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Abstract: Social networks have become a new trend for research among computer 
scientist around the world. Social network had an impact on users' way of life. One 
of social network usages is recommendation systems. The need of recommendation 
systems is arising when users try to know best choice for them in many items types 
(books, experts, locations, technologies, etc.). The problem is that a single person 
can't try all alternatives in all possibilities life goals to compare. Thus, a person has 
to use his friends' expertise to select better option in any item category. This 
process is the main idea of “Recommendation Systems”. Recommendation systems 
usually depend on users-to-items ratings in a network (graph). Two main 
challenges for recommendation systems are accuracy of recommendation and 
computation size. The main objective of this paper is to introduce a suggested 
technique for transitive recommendation system based on users' collaborative 
ratings, and also to balance loading of computation. All this has to be applied on a 
special type of social network.  Our work studied the transitivity usage in 
connections to get a relation (path) as a recommendation for nodes not directly 
connected. The target social network has eight types of nodes. So, there are 
techniques that are not suitable to this complex type of network. Those we can 
present a new support for recommending items of several types to users with 
several types. We believe that this functionality hasn't been fully provided 
elsewhere. We have suggested using single source shortest path algorithm 
combined with Map Reduce technique, and mathematically deduced that we have a 
speeding up of algorithm by 10% approximately. Our testing results shows an 
accuracy of 89% and false rejection of 99% compared to traditional algorithms 
with less configuration parameters and more steady count of recommendations. 
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1 INTRODUCTION 

Social networks become one of human communications media. In social networks, users communicate 
to their friends using modern web 2.0 technologies. Each user can have many friends and in turn each 
friend can have many friends, so the transitive nature between users can lead to a Friend-of-a-Friend 
relationship (FoaF). Social networks environment encouraged the development of a trend called 
“Recommendation Systems”, this trend aims to recommend the best item of interest to a specific user 
based on his friends or his FoaF's recommendations – sometimes called “ratings”. The 
recommendation systems themselves usually depend on social network and users' interactions with 
themselves and with other items (books, articles, code snippets, etc.). Usually those interactions can be 
stored in a log file or database. Sometimes, not all recommendations are trust worthy so a process of 
Collaborative Filtering (CF) is applied to remove anomalies of recommendations. According to [1], 
CF tries to identify users that have relevant interests and preferences by calculating similarities among 
user profiles. Recommender systems have several challenges [16]: 

Accuracy of suggestion (recommendation), which measures how much similar the suggested items to 
user to his/her preferences. 

1. Traceability, which means that system can present good reasons to user to know why the 
suggested items are selected. This should be presented in user-friendly way. 

2. Timely calculation: whatever the techniques applied in recommendation systems, they should 
operate in a fast way for both users and server sakes. 

3. Load balancing for huge calculations processes. This point can lead also to achieve the timely 
calculation goal (3rd point). 

In this research, we are interested in 1st and 4th points (accuracy and load balancing). However, we add 
an extra dimension to the first point, which is to get the transitive relationships between nodes which 
are not directly connected. According to [16], there are several types of recommendation systems: 

1. Rank-based recommendation: that's to calculate score for each item, and order items by it. 
This is similar to web ranking. Examples for these techniques are Tensor factorization and 
FolkRank [16]. 

2. Content-based recommendation: some semantic analysis is applied to content, meta-data or 
description of each item and then recommendation is calculated to measure how similar the 
item to each user profile. 

