queue at every moment. Figure 7 illustrates this bandwidth allocation and Figure 8 shows the 
reconstructed signal.  Because the presented modulation only aims to trigger instability in the queue, 
only a small change is necessary to achieve measurable difference. In contrast to usual modulations 
where signal is being modulated on a medium, we modulate by creating and disturbing a stable state of 
the medium.  

This approach could be compared to the resonant frequencies known from physics, where even a small 
periodic driving force can produce large amplitude oscillations. To set the amplitude right we propose 
to use an Automatic Gain Control on the RX of the modulated flow, because its the RX of the flow 
that is modulating it can have the knowledge of the fact that modulation should be happening and what 
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should be transmitted. If the signal is not strong enough because of ambient jitter the RX can 
immediately notify the TX that amplitude needs to be increased. For the primary information channel 
the modulation/amplitude itself is invisible as it just oscillates to both direction so in average the rate 
is constant. 

 

Fig. 7. Bottleneck bandwidth utilization per-flow - red is the modulated flow, blue are the 4 receiver flows 
superimposed. 

 

Fig. 8. Reconstructed zoomed color coded signal - red is 1, green and yellow are 0 in up/down position resp. 
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5 FIFO THE PRACTICAL COMMUNICATION CHANNEL 

To verify that the presented theoretical model really works, we implemented it in C and tested “in the 
wild” on the most worst case scenario we could think of. Worst case meaning a scenario where 
arbitrary jitter is abundant. We used the topology from Figure 3. Two hosts connected via WiFi to a 
3G router, one server was located at the Technical University Košice, the other in Germany – 
approximately 20ms RTT from the server at our University. Host B had 3 active connections, each at 
30ms inter-packet delta, all not-modulated – meaning static rate. Host A had a single modulated flow 
at base rate of 40ms, with symmetrical amplitude of 10ms, thus one period inter-packet delta was 
30ms, the next 50ms and vice versa. The flows from host B and host A met at the shared bottleneck – 
3G wifi router uplink. Except of that they had nothing in common, they were destined for different 
servers and originated from different hosts. Figure 9 shows the jitter measured on one of flow B flows. 
Figure 10 the signal filtered from the jitter using signal averaging (two pass moving average with 
window size of half of the protocol defined window).  

The performed experiment clearly demonstrated that only a fraction of the total traffic passing thru the 
bottleneck needs to be modulated for other flows to be able to detect it. In this experiment only the 
clocking signal was transmitted e.g. all zeros – one change per period. Figure 11 illustrate how does a 
1010 signal look – two changes per period marking bit 1. 

 

Fig. 9. Jitter of one of the host B flows. Periodic modulation is clearly visible. X-axis = jitter [ms], Y-axis = no. 

of packets 
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Fig. 10. Filtered signal from the jitter on Figure 9. X-axis = jitter [ms], Y-axis = no. of packets 
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Fig. 11. Signal + colored representation - bit 1, two changes per period - red, bit 0 up position - green, bit 0 down 
position – yellow. X-axis = averaged jitter from [ms], Y-axis = no. of packets 

6 DIGITAL VS. ANALOG 

As the previous section demonstrated, digital modulation can be achieved. The problem is it would 
take simply too long for information to be transmitted this way. The protocol defined window in 
which modulation occurs needs to be at least several tens of milliseconds long so there are enough 
samples (packets) for signal averaging to eliminate the random noise. If we can transmit only one bit 
in each protocol defined window, it would take several Round Trip Times on most links to transmit 
any usable information. We therefore aimed our focus on determining the effects of interactions 
between flows on the FIFO that could possibly be combined into enough measurable factors that could 
be used for an analog modulation. 

 

Fig. 12. Jitter of 5 flows interacting at a bottleneck FIFO queue, the first flow from top is the modulated.  

X-axis = jitter [ms], Y-axis = no. of packets 

Figure 12 shows the jitter of 5 flows passing thru the same bottleneck. Flow 1 (first from top) is 
modulated – changing its packet rate in a periodic manner. Flows reached a stable equilibrium state – 
where they stopped increasing their rate and Flow1 started modulating. Each flow was able to reach a 
different rate – clearly visible from the jitter graph is that the rate of Flow 2 and 3 are very similar.  
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Fig. 13. Zoomed jitter of Flow 2 from Figure 12. Nomenclature for Equation 2 and 3: yellow = jitter amplitude, 
black = up period length, red = down period length. 