3. User-based recommendation, that's to use other friends (or similar users) experts and get their 
suggestions. 

Our work is focused on 3rd type of recommendation (user-based). This paper is organized as follows; 
some background and similar work are presented in section 2. The suggested technique is presented at 
section 3, with some mathematical analysis for algorithm speedup. In section 4, testing results and 
metrics are presented, and finally section 5 is the conclusion. 
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2 RELATED WORK 

There are some common problems in researches about recommender systems [24]; prediction 
accuracy, testing opinions' subjectivity, recommended items suitability rather than being high ranked, 
effective preferences inference, trust formation of recommended items and usability of recommender 
systems interface layout. Those problems focus on the value of the recommended items rather than the 
performance of recommendation process itself. Recommender systems had many forms over the few 
past years. Some expert systems such as "Syskill & Webert" and Web Browser Intelligence (WBI) 
[25] applied intelligence to learn user preferences and patterns of recommendations and decision trees. 
This system allowed user to make symbolic ratings about items using words like cold or hot. The 
symbolic ratings were converted later by the system into numeric ratings [26]. Numeric rating aimed 
to handle the problem of difference in modeling nature between the human view and machine the 
view. However, this approach used explicit user likeness actions where user selects the rating for the 
item. Another technique in recommender systems was modeling of general interests was the analysis 
of user's navigation actions items pages. Also, another set of techniques is to use geographic location 
as a measure in recommendation systems for similarity, a good survey about this set is listed in [31]. 

Knowledge based filtering was discussed in the work of Bruke et al. [27]. Their work classified 
knowledge into three areas: the social knowledge about users' database, the individual knowledge 
about a particular user and content knowledge about the items in the network. They discussed some 
problems in knowledge based filtering such as the distribution of users to items. In that problem, few 
items gain the attention of users while some other good items may not discovered. 

Some techniques of natural language processing and semantic analysis have been used in some 
researches such as the work of Santos and Boticario [28]. In that research a new concept of Semantic 
Educational Recommender Systems "SERS" was introduced to join e-learning with semantic analysis. 
In [29] a survey is introduced to explore the features of some social networks that include e-learning 
support. One of those discussed networks is "OpenStudy" which was a large social learning 
community.  

Many researchers have studied social networks containing two types of nodes (bipartite graphs), such 
as users-to-items relationships. Items can be anything; products, videos or articles...etc. We shall 
present two families of related work: suggestion accuracy and Map Reduce application.  Each of them 
is applied for network graphs. Sometimes those graphs are randomly generated with simulation rules 
while other researchers have used a real data set to test their work. 

Firstly, for accuracy: According to [9, 10, 11, 12, 30], there are some researches to solve sparsity and 
cold-start problem. Ceylan and Birturk [19] have focused on semantic similarity calculation using 
three types of similarities; taxonomy (ontology analysis), relation and attributes. They made two 
predictors for ratings stored in a matrix. They suggested two models; SEMCBF (content based) and 
SEMCBCF (content and collaborative analysis). They could get a precision of about 63 and recall of 
range 92-93 approximately [19]. On the other hand, Purtell and his team [20] have developed a greedy 
algorithm for constructing social topologies from users' groups’ communications data. Their work 
aimed to analyze emails and photo tags from users' profiles to build general information about social 
network. They applied their work on a collection of 1,995 email archives and 286,038 tagged photos 
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from Facebook website [20]. Some data mining techniques have been used for dimensionality 
reduction like Singular Value Decomposition (SVD) [13, 23]. By applying SVD, user-item rating 
matrix sparsity is reduced. Other researchers have used the semantic analysis of social content [14]. 
Another research technique was to use control theory and dynamics [15]. Papagelis and his team [1] 
suggested a technique in section 3 to use trust inference and user similarities estimation. They used 
Pearson co-relation to calculate recommendation for items. They also discussed the use of user 
similarities to enhance the recommendation. 

Secondly, for Map Reduce with graphs: Ekanayake et al. have made [32] a good survey on applying 
Map Reduce for data intensive analysis. Morales and his team [21] have addressed the problem of 
social content matching using Map Reduce to handle very large data sets. Their algorithms (StackMR 
and GreedyMR) are tested on large data sets [21]. Both algorithms scale extremely well. However, 
StackMR requires only a poly-logarithmic number of Map Reduce steps, making it an attractive option 
for applications with very large data sets. Some other surveys were made in [17, 33, 34] about map 
reduce for parallel data processing. 