Figure 13 shows a zoomed portion of Figure 12, market yellow is the amplitude of the received 
modulation, black is the length (in packets) of the UP phase and red is the length of DOWN phase. 
These three variables describe what is going on the FIFO – amplitude is the change created by the 
modulated flow and is received inversed. When the modulated flow transmits more packets – less 
packets of other flows will pass thru the FIFO. When the modulated flow transmits less packets – 
more packets of other flows will pass thru it. The ratio between the UP and DOWN phases 
corresponds directly to the ratio of the modulated flow rate at higher (amp+ [ms]) and lower rate 
(amp- [ms]). Jitter samples the state of the queue, the modulated flow changes it by its modulation 
amplitude thus all the non-modulated flows that pass thru the queue at that time will be subjected to 
the same level of change – resulting in 1:1 transmission of the amplitude to all flows even if they 
transmit at different rates.  

݄ݐ݈݃݊݁_݀݋݅ݎ݁݌_݊ݓ݋݀

݄ݐ݈݃݊݁_݀݋݅ݎ݁݌_݌ݑ
ൌ
ሺܽ݉݌൅ሻ

ሺܽ݉݌െሻ
 

 

(2) 

Equation 2: Relation between the period lengths and modulated flow rate, also visible from Figure 13. 

݁݀ݑݐ݈݅݌݉ܽ_ݎ݁ݐݐ݆݅ ൌ ሺܽ݉݌ ൅ሻ െ ሺܽ݉݌െሻ  
 

(3) 

Equation 3: Relation between jitter amplitude and modulated flow rate, also visible from Figure 13. 

Where interval is the inter packet gap of the modulated flow and 

(amp+) = interval + amplitude 

(amp-)= interval - amplitude 

In contrast to jitter where the amplitude is received exactly as it is transmitted on bandwidth the effects 
are specific to each flow and its speed as Figure 14 illustrates. Jitter is the measure of change, a stable 
jitter amplitude translates into a flow specific amplitude in the “bandwidth domain”. A jitter amplitude 
of X milliseconds translates into a change of Y percent in jitter for that particular flow. Meaning the 
same level Y of change will be visible as the bandwidth amplitude – Y percent of the flow speed. Also 
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important to note is that the bandwidth amplitude of the modulated flow is because of the limited 
capacity of the bottleneck/FIFO matched by the inversed summed amplitude of the other flows. (not 
visible from Figure 14 as flows are superimposed). This property can be used as a validator of the 
results from Equation 2 and 3. 

 

Fig. 14. Bandwidth allocation demonstrating different amplitude size based on the flow speed. 

All together these parameters can be used to construct an analog communication scheme, where the 
modulating flow transmits just a square wave with a constant amplitude and frequency – defined by 
the protocol defined modulation window. The non-modulated flows can decode the rate and the 
amplitude of the modulated flow from just two periods worth of samples as shown in Figure 13. 

7 CONGESTION CONTROL USING INTER-FLOW 
COMMUNICATION 

We have constructed a simple congestion synchronizing inter-flow communication based, congestion 
control scheme to demonstrate the possible benefits of communication between independent flows. 
Synchronization is achieved by exponential search until less packets than expected arrive at the flow 
RX. The RX holds the logic determining the rate of the flow and decides based on the number of 
packets it receives, if the expected number of packets per reporting interval is received the rate is 
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increased, if less packets is received the rate is set to the rate corresponding to the amount of packets 
actually received – thus at the maximum achievable capacity.  

 

Fig. 15. FSM describing the congestion control algorithm. 

The first flow to reach the capacity is because of the aggressiveness of the exponential search expected 
to be the fastest flow. During the exponential search, the rate is increased in steps, between these steps 
the rate is stable and the flow listens to possible jitter modulation. If it reaches the capacity but was not 
able to detect any modulation present it starts to modulate a square wave signal with period of the 
protocol defined with and a stable amplitude. If another flow is present, it receives the modulation and 
immediately changes its rate to the decoded rate of the modulating flow. The result of such action is 
that packets of both flows now arrive at the bottleneck with same inter-packet gaps, thus any effect 
such as buffering or drop would have the same results on both of them. The result is measurable and 
rate is set according to it, thus both flows set the same rate and just shared the capacity fairly. The 
modulated flow immediately detects a change on the network when the other flow changes its rate as 
less packets will arrive in that interval. To be able to detect when a stable state was achieved it stops 
modulating. After a stable amount of packets is received for at least two periods, the rate is adapted to 
the detected rate. If any change would happen such as a new flow or a flow was lost, a change would 
be detectable. Based on the change an action would be taken, if the jitter would rise and less packets 
than expected would be received possibly a new flow arrived. The first flow to detect such change 
would start modulate, the earlier mentioned logic would repeat. If the jitter would drop, possibly a 
flow was lost. The first flow to detect such change would start exponential search, because of its 
aggressiveness it is expected the rate would be achieved before other flows could react in the same 
way. After the new rate would be found, the flow would start modulate it to broadcast it to other flows, 
that would react and re-sync the capacity. 
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Fig. 16. Simulated capacity sharing with the knowledge of the maximum flow rate. 