Most of above work either focus on data mining side of computation, or the distributed computation 
mechanism. We combine both of them besides studying the multi-mode graph to get transitive 
recommendations for far away items. 

2.1 CONTRIBUTION 

In this paper we focus on a special case of graph of multi-type nodes, k-partite graph. To be specific 
we targeted an eight-partite network introduced in the following section. One importance of this eight-
partite is the relation between the university sciences and real life career. Our work is focused on two 
major targets: parallelism of computation, and accuracy of suggestions. This paper suggests different 
technique for calculating recommendation rating queried by a user about an item. The technique of 
Map Reduce is suggested for load balancing.  The algorithm of single source shortest paths is 
suggested to be used with combination with hierarchical clustering. Our work is tested in two parts; 
the first part is a mathematical part for Map Reduce effect, we concluded that we have a speeding up 
of algorithm by 10% approximately. The second part was a simulation testing for accuracy of 
suggestion. Our testing results for that part shows an accuracy of 89% and false rejection of 99% 
compared to traditional recommendation systems algorithms with less configuration parameters and 
more steady count of recommendations. We can claim that our work uniqueness is the combination of 
recommendation systems, Map Reduce, and academic learning co-relation with real life careers using 
eight-partite graph. An additional contribution is combining the previous goals with the ability to get 
transitive recommendations for items recommended by people not directly connected to starting user's 
friends. The nature of single source shortest path algorithms enabled that functionality. 

3 SUGGESTED APPROACH 

As we introduced in section 2, Papagelis and his team [1] suggested a technique in their paper (section 
3) to use trust inference and user similarities estimation. This work is our start and we suggest using 
single source shortest pass algorithms to get a strongest relation of nodes in less time. We shall focus 
on Bellman-Ford [2, 3] algorithm applied on clustering results. 
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3.1  PROBLEM MODEL 

Our main concern is based on a need for a broader range social networks, not just two-mode networks, 
but also multi-mode networks. In practice there is a relationships in information technology 
communities between many elements, we would focus on eight types of nodes: developers, users, 

technologies, reusable components, version control repositories, students, educational courses and 
companies. Figure 1 presents an overall relations graph between those elements. In Figure1 there's a 
symbol letter beside the name of each node (Element) to be used later in discussion, Each element has 
different view: Developers set (D)  want to get best reusable components tested and documented and 
technologies set (T) for long term projects. Also, they may want to know which courses are best to get 
trained on to be up-to-date. Also, Companies want to hire the best developers, either for long or short 
term hiring. Or even to know which developer is good to use for outsourcing. Also, companies want to 
follow the trends of new technologies and have a decision when to migrate to a new technology. 

Students set (S) want to learn new technologies and be up-to-date, and in the same time have a clear 
vision which academic educational courses are useful to their study. Users set (U) want to use or buy 
the best Products set (P) and have an advice from a friend which product is trusted. Courses 
Curricula set (C) need to be updated quickly to provide market needs. Reusable Components and 
libraries set (L) already have version control repositories set (R). Those repositories have some 
useful data in their log, like frequency of updates, passed unit tests, quality assurance history and so 
on. Those data are important to estimate the quality of a product, but they aren't understood by regular 
users. So, if there's a simple understood measure of quality to users based upon quality nature, so more 
trust can be achieved. 

According to relationships, there are three types of relationships: Trust relation (which is between 
humans and each other). Usage relation (which is between an item and its user). Recommendation 
relation (which is a higher degree of usage that has a degree of satisfaction). The social network itself 

Fig. 1. Overall graph of relations nature between nodes. 
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can be modeled as a large graph G(V,E), Where ∈ , 	 ∪ ∪ ∪ ∪ ∪ ∪ ∪

,∧ ∃ ∈ , ∣ ∣∈ . Usually, Social network edges values are limited to small set of integer 
values like set [1, 5] to express strength of relation  between edge ends. Sometimes, some social 
networks express (Dislike) relation in negative values.  There are some examples of applications in 
this large graph: Recommendation of products (P) to customers U (direct relation), recommendation of 
courses C to students S (direct relation), recommendation of courses C to students S though 
technologies (Indirect relation by filtering the direct relations between C and S), recommendation of 
Market trends U to students S though technologies T, products P, libraries L and so on. An important 
aspect is to get a relation between nodes not directly connected or not even from the same type or 
cluster. For example, to get a recommendation for students to learn new technologies based on the 
popularity of products developed by that technology. 

3.2 PRELIMINARIES 

3.2.1 BELLMAN-FORD ALGORITHM 

Bellman–Ford runs in O(V·E) time [2], where V and E are the number of vertices and edges 
respectively. The Bellman-Ford algorithm determines the shortest path from the source s to each v in V 
for a graph G = (V; E) with real-valued weights, which may be negative. This point is important in 
case of expressing dislike operations in social network, which would result in negative edges between 
a user and an item. The algorithm assigns each vertex v in V its correct shortest path weight, provided 
there are no cycles with negative weights. The algorithm then returns true if and only if there are no 
negative weight cycles. The algorithm is described in Listing 1. 

procedure Bellman Ford(list vertices, list edges, vertex source) 
   // This implementation takes in a graph, represented as lists of vertices 
   // and edges, and modifies the vertices so that their distance and 
   // predecessor attributes store the shortest paths. 
 
   // Step 1: initialize graph 
   for each vertex v in vertices: 
       if v is source then v.distance := 0 
       else v.distance := infinity 
       v.predecessor := null 
 
   // Step 2: relax edges repeatedly 
   for i from 1 to size(vertices)-1: 
       for each edge uv in edges: // uv is the edge from u to v 
           u := uv.source 
           v := uv.destination 
           if u.distance + uv.weight < v.distance: 
               v.distance := u.distance + uv.weight 
               v.predecessor := u 
 
   // Step 3: check for negative-weight cycles 
   for each edge uv in edges: 
       u := uv.source 
       v := uv.destination 
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       if u.distance + uv.weight < v.distance: 
           error "Graph contains a negative-weight cycle" 

List. 1. Bellman-Ford Algorithm [2, 4]. 

Bellman-Ford is preferred than another algorithm called Dijkstra shortest path [2, 4] for its complexity 
and running time. 

3.2.2 SIMILARITY OF SAME-TYPE NODES 

As presented in [1], similarity between users can be estimated using the following equation: 

,

∑ ,

∑ , ∑ ,

 

From [1] the definition for this Pearson correlation uses the following symbols: ux, uy are two friend 
users. Items co-rated by both users are subset I={ix, x=1,2,....n}. rux,ih rating of user ux to item ih. rux, ruy 
are average ratings by users ux, uy. 

3.2.3 MAP REDUCE 

As explained in [22, 33, 36], Map Reduce is a parallel and distributed solution approach developed by 
Google for processing large data sets. Map Reduce has two key components. Map and Reduce. A map 
is a function which is used on a set of input values and calculates a set of key/value pairs. Reduce is a 
function which takes these results and applies another function to the result of the map function. The 
approach assumes that there are no dependencies between the input data. This makes it easy to 
paralyze the problem. Map Reduce depends on forking(Map) a computing over many processing units 
and aggregate their results (Reduce) to form final total result [8,17] as shown in figure 2: 
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This can reduce overhead on server and reduce calculations time. 