Figure 16 illustrates the effect of the broadcasted knowledge of the fastest flow rate. If flows know this 
information, fair and instant capacity sharing is trivial because the FIFO does quantization based on 
ingress time. If inter packet gaps are the same, the flows will get the same share of capacity. To limit 
over-buffering it is important to detect stabilized queue state and adapt the transmit rate accordingly in 
as shortest time as possible. 

8 PERFORMANCE EVALUATION 

There was performed several experiments using various parameters for queue size. Another 
parameters which was not changed during experiment was; speed of the exponential search 
(multiplicative factor was set to 4) and the capacity usage goal (controlling how much capacity should 
each flow use - set to 90%). One of experiments is shown on figure 17 with queue size set to 20 
packets. The simulation runtime was 10 seconds with flows stopping at time 9 seconds. Flows where 
starting gradually: Flow 1 at time 0, Flow 2 at time 0.3 seconds, Flow 3 at 0.3 seconds, Flow 4 at 0.4 
seconds and Flow 5 at 0.5 seconds. 
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Fig. 17 System throughput with queue size set to 20 packets. X axis = time elapsed [s], Y axis = 
throughput [kbps] 

The capacity usage goal is set after the speed of the FIFO equalization - thus after all flows set to the 
equal goal, they don't set to what they see is the actual throughput but only to the configured capacity 
usage goal in this example 90 percent of that. As expected the algorithm performs the same on all 
scenarios - minimal differences was visible between the another (queue size of 20, 50, 100, 1000 and 
infinite packets) experiments. To compare the presented protocol we believe the best way to see the 
novelty is to see the existing TCP variants in action and compare visually. Experimental settings 
(queue size, speed of the exponential search, capacity usage goal) was used on the same values as in 
previous experiment. 

The considered TCP variants where: Binary Increase Congestion control (BIC) and TCP CUBIC: 
Binary Increase Congestion control. Figure 18 shows TCP BIC system throughput. Figure 19 shows 
TCP CUBIC system throughput. 
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Fig. 18a TCP BIC system throughput for 20 bottleneck queue size. X axis = time elapsed [s], Y axis = 
throughput [kbps] 

 

 

Fig. 18b TCP BIC system throughput for 50 bottleneck queue size. X axis = time elapsed [s], Y axis = 
throughput [kbps] 
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Fig. 18c TCP BIC system throughput for infinite bottleneck queue size. X axis = time elapsed [s], Y axis = 
throughput [kbps] 

 

 

Fig 19a TCP CUBIC system throughput for 20 bottleneck queue size. X axis = time elapsed [s], Y axis = 
throughput [kbps] 
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Fig 19b TCP CUBIC system throughput for 50 bottleneck queue size. X axis = time elapsed [s], Y axis = 
throughput [kbps] 

 

Fig 19c TCP CUBIC system throughput for infinite bottleneck queue size. X axis = time elapsed [s], Y axis = 
throughput [kbps] 

After reviewing TCP behaviour, it is clear that none of the variants provide comparable stability, 
convergence time nor intra-flow fairness to the presented algorithm. Personal opinion of the author is 
that numeric metrics are useful to compare sub-optimal approaches such as TCP variants in between 
each other, but hardly useful to compare against a "straight line" which is clearly visible in our 
approach. 
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9 CONCLUSION 

This paper demonstrated both using simulations and real world measurements that inter-flow 
communication without any support from the infrastructure can be achieved. We demonstrated proof-
of-concepts of both analog and digital modulations over the FIFO jitter side-channel constructed 
between independent flows sharing the same bottleneck link utilizing the generic FIFO queue 
behaviour. Further we presented a minimalistic algorithm utilizing this communication to achieve 
rapid, fair and stable capacity sharing between flows. We hope that the presented proof-of-concepts 
will ignite wider research interest and drive progress towards a universally optimal transport protocol. 
Future research focus could include optimization of the analog approximation. Our future research will 
be aimed towards incorporation of fountain codes as main factors which can possible eliminate the 
dependency on RTT. 
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