3.3 SUGGESTED MAIN ALGORITHM 

Instead of relaying only on either trusted friends' recommendations or similar users' recommendations, 
we suggest combining both of them in the following way: 

Find Recommendations (Multi-Partite_network, partite_count, count of clusters): Complexity Estimation 

1. Consider each node a cluster initially O(m) 

2. Sort all graph nodes based on hash value O(m2) 

3. Find proximity matrix by getting all output edges weights for each node. O(m) 

4. T = partite_count O(1) 

5. Initialize T of sub-proximity matrices, each matrix is for a set of nodes of same types. O(m) 

6. Parallel For each sub-proximity matrix M 
Use Manhattan distance to cluster nodes inside same type sub-graph store the results as 
connected components 

O(m2 +u)   without 
parallelism, O(m+u) with 
parallelism. 

7. Merge all connected components arrays into a single array. O(m2) 

8. Create a graph of connected components, O(1) 

9. Let connected components graph edge weights =  sum of all common edges between the 
nodes of those two components. (edges grouping) 

O(m.u) 

10. Remove weak relations between connected components. O(u) 

11. Apply Hierarchical clustering to cluster connected components as blocks. O(u.log u) 

12. Apply Bellman-ford shortest path calculation on each cluster. O(u.e) 

13. Let Recommendation set for each cluster = cluster neighbor of other types. O(u) 

List. 2. Suggested Algorithm. 

 
 

Fig. 2. Map Reduce Architecture according to [37]. 
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For edges in graphs, there is a problem; the nature of relationships between nodes differs. Some 
relationships that express “trust” can be expressed in range [-5,5]. However, dependency relations 
have broader range (like case of libraries and products). So, to unify our calculations we need a 
normalization pre-processing. For normalization, we suggest the following equation: 

,
,

 

Where i is the edge with index i, t the type of node, E(i,t) is the original edge weight for edge i, N(i,t) is 
the normalized edge i in type t, Max(Et) is the greatest edge weight per same type t.   in fact this is not 
a perfect normalization, but it's quick for computation. In the algorithm in listing 2, the 6th step is 
parallel, which enables the use of Map Reduce algorithm. In the following section, we shall present a 
mathematical analysis for the suggested algorithm to get an approximation of computation speedup. In 
second column in table in Listing 2, an estimation of  each instruction complexity is presented to allow 
mathematical analysis in next sub-section. 

3.4 PARALLELISM SPEEDUP APPROXIMATION 

The speedup of calculation can be estimated by Dahlia’s Law [18]: 

1

1
 

Where p is the percent of parallel code, and n is the number of processing nodes. In fact, this law is 
applied in multiprocessing systems originally. Of course, in distributed systems there should be a 
consideration for network overhead. However, the Dahlia’s law is a good approximation for speedup. 
So in order to calculate the p factor we introduced a mathematical analysis for algorithm individual 

instructions in listing 2. First analysis for algorithm without parallelism: 2 3 ∗

2 ∗ ∗ 2 ∗ ∗ log .  

and since u and e are less than m, then: 10 ∗ , and when algorithm has parallelism: 

2 3 ∗ 2 ∗ ∗ 2 ∗ ∗ log
.  

So,	 9 ∗ , Then by dividing the parallelism by linear size, we can say that the 
parallelism had a decreased size percentage 0.9 approximately.  So the percentage of parallel code (p) 
= 1-0.9 = 0.1 approximately. So we can apply Dahlia’s law at p = 0.1 for any number of 
multiprocessing cores n. 

4 TESTING AND RESULTS 

4.1 SIMULATION ENVIRONMENT 

Basically, we focused in this paper on testing the accuracy of transitive recommendation which is the 
second goal of algorithm. For the first goal (load balancing) we presented a mathematical analysis for 
it in sub-section (3.4). in that analysis we concluded that parallelism is effective by 10% 
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approximately. Running tests using JUNG[5] and LingPipe[6] java libraries for eight-partite graph for 
several random samples. The following figures show some samples of original testing networks (2 
samples with different sizes), shown by figures 3 and 4. 

  

Fig. 3. Sample 1     Fig. 4. Sample 2 

In the our experiments, we randomly created  graphs, containing eight types of nodes to represent 
eight types of objects in target study; students, courses, repositories, technologies, users, developers, 
products and reusable components. For simplicity, we've assumed that each type have equivalent 
number of items. Figure 3 shows a graph with 10 nodes for each type, while figure 4 shows another 
graph with 15 nodes per type. The edges in both graphs are also randomly created within a specified 
range for each type. The experiment method tried to compare traditional Collaborative Filtering 
techniques described in [1] with our suggested technique, and see how far our suggested algorithm 
could reach the same results using single source shortest path algorithm. After clustering both samples 
we get the following two connected components graphs shown in figures 5 and 6. The edges between 
clusters are the summation of outgoing edges weights in the children of each clustering to the other 
cluster children. After that a removal of weak edges is done. The value of threshold is fixed to an 
arbitrary value since it's beyond the scope of the current study. 
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Fig. 5. Clustered Sample 1   Fig. 6. Clustering sample 2 

To evaluate algorithm we have applied several metrics discussed in the following sub-section to 
compare traditional recommender system algorithm with our suggested algorithm. 

4.2 USED METRICS OVERVIEW 

The used metrics for comparison is based on LingPipe library [6] precision evaluation. The precision 
recall evaluation is a matrix of counts of reference (goal) and response (tested) classifications. When 
a tested classification contains a target item then the value of the matrix is “true”. Otherwise the 
“false” value is stored in matrix. To compare two classification results, the precision matrix is 
evaluated first, then iterating over all classes generated in matrix. The ideal target is to have all 
classifications sets common in those two matrix and no extra sets in any of them to 100% match. 
Table 1 presents all possible combinations between response and reference [6]. 

  

Response matrix 

Reference 
Totals True (found) False (missing) 

Referenc
e matrix 

True 
(found) 

True Positive  
(TP) 

False Negative  
(FN) 

Positive 
Reference 

False 
(missing) 

False Positive 
(FP) 

True Negative  
(TN) 

Negative 
Reference 

Response Totals Positive Response Negative Response total

Tab. 1. The relation between a reference and response in precision matrix. [6] 

From those cases we can get several statistics [6, 7, 35] presented in Listing 3. 
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1.  

2.  

3.  

4.  

5.  

6.  

7.  

8. ∗ 1 ∗ 1  

9. , where ,  

10. 1  
where: 

2
	

	

and ,  

List. 3. Summary of statistics used for evaluation. 

In the following sub-section 4.3, a comparison is performed using the previous metrics. 

5 EXPERIMENTS RESULTS 

Consider the CF algorithm is reference and suggested clustered CF algorithm is response, we 
performed several experiments and we got those results. 

Measure AVERAGE 

Accuracy 0٫89 

Rejection Recall 0٫89 

Rejection Precision 0٫99 

Random Accuracy 0٫85 

Random Accuracy Unbiased 0٫85 

kappa 0٫25 

Tab. 2. Testing results for comparing basic CF and Clustered CF. 

The most important results are: accuracy from table [2] is 89%, and the rejection precision is 99%. So 
the, the suggested algorithm is moderate compared to original algorithm. However, Kappa agreement 
value is too low. We have an assumption that the too low kappa agreement is resulted due to extra 
transitive recommendation inferred by suggested algorithm. The discussion point is: are those extra 



Acta Informatica Pragensia  13 

recommendations really suitable to querying start users? Well, this can't be covered in random 
simulation, and has to be tested on real users and get a real feedback to have some sort of supervised 
evaluation. Unfortunately, since our suggested eight-partite network is not covered a lot in previous 
researches, we didn't find suitable data set to test our algorithm on it. All available data sets are either 
same-type nodes with relationships or bi-partite networks (2 types of nodes only). 

In order to explore in more detail the existence of extra recommendation by our algorithm compared to 
traditional collaborative filtering algorithm [1], we've made another experiment to compare count of 
suggested items in both algorithm in traditional recommendation shown in table 3 and Figure 7. Our 
experiment was designed to generate random network with fixed number of items per partite. After 
that, both traditional recommendation algorithm and our suggested algorithm are applied to the same 
network in each case. We've assumed that the traditional algorithm needs parameter k, as number of 
maximum recommended items per request. Of course, this parameter has many values, starting from 1 
to n in case of network of items. So, in each network test case, we have tested many values for k in 
within that range. The values in table 3 are the result of dividing the value of suggested algorithm 
average count of recommendation over the traditional algorithm average count of recommendation. 

 

 

Items per 
partite 

Maximum recommendation parameter k 

1 3 5 7 9 11 13 15 17 19 29 35 43 49 

10 10.00 10.00 5.00 5.00 3.30 - - - - - - - - - 

12 12.00 12.00 6.00 4.00 4.00 4.00 - - - - - - - - 

14 14.00 14.00 7.00 4.66 4.66 3.50 3.50 - - - - - - - 

16 16.00 16.00 8.00 5.30 5.30 4.00 4.00 3.20 - - - - - - 

18 18.00 18.00 9.00 6.00 6.00 4.50 4.50 4.50 3.60 - - - - - 

20 10.00 10.00 5.00 3.30 3.30 2.50 2.50 2.00 2.00 1.60 - - - - 

30 10.00 10.00 5.00 3.30 3.30 2.50 2.50 2.00 2.00 1.60 1.40 - - - 

50 10.00 10.00 5.00 3.30 3.30 2.50 2.50 2.00 2.00 1.60 1.25 1.10 0.91 0.77 

100 10.00 10.00 5.00 3.30 3.30 2.50 2.50 2.00 2.00 2.00 2.40 1.10 1.00 0.91 

 

Tab. 3. Matrix of Comparison Ratio. 

So, when the comparison ratio is 2.0 for example, it means that our algorithm has produced twice as 
traditional algorithm (200%). In fact, our algorithm is steady in the number of items of 
recommendation; it produces almost the same count of recommendations and doesn't need extra 
parameter of k. In fact it's the same value in column at k=1 in table 3. We assume that is easier for 
users who don't want to enter configuration values like k. the dashed values in table 3 means that k 
value is not applicable in that case. An interesting result has been noticed, that as more convergent the 
value of k to the value of count of items per partite, the more similar count of items produced by the 
two algorithms and at some point our algorithm produces less results than the traditional algorithm. To 
judge which is more correct, we need a real sample data set with a real feedback of users to get some 
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sort of supervised learning. In figure 7, a curve is made for each sample with fixed count of items per 
partite. The curve values themselves are the comparison ratio values defined in table 3. 

 

6 CONCLUSION 

The suggested algorithm is designed for two main goals: load balancing and accuracy. For first goal 
(load balancing), it could use parallel loops using Map Reduce technique to get a reduction of 
computation size estimated mathematically as 10%. for second goal (accuracy of recommendation), it   
achieves 89% accuracy and 99% rejection precision with less configuration parameters and more 
steady count of recommendations. The power of the suggested algorithm is in finding association 
between k-partite graphs compared to other algorithms which may ignore the nature of k-partite. The 
use of Map/reduce is proposed to reduce overhead on server and reduce computation time. The 
practical application of suggested algorithm in this paper can achieve the mutual use of distributed 
systems algorithms, web mining and graph theory techniques. However, testing results is based on 
simulation. We hope that we can apply this in real life and test the suggested algorithm and 
architecture when dealing with target eight-partite graph in technology community. Our results show 
that the suggested algorithm is a good start but needs more enhancements in the quality of 
recommendation. In fact, we have a problem in randomly created samples, that can't confirm or deny 
that the suggested algorithm recommendations are really suitable to users, or has some shortage in 
some case. Some real test cases and datasets are needed. 

 

 

Fig. 7. Recommendation Ratio Comparison Graph. 
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